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On Grassmann’s method of axinl represextation, and its application o the
solution of certain crystallographic problems.

By W. J. Lewis, M.A.,
Professor of Mineralogy in the University of Cambridge.

[Read April 8rd, 1900.]
RASSYANN, in his Memoir, Zur physischen Krystallographie und
geometrischen  Combinationslehre, published in 1829, referred a
erystal to three face-normals—rays—as axes of reference; the parameters
being the edges along the axes of a parallelepiped having for diagonal a
definite length of a known normal which is not co-planar with any pair of
the axial rays. Any other normal is then represented as the diagonal of 2
similarly formed parallelepiped having for its edges along the axes lengths
which are rational multiples of the parameters. Grassmann gave no
formule for finding in general the indices of face-normals from measure-
ments of the angles on the crystal ; nor for determining the angles from
the ecrystal-elements and indices. Frankenheim (Crelle’s Journal f.
Mathematik, VIII, p. 178, 1832) gives an expression for the cosine of
the angle between any two rays, but his expression is not in a form such
as is now usually adopted. Miller, in his memoir on the method (Proc.
Camb. Phil. Soc. II, p. 75, 1868) limited himself to a few general pro-
blems relating to zones. The space which could be spared to the subject
in my Treatise on Crystallography, 1899, only allowed me to give the
relation connecting the ray-parameters with those of a crystal referred to
zone-axes. But the inclination of any ray to the reference-rays and to
any other ray can be easily found by the process adopted in Chapter XIX,
Arts. 9, 10, 11, 13 and 14 of my Treatise for the similar relations con-
necting the direction of a line with axes which are edges of the erystal.
The relations obtained when the erystal is referred to axial rays are more
immediately applicable to the angles found by goniometric measurement,
and are in many respects simpler than the relations given in the above
mentioned articles. As, further, Grassmann’s axial representation gives
many elegant expressions applicable to the solution of problems which
occur in the determination of the face-symbols and angles of erystals, I
have thought that it may prove useful to establish some of the prineipal
relations.
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We shall thronghout assume that the same three faces are selected to
give the axial system, the axial rays being parallel to their normals, and
the ordinary axes to their edges of intersection. We shall take Ox, Oy
and Oz to bethe rays which are, respectively, perpendicular to the faces
(100), (010) and (001). We shall denote by OG the parametral ray
(111}, and shall suppose it to be perpendicular to the face (111) referred
to zone-axes. We shall denote the ray-parameters by a, b, ¢; and the
angles between the axial rays by a, B8, y. The corresponding parameters
and angles, when the crystal is referred to zone-axes, will be denoted by
a, b, ¢, ay, B, yio Any ray (hkl) of the crystal is then given by the
equations-—

w

2 Y E . reerereennenen (1)
= =15 vt e enere e (1)

and the ray-parameters are connected with those referring to zone-axes by
the equations—
aa bb e
ey e R R I L R .....,(2) H
sino sinf ~ siny

or by their equivalents —

aa bb oe
P :m:;lﬁ* cereercs sensecana e ...(2"‘).
1 1 71

Prop. 1. To express the length of a given ray (RAl) in texms of the
indices, ray-parameters, and the angles between the axial rays.

Let OLPN, Fig. 1, be the parallelepiped, having OP for diagoral, and
for edges along the axes the lengths : —

OL=FM=ha, OM=LF=kbh, ON=PIF'=l¢......(3).

Let the inclination of OP to the axes Ox, Oy, Oz be denoted by
A, p, v, respectively.

Fia, 1.

Since the sum of the orthogonal projections of the three edges OL,
LF and FP on CP must be equal to OF, we have—
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OP=0L cos A++LF cos p+ FP cos v
=ha cos A+kb cos p+Ic cos v...... 4).

