the mineralogical magazine

AND

JOURNAL OF
THE MINERALOGIOAL SOOIETY.

No. 86.
May, 1919.
Vol. XVIII.

On Sartorite and the problem of its crystal-form.

By G. F. Herbert Smith, M.A., D.Sc., F.G.S.
Assistant in the Mineral Department of the British Museum, ${ }^{1}$
and R. H. Solfy, M.A.

[Read June 16, 1914, and June 19, 1917. ${ }^{2}$]

Tmineralogists probably few spots in the world surpass in interest the little quarry ${ }^{3}$ hollowed out of the dolomite, just where the latter is cut by the Lengenbach, and about half a kilometre above the point where this stream ends its hurried course by joining the Binua at Imfeld, a hamlet lying in the main valley three kilometres above the village of Binn. Here within the compass of a few square metres have
${ }^{1}$ Communicated by permission of the Trustees of the British Museum.
${ }^{2}$ The following were the papers read before the Society: 'On sartorite,' by R. H. Solly, June 16, 1914, and 'On the problem of sartorite,' by G. F. Herbert Smith, June 19, 1917.
s An interesting description of the quarry, including an account of its history, is given by Léon Desbuissons in 'La Vallé de Binn (Valais); Lausanne, 1909, Georges Bridel \& Cie, pp. 60-67, some of the particulars being supplied by R. H. Solly.
been found an abundance of well-crystallized mineral-species, ${ }^{1}$ not a few of which are peculiar to the quarry, and as yet not known to occur elsewhere. Although of the lead-grey, metallic minerals found here the commonest has been the one considered in this paper, so rare are crystals sufficiently well developed and with sufficiently smooth faces for goniometrical measurement that the precise nature of the crystallization of this species has even up till now been in doubt. The authors have between them had the opportunity of studying a large number of crystals, and among them a few with measurable pyramidal faces. They have therefore been enabled to determine definitely the zonal characters of the crystals, and thereby to arrive at two conclusions:-In the first place, sartorite appears to rank with the telluride of gold-calaverite ${ }^{2}$-in the peculiarity of its atomic arrangement, since in certain at least of its crystals there exist simultaneously two or even three incongruent spacelattices, which may be supposed derivable from one another by a slight shear. In the second place, the mineral represented by the two crystals figured and described by Trechmann ${ }^{3}$ is not the same as that defined by vom Rath, although without doubt closely allied to it; it is therefore in this paper for distinction called sartorite-a.

I. Historical.

Careful investigation has established the existence of upwards of ten different species among the lead-grey, metallic minerals occurring in or around the Biny Valley, but so closely do they to a casual, and even, in many instances, to a careful inspection resemble one another that in
${ }^{1}$ Altogether upwards of twenty-five mineral species have been described from the Lengenbach quarry. The most interesting of them are jordanite, tennantite (binnite), and hamlinite (bowmanite), and those peculiar to the quarry, viz. sartorite, seligmannite, buumhauerite, rathite, dufrenoysite, Iengenbachite, liveingite, marrite, and hatchite, which are black and opaque, and hyalophane, smithite, hutchinsonite, and trechmannite, which are transparent, the first being colourless and the remainder red.
${ }^{\prime}$ G. F. Herbert Smith, On the remarkable problem presented by the crystalline development of calaverite. Mineralogical Magazine, 1902, vol. xiii, pp. 122150.
${ }^{8}$ C. O. Trechmann, Crystallography of sartorite from Binn. Mineralogical Magazine, 1907, vol. xiv, pp. 212-229. It is evident from the concluding paragrapls of his paper that he fully realized the uncertainty of the identity with sartorite of the crystals numbered by him 1 and 2. After pointing out that the character of even the smallest pyramidal faces permitted of exact goniometrical measurement lie says-' With less confidence would I wish it to be assumed that the crystals Nos. 1 and 2 are, beyond doubt, to be considered as sartorites.
early days, as it is not surprising to learn, they were all confused together apparently as tetrahedrite, to judge from what appears to be the earliest recorded reference ${ }^{1}$ to these minerals. Even a few years later, in 1839, Wiser ${ }^{2}$ remarked that the grey, crystalline substance in the dolomite of the Binn Valley was a compound of sulphur-lead with sulphur-antimony, but almost immediately he published a correction, ${ }^{3}$ noting that considerable arsenic was present, and little antimony. The following year ${ }^{4}$ (1840) be noted the difference in the colour of two examples of these substances. During the succeeding years Swiss collectors had come to use the term binnite to denote the lead-grey minerals from the Binn Valley, differentiating between 'Kugel-Binnit' and 'Stangen-Binnit' according to the spherical or columnar shape of the crystals, and the name found its way into the catalogues of the mineral dealers."

