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On Grassmann's method of axial represe:ttatlo~, and its application to t]~e 
solution of certain er~Jstatlographlc problems, 

By W. J. LEwis, M.A., 

Professor of Mineralogy in the University of Canlbridge. 

[Read April 3rd, 1900.] 

G RASSMANN, in his Memoir, Zur physlschen Krystallographie w*d 
geometrischen Combinationslehre, published in 1829, referred a 

crystal to three faee-normals--rt~ys--as axes of reference ; the parameters 
being the edges along the axes of a parallelepiped having for diagonal ,% 
definite length of a known normal which is not co-planar with any pair of 
the axial rays. Any other normal is then represented as the diagonal of a 
similarly formed parallelepiped having for its edges along the axes lengths 
which are rational multiples of the parameters. Grassmann gave n o  
formul~e for finding in general the indices of face-normals from measure- 
ments of the angles on the crystal ; nor for determining the angles from 
the crystal-elements and indices. Frankenheim (Crelle's Journal f .  
Mathematik, u  p. 178, 1832) gives an expression for the cosine of 
the angle between any two rays, but his expression is not in a form such 
as is now usually adopted. Miller, in his memoir on the method (Proc. 
Comb. Phil. Soc. II,  p. 75, 1868) limited himself to a few general pro- 
blems relating to zones. The space which could be spared to the subject 
in my Treatise on Cr!lstallography , 1899, only allowed me to give the 
relation connecting the ray-parameters with those of a crystal referred to 
zone-axes. But the inclination of any ray to the reference-rays and to 
any other ray can be easily found by the process adopted in Chapter XIX, 
Arts. 9, 10, 11, 13 and 14 of my Treatise for the similar relations con- 
necting the direction of a line with axes which are edges of the crystal. 
The relations obtained when the crystal is referred to axial rays are more 
immediately applicable to the angles found by goniometric measurement, 
and are in many respects simpler than the relations given in the above 
mentioned articles. As, further, Grassmann's axial representation gives 
many elegant expressions applicable to the solution of problems which 
occur in the determination of the lace-symbols and angles of crystals, I 
have thought that it may prove useful to establish some of the principal 
relations. 

BB 
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We shall throughout assume that the same three faces are selected to 
give the axial system, the axial rays being parallel to their normals, and 
the ordinary axes to their edges of intersection. We shall fake Ox, Oy 
and Oz to bethe rays which are, respectively, perpendicular to. the faces 
(100), (010) and (001). We shall denote by OG the parametral ray 
(111), and shall suppose it to be perpendicular to the face (111) referred 
to zone.axes. We shall denote the ray-parameters by a, b, c~ and the 
angles between the axial rays by a, /~, 7. The corresponding parameters 
and angles, when the crystal is referred to zone-axes, will be denoted by 
a, b, c, a 1, ill, 71. Any ray (hkl) of the crystal is then given by the 
equations-- 

x y z ~ = / ~ = ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1); 

and the ray.parameters are connected with those referring to zone-axes by 
the equations-- 

aa bb cc 
sina-- sin G --sin 7 . . . . . . . . . . . . . . . . . . . . . . . . .  (2) ; 

or by their equivalents-- 

~,a bb oc 
sinai -- sin/31 -- sin71 ... (2*). 

l~rop. 1. To express the length of a given ray (hkl) in terms of the 
indices, ray-parameters, and the angles between the axial rays. 

Let OLPN,  Fig. 1, be the parallelepiped, having OP for diagonal, and 
for edges along the axes the lengflts : -- 

O L =  FM :l~a, O M : L F = k b ,  O N :  P1,'=lc ...... (3). 

Let the inclination of OP to the axes Ox, (9], Oz be denoted by 
h , /6  v, respectively. 

x ~ y N  Z 

F 
Fie.. 1. 

Since the sum of the orthogon~l projections of the three edges OL, 
L F  and F P  on 6 P  must be equal to OP, we have- -  
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OP=OL cos X+LF cos tx+FP cos v 
=ha cos )~+kb cos ~+lc cos v . . . . . .  (4). 