Again, taking the orthogonal projections of OF and of the above three
edges of the parallelepiped on each of the axial rays in turn, we obtain the
following equations :—

OP cos \=OL+LF cos y-+FP cos B=ha-+kb cos y+I¢ cos 8 }

OP cos u =ha cos y+kib+7c cosa
OP cos v =ha cos 3+kb cos a+le

Multiply both sides of (4) by OP and introduce the values of OP cosA,
&c., from (5). We then have—
OP*=ha(ha+kb cos y+1c cos 3)+kb(ha cos y+kb+Ic cos a)
+lc(ha cos S+kb cos a+1¢) =Zh%a*+23klbe cosa vevveivur.n. (6).
Prop. 2. To find the direction-cosines of any ray, and the relation
which exists between them and the angles between the axial rays,
The direction-cosines are found by introdueing in (5) the value of OP
given in (6). They are, therefore,—
ha4-kb cos y4-lc cos f3 I
COS N= J3WaP A 2 Shibe cos @
ha cos y+kb4lc cos a
S8 = JSRa? 2 Silhe cos «
ha cos B+kb cos at-Te I
OB V= VSR +2 Skhe cos o )
Equations (4) and (5) hold for any ray. FEliminating, therefore,
OP, ha, kb, ¢ from the four equations, we obtain the relation which holds
between the direction-cosines: it is—

1 cos A COS €os v
| eos A 1 cos y cos f3
leospu  cosy 1 cos o | =0 ()
ecs v cos B CoSa 1

Prop. 8. To find expressions for the indices of any Tay in terms of
the angles which it makes with the axial rays.
Solving equations (5} for Aa, kb, lc, we have—

cos A cosy cosf3 [ 1 cos A cos f3
ha+ |eosp 1 cosa|=kb+ |cosy cosp cosa
cosv cosa 1 ‘cos B cos v 1
1 cos B cos A 1 cosy cos f3
=lg+|cosy 1 cosp|=0P+|cosy 1 cosal..(9).

cos 3 cos a cOS ¥ cos Bcosa 1
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Again, if the value of OPF given in (4) be introduced into the equations
(5), we obtain the following equations, which may be sometimes useful :

ha sin® A4 kb(cos y —cos X\ cos p)+1c(cos B—cos A cosp)=0
ha(cos y —cos X cos p)+kb sin® p+76(cos o —cos p cos v)=0 }...(10).
ha(cos 3—cos X cos v)+kb(cos a—cos p cos v)+l¢ sin® v=0

Prop. 4. To find the equation of the plane perpendicular to a ray
(hkl), i.e. of the face (hkl).

Suppose the plane to pass through the point P, which is the extremitly
of the diagonal of the parallelepiped having for edges ka, kb, lc; and let
the ray make the angles A, p, » with the axial rays.

The sum of the orthogonal projection on OP of the coordinates z, y, &
of any point which lies in the plane is equal to OP.

.. OP=x cos A+y cos u+2 cos v.

Introducing the values of cos X, ¢os p, cos v from (5) and the value of

O P from (6), we have—
(v—nha) (ha+kb cos \+1c cos B)+(y—kb) (ha cos y+kb4-Ic cosa)
+(z—1¢) (ha cos f+kb cos at+1e)=0 ........ (11}
The parallel plane through the origin is—
a(ha+kb cosy -+l cosfB) +y(ha cosy+kb+1c cosa)
+2(ha cos3+kb cosa-+l¢)=0.........(12).

Prop. 5. To find the angle ¢ between any two rays (hkl) and (A% 0).

Let OP in Fig. 1 be the ray (hkl), and let its inclination to the axial
rays be A, p, v. Then the relations established in the preceding
propositions hold for it. Suppose the ray (h/il)) to be given by the
diagonal OP; of a similar parallelepiped, and its direction-angles to be
Ay, pi, e Then the orthogonal projection of O” on O, must be equal to
the som of the projections of the edges O/, LF, FP on OP,.

Hence, OPF cos ¢=0L cos \,+LI cos p,+ FI cos v,
=ha cos A+ kb cos py 16 cos vy...... (13).

But cos A, cos p,, cos v, OP; are connected together by equations
similar to those given in (5). Multiplying both sides of (13) by OP,, and
replacing OP; cos \;, &e., by their equivalents, we have—

OP.0OP, cosp=ha(ha-+kb cosy+1,6 cosfB) +kb(la cosy+kb+1¢ cosa)
+le(ha cosB-+kb cosa+1,c).

Hence—

Shiya®+Xbe(kl,+1k) cos
008 pm +2bolkh+ , ) LA (14).
VIR +23kibe cosa v Xha®+23k1 be cosa
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This expression is simpler and more easily computed than either of the
expressions (44) and (47) of pages 569 and 570 of my Zreatise on
Crystallography. It can also be easily transformed into either of them by
the relations (2). Thus to get (47) we need only substitute for a, b, ¢
from (2), when we have—

Cos ¢ =

Bl4iky
be

2—&;1 sinfa 4 = sin B sin y cos «

K2 | kL . . ) By s kily o
\/E@— sina - 225 sinB siny cosa JIEE{ sinZa 4~ 2% sinB siny cos a

Equation (44) is found by a similar substitution from (2*), and the
relations of a spherical triangle—

Cosa=cosf3 cosy-sinf3 siny cos (d=m—ay), &e.