The first considerable investigation of the lead-grey minerals from the Binn Valley was made by Damour. ${ }^{6}$ He analysed some poorly crystallized material, and found the composition to correspond to the formula $2 \mathrm{PbS} . \mathrm{As}_{2} \mathrm{~S}_{3}$, and, inasmuch as no mineral with such a composition was at that time known, named it dufrenoysite. He perhaps naturally, but as it turned out wrongly, presumed that a small, brilliant, dodecahedral crystal closely associated with the material analysed was the same species, and accordingly so described the crystal form of his new mineral.

It was not till ten years later, in 1855, that the mistake was pointed out by von Waltershausen, ${ }^{7}$ but unhappily in such a way as to leave the confusion almost worse. He remarked that the crystal form of a mineral

[^0]with a composition such as that found by Damour would a priori have been expected to have been very similar to that of the analogous antimony mineral, feather-ore, which obviously from its characteristic form did not belong to the cubic system. On examining specimens from the Binn Valley, he came to the conclusion that more than one species was represented among the lead-grey minerals, since some of the crystals were monometric, and others trimetric in symmetry. A chemical analysis of the trimetric material which was made by Uhrlaub did not yield simple ratios between the principal constituent elements; a difficulty which von Waltershausen met by supposing that the mineral was an isomorphous mixture of two hypothetical species, the one, which he named arsenomelane, with the constitution $\mathrm{PbS}_{\mathrm{A}} \mathrm{As}_{8} \mathrm{~S}_{y}$, and the other, which on account of its excessive brittleness he named scleroclase, ${ }^{1}$ with the constitution $2 \mathrm{PbS} . \mathrm{As}_{2} \mathrm{~S}_{3}$. The latter species had therefore the composition of Damour's dufrenoysite, but presumably differed from it in its crystalline characters. The name dufrenoysite be proposed to retain for the dodecahedral crystals, which were shown on an analysis by Uhrlaub to be a sulpharsenite, not of lead, but of copper. Von Waltershausen illustrates his paper with drawings of two crystals of the material analysed. On one of them-an iron-black crystal--he was able to make a few angular measurements and thence to deluce the crystal elements. By adopting his setting up of the crystals we have as the observed augles: $-(101):(101)=64^{\circ} 44^{\prime},(101):(011)=45^{\circ} 1^{\prime}$, and from them obtain : $-(100):(101)=57^{\circ} 38^{\prime} ;(010):(011)=56^{\circ} 49^{\prime}$. These angles do not accord with the accepted values which have been found for any of the principal angles of the known sulpharsenites of lead. The nearest is dufrenoysite, in which (010): $(011)=56^{\circ} 56^{\prime}$; but the agreement in the second corresponding zone is unsstisfactory, the best angle being (001) : (704) $=58^{\circ} 9 \frac{1}{2}^{\prime}$. It is worth noting that in hutchinsonite, ${ }^{2}$ a red-silver mineral found in the Lengenbach quarry, which crystallizes in the orthorhombic system, $(100):(110)=5832^{\prime}$, and (001) : (021) $=56^{\circ} 29^{\prime}$. The last subetance, however, does not occur in iron-black crystals. It is at any rate quite clear, both from the habit of the crystals as shown by the drawings and from the measurements made on

[^1]one of them, that they were not sartorite. The analysis was evidently made on a mixture of the salpharsenites of lead, among which no doubt there was some sartorite.

Heusser, ${ }^{1}$ who almost simaltaneously with von Waltershausen investigated the lead-grey minera's from the Binn Valley, likewise divided them into two kinds: the one, crystallizing in the regular system, which be also named dufrenoysite, and the other, occurring in the form of heavily furrowed, prismatic crystals, which he proposed to call binnite. ${ }^{2}$ He depicts two of the lattir crystals, and gives the following meanurements in the well-developed dome-zone- $58^{\circ} 6^{\prime}, 50^{\circ} 19^{\prime}, 38^{\circ} 46^{\prime}, 21^{\circ} 56^{\prime}$ which agree with the mean values found for the zone (100): (010) of sartorite (p. 265). He gives a figure also of what he regarded as another crystal of 'binnite', bat was unable to measure any of the angles because it was coated with a yellowish-green tarnish. The habit is, however, sufficient to assure us that the crystal was not a sartorite, though we can only conjecture to what species it belonged; it may have been really what we now know as binnite.