Again, taking t,he orthogonal projections of OP and of the above three 
edges of the parallelepiped on each of the axial rays in turn, we obtain the 
following equations : - -  

OP cos X = O L + L F  cos 7+FP cos fl=ha+kh cos y+lc cos fi 

OP cos ~ = h a  cos y+]~ 'h+/C cosa t ' " ( 5 ) '  
OP cos v = h a  c o s / 3 + k b  cos o.+le 

Multiply both sides of (4) by OP and introduce the values of OP cos ~,, 
&c., from (5). We then h a v e - -  

OP~=ha(ha+],b c o s  7+10 cos fi)+kh(ha cos y+kb+le cos a) 
+Ic(ha cos fi+kb cos a+tc)=Eh2a~+2Eklbe cosa . . . . . . . . . . . .  (6). 

Prop. 2. To find the direction-cosines of a n y  ray, and the relation 
which exists between them and the angles between the axial rays. 

The direction-cosines are found by introducing in (5) the value of OP 
given in (6). They are, therefore , - -  

ha+kb cos y+lc cos fi -1 
cos X=  ~/2h~a~+2 Xklhc cos a [ 

ha cos 7+kb+lc cos a I 
_ ~ . . . . . .  ( 7 ) .  cos ~ =  #Xh2a~+2 Eldbc cos a [ 

ha cos fl+kb cos a+lc I cos v =  ~/Eh2a2+ 2 Eklbc cos a 3 

Equations (4) and (5) hold for any ray. Eliminating,  therefore, 
OP, ha, kb, lo from the four equations, we obtain the relation which holds 
between the direction-cosines : it i s - -  

1 cos k cos/z cos v 
cos k 1 cos y cos fi 

A I =  cos/~ c o s y  1 c o s a  = 0  . . . .  (8). 

cos v cos fi cos a 1 

Prop. 3. To find expressions for the indices of any r a y  in terms of 
the angles which it makes with the axial rays. 

Solving equations (5) for ha, 

cos k c o s y  cos 
ha+  cos/x 1 cos 

Cos v cOS a 1 

CO:,y eo]/~ cos ~. 
= lC + cos/~ 

cos/3 c o s a  cosy  

~'b, lc, we h a v e - -  

fi 1 cos X cos/3 I 
a = k b +  c o s y  cosp  c o s a  

COS ~ COS v 1 

1 cos 7 cos fi 
=OP+ cosy  1 cos ~ ...(9). 

cos fl cos ~ 1 
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Again, if the value of 0 t  ~ given in (4) be introduced into the equations 
(5), we obtain the following equations, which may be sometimes useful : 

h,a sin 2 X+l~b(cos y - c o s  x cos t ' )+ lc (cos /~-cos  x cos ~ ) = 0  ) 
ha(cos y--cos  X cos/~)+kb sin 2 #+/c(eos a - c o s / ,  cos v ) = 0  I "" .(10). 
ha(cos f i - c o s  X cos v)+kb(cos a - - c o s / ,  cos v)+lc sin 2 v = 0  

Prop. 4. To find the equation of the plane perpendicular to a ray 
(/,1~Z), i.e. of the face (hk 0. 

Suppose the plane to pass through the point P, which is the extremity 
of the diagonal of the parallelepiped having for edges ha, kb, lo ; and let 
the ray make the angles 2,/~, ~, with the axial rays. 

The sum of the orthogonal projection on OP of the coordinates x, y, z 
of any point which lies in the plane is equal to OP. 

.'. OP=x  cos X + y  cos /~+z cos v. 

Introducing the values of cos X, cos/z, cos v from (5) and the value of 
O t )2 from (6), we have-- 

( x -ha )  (ha+kb cos X+lc cos 13)+(y- t@ (ha cos ~,+/,.b+lc eos~) 
+(z--lC) (ha cos f i+kb  cos a+Ic)=O ........ (11). 

The parallel plane through the origin i s - -  

x(ha -t- kb cosy + lc eosfl) +y(ha  cosy + kb +lc cosa) 
+ z(ha eosfi+kb cosa+lo)=O ......... (12). 

Prop. 5. To find the angle q~ between any two rays (hkl) and (lhk~l~). 
Let OP in Fig. 1 be the ray (hkl), and let its inclination to the axial 

rays be X, /~, v. Then the relations established in the preceding 
propositions hold for it. Suppose the ray (l@~l~) to be given by the 
diagonal OP~ of a similar parallelepiped, and its direction-angles to be 
Xl, ~ ,  vt. Then the orthogonal projection of 01 ) on 0I)~ nmst be equal to 
the sum of the projections of the edges OL, LF, F P  on OPt. 