We shall now show how this method can be applied to the solution of
crystallographic problems. Thus let us take an anorthic crystal, and let
it be required to find the linear elements from a knowledge of some of the
angles. Adopting the letters and notation of page 161 of my 79ealise,
let us suppose the zone [BLC] = [010, 001] to be known, Introducing
the indices 0,1,1 of L into the first and second equations of (7), we
have—

cos (AL=100A011)= 28 V0SB g
VB2 be cos a
b*+6°4-2 be eos o
(b+c cos a)?

¢*(1—cos® a) |
(b+c¢ cos )’

and sec’( D=010A011)=

o tan® D=sec’ D—-1=

¢ sin a
D= ——— ..
tan b-+c¢ cos a (16)

simnD _  eosD _ sin (a—D),

csna  b+eeosa b sin a

b_sin@=D) s,
¢~ sinD TsinD

Also

This equation, which gives the parametral ratio 2 , 18 given by Grass-
c

mann, p. 188; but as he endeavours to connect the ratio with the dis.
tances between consecutive particles, his expression differs slightly from
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the above. TI# can, by means of the relations (2), be easily transformed
into the equations giving the parameters on the corresponding zone-axes.
This latter expression is—

esm B __sin D,

bsiny sinD’

. .
b_smBL sinCAd ).
¢ sin CL sindB

By introducing into (7) the values (101) and (110), we get corres-
ponding expressions for the other parametral ratios. They are—

Or

sin a sinl
- and - — ——' ...
sin '’ b sin F

e (19),

[4
a ==
Again, if L is 0%, we have from the second equation of (7)—

kb+1c cos a

co8 BLl: e ——
VIR PeE 2 kL be cos o
le sin o
‘hence tan BL,= ————— ......... 20).
whene " kb+lc cos a (20)

sin BL, _ sin BL, _ ¢
sin (a— BL,) sin CL, kb
Dividing (21) by (17), we have the anharmonic ratio of the four poles
{BL,LC}, which ig—
sin BL, sin BL __ 1

- s - = vrerenaes (22).
sin CL, sin CL k

an

The deduction of special formule for the systems of greater symmetry
is easy. We shall at present limit ourselves to the consideration of the
rhombohedral system.

Rhrombohedral system.
In this system the normals to the fundamental trigonal pyramid or

rhombohedron are selected as the axial rays, and the triad axis as the
parametral ray (111).

Hence a=p=y; and a=b=c=1(say).
Equations (5) become—

OP cos A\=N+ (k+1)cos a=n(l —cos a)+6 cos WI
OP cos p =/k(1—cos a)+0 cos a ¢ ...... (28);
OP cos v =1{l—cos a)+6f cosa’/

Where O0=n+k+1.
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Also, OP*=2/*+2 cosa Zkl=0"cosa+ (L —cosa)Zh’...... (24).
And,
008 A h(1—cosa)+6 cosa
NE2+2 cosakl
008 p= ’“Q:."M“ ...... (25)
NV Zh2 2 cosaZkt
{(1—cosa)+8 cosa l
COS V= S

VIR42 cosaZki )
A becomes—
(1 —cosa)’ (142 cosa)— (1~ cos’a) 2 cos® A
+2 cosa(l —cosa)Z cos A cos p.
Since this is equal to zero, we obtain as the relation between the
direction-cosines—
(14-cosa)Z cos® A —2 cosa T cosA cosp=(1—cosa)(1+2 cosa).....(26).
When the ray coincides with the triad axis, A=p=v=D==111A100.
Equation (26) then reduces to—
8(1 —cosu) cos?D=(1—cosa) (1+2 cosa);
o 805" D=1+42 cosa...... (27).
2—~tan’D -
m......(%).

