The numerical relation between the zones and faces of a polyhedron.

By E. S. Fedorov (E. C. Фядоровъ),
Professor of Cryatallography in the Institute of Mines, Petrograd.

[Read March 20, 1917.]

I^{N}N Professor G. Cesàro's note ${ }^{1}$ 'Sar une propriété numérique de l'ensemble des axes de symétrie situés dans les plans de symétrie d'un polyedre' is given the formula ((1) on p. 174)

$$
X^{2}=X+(n-1) \Sigma N_{1}+(p-1) \Sigma P_{1}+(q-1) \Sigma Q_{1}+\ldots
$$

or $\quad(X-1) X=(n-1) \Sigma N_{1}+(p-1) \Sigma P_{1}+(q-1) \Sigma Q_{1}+\ldots$,
in which ' $N . \Lambda^{n}, P . \Lambda^{p}, Q . \Lambda^{q}, \ldots$ est l'ensemble des axes de symétrie qu'un polyèdre contient dans ses plans de symétrie'. From the lastnamed condition it might appear that this formala is only applicable in the particular case when the axes of aymmetry are the intersectiondirections of planes of symmetry. It has, however, a wider and more varied application, and moreover is identical with the formula ${ }^{2}$

$$
(p-1) p=1.2 f_{2}+2.3 f_{3}+\ldots+(n-1) n f_{n}+\ldots
$$

which was deduced by the present author before 1880 , and applied with two different significations.

If we term the product $m(m-1)$, where m is a whole number, ' the function' of this number, then the above formula in one of its significations is an expression of the theorem: The function of a zonohedron is the sum of the functions of its faces.

A 'zonohedron' is defined as a polyhedron whose faces lie in the primitive zones on the crystal, such, for example, as the cube or rhombicdodecahedron. Its faces are polygons with an even number of sides in parallel pairs. The symbols $f_{2} \ldots f_{n}$ in the above formula denote the
${ }^{1}$ G. Cenàro, Mineralogical Magazine, 1915, vol. xvii, pp. 173-177.
' E. S. Fedorov, 'Elements of the theory of figures' (Rums.), Verh. Russ.-Kais. Mineralog. Gesell. St. Petersburg, 1885, ser. 2, vol. xxi, pp. 1-277, with 18 platee. See 55 65, 70 (formula on p. 192). Abatract in Zeits. Kryst. Min., 1893, vol. xxi, pp. 679-714 (formula on p. 689).
number of faces with n pairs of parallel edges (two parallel faces being regarded as identical), and p means the number of zones. For the cube $p=8$ and $f_{2}=3$; introducing these values into the formula we get $2.3=1.2 .3$. For the rhombic-dodecahedron we have $p=4$ and $f_{2}=6$; thas $3.4=1.2 .6$. It was on this account that the formula was termed 'zonohedral'.

In its second signification the formala implies a corresponding theorem, relating to a polyhedron with parallel faces. The theorem can be stated as follows: The function of a paired-faced polyhedron is the sum of the functions of its zones.

Here the formula is termed 'polar zonohedral'; and p is now the number of pairs of parallel faces, and f_{n} is the number of zones passing through n pairs of parallel faces. For the octahedron $p=4$, $f_{2}=6$; thus $3.4=1.2 .6$. For the rhombic-dodecahedron $p=6$, $f_{2}=3, f_{s}=4 ;$ thus $5.6=1.2 .3+2.8 .4$.

In neither case does the formula bear any relation to symmetry. But in the very special case, dealt with by Cesaro, in which axes of symmetry are the intersections of planes (P) of symmetry, we have a polyhedron with the number of faces $2 P$; and for each zone with axes $\Lambda^{2}, \Lambda^{3}, \Lambda^{4}$ we have $f_{2}=2,3,4$ respectively. Thus in the case $3 \Lambda^{2}, 4 \Lambda^{3}$, we have $P=6$, and $5.6=1.2 .3+2.3 .4$; in the case $6 \Lambda^{2}, 4 \Lambda^{3}, 3 \Lambda^{4}$, we have $P=6+3$, and $8.9=1.2 .6+2.3 .4+3.4 .3$; and in the case of the regular dodecahedron $15 \Lambda^{2}, 10 \Lambda^{3}, 6 \Lambda^{5}$, we have $P=15$, and $14.15=1.2 .15+2.3 .10+4.5 .6$.