Hence, OP cos dp=OL cos X~+LF cos Ix~+FD cos v~ 
= ha  cos X~+],b cos H~+lC cos v~ ...... (18). 

But cos X~, cos P-l, cos Vl, OP1 are connected together by equations 
similar to those given in (5). Multiplying both sides of (13) by OPt, and 
replacing OP1 cos hi, &c., by their equivalents, we have--  

OP. 0 P~ cos(} = It a (h~a + k~b cosy + l~o cos/?) + l,.h(h~a cosy + k~h + 11o cos~,) 
+ Ic(h~a eosfi + k~b eos~ + l~c). 

t tenee--  
~hh~a ~ + ]~hO (kl~ + lk~) cosa 

cos 
4P=.,/Xh2a~ + 9.Xktbc eosa x/~[2a~ + 9,Xkxlzhe cosc~ 

(14). 
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This expression is simpler and more easily computed than either of the 
expressions (44) and (47) of pages 569 and 570 of my Treatise on 
Crystallography. I t  can also be easily transformed into either of them by 
the relations (2). Thus to get (47) we need only substitute for a, b, G 
from (2), when we h a v e ~  

Cos ~ = 

zhhl ~ 1 1 2 t  - l T c  1 
"-~- sin~a --~ X~T~---~ c sin fi sin 7 cos a 

J h2sin2a+2Xb~sin/3 /" lh~ Xa~ sin 7 cos a Cosa J ~ a 2  Sin2a+ 2Y .~  sin [3 sin~/ 

Equation (44) is found by a similar substitution from (2 ' ) ,  and the 
relations of a spherical t r iangle--  

Cosa=eos/3 cosT+sin  fi sin 7 cos (A =~r--a l ) ,  &c. 

We shall now show how this method can be applied to the solution of 
crystallographic problems. Thus let us take an anorthic crystM, and let 
it be required to find the linear elements from a knowledge of some of the 
angles. Adopting the letters and notation of page 161 of my T~eaLise, 
let us suppose the zone [BLC] = [010, 001] to be known. Introducing 
the indices 0,1,1 of L into the first and second equations of (7), we 
h a v e - -  

c o s ( A a = 1 0 0 h 0 1 1 ) =  b cos 7 + 0  cos fi . . . . .  (15) 
~/ h~ + c~ + '2 he cos a 

b ~ + 09 + 2 he cos a 
and sec~(D=0t0A011)=  (b+c  cos ~)~ ; 

. '. tan g D = see 2 D -  1 --  02(1 - c~ a) .  
(b+c cos ~)~' 

c sin a 
.'. tan D =  b+C cos ~ . . . . . . . .  (16) 

Also sinD_ = cos D = s i n  ( a - D ) .  
C sin a h + c  cos ~ h sin a ' 

�9 b sin ( a - D )  sin D, . .. . . . . .  (17) 
. , - - =  = - - - - .  

C sin D sin D 

This equation, which gives the parametral ratio b ,  is given by Grass- 
c 

mann, p. 138 ; but as he endeavours to connect the ratio with the dis- 
tances between consecutive particles, his expression differs slightly from 
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the above. I t  can, by means of the relations (9.), be easily transformed 
into the equations giving the parameters on the corresponding zone-axes. 
This latter expression i s - -  

c sin f l _  sin D , .  

l) sin 7 s i n / )  ' 

b sin B L  sin CA 
o r  . . . . . . . . . . .  ( i s ) .  

c -- sin 0 L "  sin A B  

By introducing into (7) the values (101) and (110), we get corres- 
ponding expressions for the other parametral ratios. They a re - -  

c sin E, and a sin F , .  . . . . . . . .  (19). 
= sin E ' /) = sin F 

Again, it' L is Ok/, we have irom the second equation of (7 ) - -  

tb  + lc cos a ) cos B L, = 
~/ Ub2 +12C2-~- 2 kl bc cos a '  

lc sin a 
. . . . . . . . . .  (20). whence tan BL~-- kb+lc cos a 

sin BL,  _ sin BL,  _ lc ... . . . . . .  (21) 
and sin ( a -  BL,) sin CL, kb 

Dividing (91) by (17), we have the anharmonie ratio of the four poles 
{BL~LC}, which i s - -  

sin BL~ sin B L  1 ...(22). 
sin CL, + sin CL = k ...... 