Again, 8 sin? D=2(1 — cosa) =4 sin"’% ...... (29).

enee—
n 2 cosa=

This last equation is equivalent to the well-known formula—
sin »'7/2=sin 60° sin D
Where 7 and »’ are two poles of the fundamental rhombohedron.
The expression (14) for the cosine of the angle between the rays
(nkl) and (kL) becomes— ’

Zhivy+ cosaZ(kly+ Il
cos g et PR a0,
VER+2 cosa 2kl v ShP242 cosa Skl
If cosa is replaced by its equivalent given in (28), we obtain the
following expressions for the cosine :—
cos ¢ =

A Shhy Skl ARy} tan2D{2shiy—S(kl - 750}

N 2(2hH-22kl) 42 tan2D(SA2 T 2kl) N/ 2(TR 223 kil)+2 tan?D(Sh? — Skl
_ 260, tan3D3 (k—1) (b —1)
VAP tanE DRE— I /200 tar® D3 (k12

wheve 0, =h,+k,+1,.

.l (31);
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By means of the equations above given, and the relations of the
spherical triangles formed by P with the axial poles and with the poles
C, N, m, w', m'", a', &e., marked in Fig. 2, we can easily establish the
relations in general use for the solution of problems respecting
rhombohedral erystals.

Or employing the general equations (30) and (81), and C being (111),
we have—

€080 P = =————eee—em

0v2
W3¢+ tan *DS(h— O
By transforming the first equivalent, we have—
V(I =cosa)S(k—1)? .
Op = A TPPHNTT ... (88),
tan 67/ (1 +2 cosa)
By transforming the second equivalent, we obtain—

. NIk — 1)
tanCP = ‘W tan D......... (34:) s

and this can be shown to be the result of replacing cose in (83) by its
equivalent in terms of tan D,

Again, taking 2¢, 2y to be the angles, respectively, over the obtuse and
acute polar edges of a scalenohedron (i}, and 2J to be that over each of
its median edges, we have—

2 -7, 2 2 .
cos 2£ =cos Mkl z\Rlk= y +2k;:2:isgégsa2§:z +2H0)

:292—[—tan2D 8(h2+271) — 0% e (35).

267+ tan®DE(k —1)?
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2 (l— 1) sin? :
2  3(k—10Dtan®D

Hence 2 sin® § = — — T L (86).
Zh*+2 cos a ki 207 4tan®D 2(k — 1)
Similarly,
124 2Rk cosa {6° — (2-+20k)}
2= REINRRD) = ——

cos 2y=cos (REIAKRL) = ZhE+2 cosa 2kl

2 2 2 2 , i 2

= WD BEFI) 6} e (BT).

20* +tanD Sk~ )2

(h —k)? sin? =
- 2 sin? = A W 0 S (38).
Zh*+2 cos a 2kl 20°4-tan® D Z(k—1)*

And—
— (B ++2h1) — cos a {6° — (k4 2h()}
E]L2+2 CcOSe 2 /v[

cos 2{=cos llkl/\l-]_f/_L:

—26% —tan® D {8(2+ 21) ~ 6% (39)
202+tan2D E(k—l)2 PeeRB s re Ve SRR a te s es st 3

Hence

2 (h—1I) sin? >
('4 ) sin 5 _ (h—-l)ﬁyta‘nz D (40)

TSI 42 cos a Skl 20 +4tant D S(k—1)

Now each of the angles &, u, £ is less than 90°, for the angles over the
scalenohedral edges are each less than 180°. Therefore taking, as we
are at liberty to do, h, k and ! to be in descending order of magnitude,
and their sum to be greater than unity, the positive values must be taken
when the square roots of equations (86), (88) and (40) are extracted.
We have, therefore,—

2 cos? {=

a
sin § = (k=0 sin 2 - ;,,(k_l) */5@2,,,
VI + 2cosaZkl ¥ 460°+2 tan® Dz(k—z)ﬂ’
[
h—#) sin ; |
dng = OTHS _ (-RyFtaD (4,
V' 2ZhE 4 2 cosalkl V40‘+2 tan? DE(k l)“’
o
osg=_ (D2 _  GhvsieD
VIR 4 2cosathl /40P +2 tan® DE(R—1)*
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Hence,
. a
sin § _singy _ eos sm o
k=1 h—k Rl e
v ZhE4+2 cos akl
= (by transformation from (52)) M = V8 tan D

TVES(k—lp VP2 tan’D Sk 1)

— (from (32)) i?i%lQ%’M... .. (42);

and sin £4sin y=cos {...... (43).