In the course of the suminer of 1855 Des Cloizeaux and Marignac also visited the Binn Valley, and collected a series of specimens of the minerals occurring there. They collaborated in an investigation of the specimens, and a memoir on the results of their research was published by Des Cloizeaux. ${ }^{3}$ Early in it he mentioned that the dodecahedral crystal which had given rise to so much confusion, because Damour had mistakenly supposed that it was identical with the material analysed by him, had by accident been broken, and that on analysis of a fragment thus afforded it turned out to be a sulpharsenite of copper, just as Uhrlaub had found. Remarking that the mistake in the determination of the crystalline form in no way invalidated Damour's discovery of the new mineral, he rightly dissented from the course followed by both von Waltershausen and Heusser of transferring the name dufrenoysite to the copper mineral. When, however, he came to describe the crystalline form of dufienoysite, Des Cloizenux was far less happy, becruse, as was

[^2]apparent with the aid of knowledge obtained later, ${ }^{1}$ Marignac's measurements, which were quoted by Des Cloizeaux, had really been made on orystals of sartorite, and the crystals represented by figs. 1 and 2 belonged to that species, while the two emall crystals depicted in figs. $3,3 \mathrm{a}$, and 4 belongel to yet auother species-jordanite. As was pointed out by Solly, ${ }^{2}$ had Des Cloizeanx tested the specific gravity or at least tried the streak he would at once have seen that his material consisted of at least two distinct species, because jordanite is much denser than sartorite and dufrenoysite, and has a black streak. whereas that of the other two minerals is chocolate-brown in colour.

For a considerable advance in our knowledge of these complexly intergrown metallic minerals from the Binn Valley we have to thank vom Rath. By means of a careful goniometric examination of the non-cubic, metallic material he was cnabled to distinguish three distinct species, viz. dufrenoysite, seleroclase, and jordanite, of which the last-named was new. The first and third of them do not concern our present purpose. Under the name scleroclase he described small, needle-shaped, prismatic crystals, which were heavily striated and grooved parallel to their length, and remarked that the mineral was the same as Heusser's binnite and von Waltershausen's scleroclase. ${ }^{3}$ He observed the following series of angles mensured from the cleavage-face in the prism- and dome-zones, ${ }^{4}$ which are mutually at right angles. He regarded the symmetry as orthorhombic. The indices of the faces quoted in the table are vom Rath's, but the angles are the supplements of those given by him, it being the custom in his day to give the obtuse angles between the faces of crystuls.

[^3]
Table I. Angular distances from the cleavage-face observed by vom Rath.

Form. ${ }^{1}$	Dome-Zone.	Form.	Prism-Zone.
Be 011	$31^{\circ} 45^{\prime}$	6.0 .14	$22^{\circ} 80^{\prime}$
Bd 043	8930	5.0 .11	2824
Bx 082	4328	509	3280
Be 021	5110	101	4945
Bb 041	6758	503	620
		10.0.1	$85 \quad 2$

One, but only one, of his crystals, viz., that illustrated in his fig. 3, showed the only pyramidal form observed, the one which he selected as (111). Its position was determined by the angle (011) : (111) $=44^{\circ} 19^{\prime}$, whence may be calculated its distance from the cleavage-face, $52^{\circ} 31 \frac{y^{\prime}}{2}$, and its azimuth from the prism-zone, $28^{\circ} 19^{\prime}$; it is therefore the form called $P x$ below (p. 295).

The name which in this paper we have used for the mineral was proposed in 1868 by Dana, ${ }^{2}$ who rejected the name scleroclase for the following reason:-As the name scleroclase is inapplicable, and the mineral was first announced by Sartorius v. Waltershausen, the species may be appropriately called Sartorite.' It is not clear what was his precise meaning ; he may possibly have discarded the name scleroclase on account of its unsuitability on etymological grounds (cf. above p. 262), and because it was originally used by von Waltershausen for a species with the composition of dufrenoysite.

Thirty years passed by before any addition was made to the foundation laid by vom Rath, and it was not till 1895 that Baumhauer ${ }^{3}$ published the results of his investigation of the goniometric properties of four crystals of sartorite from the Binn Valley. He, like vom Rath, regarded the symmetry as orthorhombic, and be adopted the latter's elements for the crystals. The first crystal was small, only 1 mm . across at the widest, the second was a mere fragment, the third measured 2 mm . in length by 1 mm . in breadth, and the fourth was 2 mm . in length and 2 by 1 mm . in cross-section; the last was developed at both ends. The most interesting crystal was the third, because it displayed

[^4]several new pyramidal forms. The indices of the forms in the following table are those given by him. The startling irrationality of some of them is noticeable.

Table II. Angular distances from the cleavage-face observed by Baumhauer.