The deduction of special formuhe for the systems of greater symmetry 
is easy. We shall at present limit ourselves to the consideration of the 
rhombohedral system. 

Rhombohedral system,. 

In this system the normals to the fundamental trigon~l pyramid or 
rhombohedron are selected as the axial rays, and the triad axis as the 
parametral ray (111). 

Hence a = f i = y  ; and a - = b = e = l ( s a y ) .  
Equations (5) become--  

O P cos X = h + ( k - k l ) c o s  a = h ( 1 - - c o s  a)+O cos a ] 
o p  cos ~ =/ , :(1-cos ~ ) + 0  c o s .  ~ . . . . . .  (o~); 
OP cos v = / ( 1 - - c o s  a)+O cos a ) 

Where O = h + k + l .  
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Also, O P t =  Eh~-k 2 eos(~ ~.kl = O~eosa q- (1 -- eosa)Eh ~ . . . . . .  (24). 
And, 

]~ 1 becomes--  

cos X= h ( 1 - - c o s a ) + 0  cosa 
'JEh~-t- 2 eosaZkl 
k ( 1 - - c o s a ) + 0  eosa 

COS/u - -  ~ /~ / t  ~ @ 2 COSa.'2,/r 

COS l/ 
/(1 --  cosa) + 0 cosa 

V~/~-~ 2 cos(~Zkt 

I 
. . . . . .  (2~). 

l 
) 

(1 - cosa)2(1+2 c o s a ) - ( 1 -  cos%) F, cos 2 X 
+ 2  cosa(1-cos~)E cos X cos t~. 

Since this is equal to zero, we obtain as the relation between the 
direction-cosines-- 

( l + o o s a ) ~  cos~X-2 r Z eosX eos~-=(1-cos~)(1 + 2  eos~) ... . .  (26). 

When the ray coincides with the triad axis, X = H = v - = D = ] l l A 1 0 0 .  
Equation (26) then reduces r o -  

B ( i - c o s , , )  eos~)=(1 -cos~ )  ( 1 + 2  cos.); 
. '. 3 e o s ~ D = l q - 2  cosa . . . . . .  (27). 

2 - tan~D H e n c e ~  2 eosa-~ .... . . (28).  

Again, 3 s i n 2 D = 2 ( 1 - c o s a ) = 4  sm ~ .. . . . .  (29). 

This last equation is equivalent to the well-known formula--  

sin r'r/2 = sin 60 ~ sin D ; 

Where r and r '  are two poles of the fundamental rhombohedron. 

~he expression (14) for the cosine of the angle between the rays 
(hkl) and (I@~Z~) becomes--  

Ehh~-~ cosaE(kl~ -~- k~l) 
cos (b . . . . . . .  (30). 

If  cosa is replaced by its equivalent given in (28), we obtain th~ 
following expressions for the cosine : -  
cos ~b 

2{Ehhx+E(kll-~-k~l)}-~-tanaD{2EMh--E(kl~+Xll)} 

~/2(Eh2-b 2Y.kl)~-2 tanUD(~Ph2-- Ekl) ~/~El~-~-[-2xklll)-~2 tanUD(E]@-- Ekll 1) 

200rbtan~DE(k--1) (kl--ll) 
. . . .  (31) ; 

~/2O~-~-tan 2 DE(k- -  t) '~ ~/201~+tan 2 DE(kl--ll) "2 

where 01 = hi -k kl-k l~. 



8 4 0  W . J .  LEWIS ON 

By means of the equations above given, and the relations of the 
spherical triangles formed by P with the axial poles and with the poles 
C, N, m, m', m", a', &e., marked in Fig. 2, we tan easily establish the 
relations in general use for the solution of problems respecting 
rhombohedr~l crystals. 

zzx # 
ixo oxl 

~zt xxz 

zzi P ' - " ~  1 Ix io~ 

FI~. 2. 

