Graphite R050503


Name: Graphite
RRUFF ID: R050503
Ideal Chemistry: C
Locality: Sterling mine, Ogdensburg, New Jersey, USA
Source: Marcus Origlieri
Owner: RRUFF
Description: Black hexagonal platy crystals
Status: The identification of this mineral has been confirmed by X-ray diffraction.
Quick search: [ All Graphite samples (3) ]
CHEMISTRY 
RRUFF ID: R050503.2
Sample Description: Microprobe fragment
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unoriented Sample. To view the entire high resolution spectra, one needs to change the max range to 1800, then click "refresh".
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R050503
Wavelength:
Sample Description: Unoriented Sample. To view the entire high resolution spectra, one needs to change the max range to 1800, then click "refresh".
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
INFRARED SPECTRUM (Attenuated Total Reflectance) 
RRUFF ID: R050503.1
Instrument settings: SensIR Durascope on a Nicolet Magna 860 FTIR
Resolution:
X Min:    X Max:    X Sort:
POWDER DIFFRACTION 
RRUFF ID: R050503.1
Sample Description: Powder
Cell Refinement Output: a: 2.4503(2)Å    b: 2.4503(2)Å    c: 6.7133(1)Å
alpha: 90°    beta: 90°    gamma: 120°   Volume: 34.905(5)Å3    Crystal System: hexagonal
  File Type Information Close
Calculated diffraction file.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

  File Type Information Close
Output file from the Bruker D8 Advance instrument. Includes device headers and XY data.

X Min:    X Max:    X Sort:
REFERENCES for Graphite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Werner A G (1789) Mineralsystem des Herrn Inspektor Werners mit dessen Erlaubnis herausgegeben von C.A.S. Hoffmann, Bergmannisches Journal, 1, 369-386   [view file]

Lipson H, Stokes A R (1942) The structure of graphite, Proceedings of the Royal Society of London, A181, 101-105

Lynch R W, Drickamer H G (1966) Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride, Journal of Chemical Physics, 44, 181-184

Campbell S J, Kelly D C, Peacock T E (1989) Graphite: the ultimate large aromatic molecule, Australian Journal of Chemistry, 42, 479-488

Fayos J (1999) Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition, Journal of Solid State Chemistry, 148, 278-285

Nasdala L, Brenker F E, Glinnemann J, Hofmeister W, Gasparik T, Harris J W, Stachel T, Reese I (2003) Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds, European Journal of Mineralogy, 15, issue 6 931-935

Reich S, Thomsen C (2004) Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society of London: Mathematical, Physical and Engineering Sciences, A362, 2271-2288

Hazen R M, Morrison S M (2020) An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga), American Mineralogist, 105, 627-651   [view file]

Song H, Chi G, Wang K, Li Z, Bethune K M, Potter E G, Liu Y (2022) The role of graphite in the formation of unconformity-related uranium deposits of the Athabasca Basin, Canada: A case study of Raman spectroscopy of graphite from the world-class Phoenix uranium deposit, American Mineralogist, 107, 2128-2142