Or employing the general equations (30) and (31), and G being (11t), 
we have--  

oV(1 + 2  cos~) 
cos CP = 

~/3{Zh ~ + 2 cosaZkl} 

. . . . . . . . . .  (3% 
~/9,0 ~+ tan ~ 9 ~ ( k -  t) '~ 

By transforming the first equivalent, we have--  
N/1(1 - -  COS6t)~(k - -  ])2". . . . . . . . .  (3a ) ,  

By transforming the second equivalent, we obtain--  

, , / 2 t k -  z) ~ 
tanG+/" -- 0, /2 tan D .. . . . . . . .  (84) ; 

and this can be shown to be the result of replacing eosa in (33) by its 
equivalent in terms of tan D. 

Again, taking 2~, 2~/to be the angles, respectively, over the obtuse and 
acute polar edges of a scalenohedron {hkl}, and 2~ to be that over each ot 
its median edges, we have--  

h2-4- 2kl-l-eosa{O 2 - ( h2 + 2kl)} 
cos 2~ =- cos hM hhlk -= Zh 2 -}- 2cosa~k/ 

= 202 +tan2p {3(h2+2kl)--0~} (35). 
20 ~ + tan21)E(k -- l) ~ 
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~Z 
2 ( /c - / )  ~ sin S - 

2 3 ( k - 0  ~ t a ~  D . . . . . .  (8~). 
Hence 2 sin 2 ~ = E t d + 2  cos a Ekt = 20~+tan~D Z(k- - I )  ~ 

Similarly, 

cos 2~=cos  (hklAkhl) = l~-4:- 2hk + c ~  {0~-- (t~ ~ 2hk)} 
Eh~q-2 cosa Ekl 

= 29'~+ tan~D {3(t "~ + 2~,k) - 0 ~} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (87). 
20~+tan'~D ~(k--  l) ~ 

(~ 
2(h--k)  ~ sin ~ - 

2 8(h--  k)~ tan~D .. . . . .  (38). 
. '. 2 sin ~ ~ =  ~h~q-2 cos a Ekl = 20~q-tan ~ D ~(k--1) ~ 

A n d - -  

cos 2g=eos  hkIAlkh= (k~-b2h/ ) -eos  a {O~--(k~q-2hl)} 

- 20 ~ - tan ~ D {8(k~+ ah/) -- 0 ~} 

Hence 

q ~ -  Z) ~ sin ~ ~_ 
2 cos ~ $ =  

Eh~-t-2 cos a Ekl 

~2h2q-2 cosr E kl 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (39). 

8 (h-z )~  tan ~ 1) 
(40). 

20~+tan  '~ D ~ ( k -  l) 

Now each of the angles ~, ~, ~ is less than 90 ~ for the angles over the 
scalenohedral edges are each less than 180 ~ Therefore taking, as we 
are at liberty to do, h, k and 1 to be in descending order of magnitude, 
and their sum to be greater than unity,  the positive values must  be taken 
when the square roots of equations (86), (88) and (40) are extracted. 
We have, therefore,--  

( k - l )  si~ fi ( k - z )  ~/g t~u 
sin ~ = = 

~/2h ~ -~ 2 eosa~kl ~ / 4 0 ~ - 2  tan '~ D~(k- - l )  ~ ; 
(Z 

sin ~/ = 

COS ~ ~--- 

(1 , -k)  s t .  ~. ( h - k )  ~/g tan D 

~/EIt 2 + 2 cosaX2kl ~/402+2  tan g D Z ( k - I )  ~ ; 
(1. 

(h- - l )  sin ~ (h - - / )~ / g  tan D 

~ / X i ? - ~  cos~a,z ~ / 4 0 ~ + ~  ta~ ~ ] ) x ( ~ - t )  '~ 

. . . . . . . . .  (41). 
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I-Iel2ce j 

�9 

sin ~ sin t/ cos ~ s i n -  
k - 1  h--k  h - 1  

~ / ~ +  2 cos a~kl 

# 9  sin CP 4/3 tan 1) 
= (by transformation from (32)) - -  

, / ~ ( ~ - z )  ~ ,/~o2+~ ~an~D ~(k-z)  ~ 

= (from (89,)) ~/g tan D cos CP 
20 ...(4e); 

and sin ~ + s i n  ~l=cos ~ . . . . . .  (43). 