For fixing the azimuths of the pyramidal zones on crystal 3 the following cross-measurements were made:-(441) : (021) = 75 53^{\prime}, (20.36.15): $(02 \mathrm{I})=77^{\circ} 9 \frac{3}{4}^{\prime},(174.377 .65):(021)=44^{\circ} 45 \frac{1^{\prime}}{}{ }^{\prime}$. By calculation the corresponding aximuthal angles may be obtained; they are respectively $28^{\circ} 17^{\prime}, 43^{\circ} 59^{\prime}, 49^{\circ} 34^{\prime}$, measured from the prism-zone.
R. H. Solly ${ }^{1}$ spent the summer of 1898 at the Binn Valley, and succeeded in collecting among other minerals a large number of sartorites. After the crystals had been measured on a goniometer, certain of them were picked out for chemical analysis, which was undertaken by H. Jackson. ${ }^{2}$ Altogether he made three analyses, the first on small, brilliant crystals, and the other two on larger crystals: the percentages obtained agree very closely, as will be seen from the Table below, with

[^5]those required by the formula $\mathrm{PbS} . \mathrm{As}_{2} \mathrm{~S}_{3}$. The density, as determined on the best ciystals, was 4.980 . Solly aunounced that the symmetry of sartorite is monoclinic, and not orthorhombic as stated by previous observers, but gave no further particulars of the crystals. ${ }^{1}$

Table III. Chemical Analyses of Sartorite by H. Jackson.

		1.	2.	3.	Calc.
Fb	\ldots	43.24	43.93	43.72	42.68
S	\ldots	25.81	24.60	25.12	26.39
As	\cdots	30.80	30.46	30.12	30.93
		-99.85	98.99	08.96	100.00

Four years later, in 1902, Baumhauer ${ }^{2}$ mentioned that he had obtained some loose crystals, 3 cm . in length, which were probably sartorite.

At the meeting of the Mineralogical Society on March 24, 1908, Lewis ${ }^{3}$ exhibited a large crystal of a sulpharsenite of lead, measuring as much as $4 \times 1 \times \frac{1}{3}$ inches ($10 \times 2.5 \times 0.8 \mathrm{~cm}$.), which was analysed by H. Jackson, and shown to be sartorite; the figures of the analysis are :- $\mathrm{Pb}, 42.93$; S, 25.32; As, 31.11 : total, 99.36.

Again, at the anviversary meeting of the Society in the same year R. H. Solly ${ }^{4}$ described specimens of sartorite as well as of other minerals from the Binn Valley.

The following year, 1904, Baumbauer, ${ }^{\circ}$ in the course of a paper dealing with the development of zones rich in faces, gives further measurements made in the prism-zone of sartorite.

In August 1904, C. O. Trechmann visited the Binn Valley, and had
${ }^{\prime}$ R. H. Solly, loc. cit., p. 297.
${ }^{2}$ H. Baumhauer, Eclogae geol. Helvetiae, 1902, vol. vii, pp. 352-353.
${ }^{8}$ W. J. Lewis, A large crystal of sulpharsenite of lead from the Binnenthal. Mineralogical Magazine, 1908, vol. xiii, p. xxxiv.

4 R. H. Solly, On sartorite, anatase, galena, and other minerals from the Binnenthal. Mineralogical Magazine, 1904, vol. xiv, p. xx. Abstract in ' Nature', 1908, vol. lxix, p. $142:-$ '. . On fine brilliant crystals of sartorite recently obtained by the author he has been able to confirm the oblique symmetry which he had previously announced, and to determine accurately the elements, $\beta=88^{\circ} 31^{\prime},(100)(101)=54^{\circ} 45^{\prime},(010)(111)=69^{\circ} 521^{\prime} \ldots$ The last two angles appear, however, to have been incorrectly transcribed.

B H. Baumhauer, Über die Aufeinanderfolge und die gegenseitigen Beziehungen der Krystallformen in flachenreichen Zonen. Sitzungsler. 4. preuss. Akad. Wiss. Berlin, 1904, pp. 548-654. See also Eclogae geol. Helv., 1906, vol. viii, pp. 682-588.
the good fortune to acquire several good crystals of a sulpharsenite of lead, which he subsequently described. ${ }^{1}$ He mentioned seven crystals, but devoted nearly the whole of his memoir to those numbered 1 and 2 ; of these he gave drawings. Their symmetry he found to be monoclinic. The angles measured in the dome-zone agreed closely with those recorded by vom Rath and Baumhauer in the corresponding zone of their crystals, but in other zones there was complete discordance. The principal angles were found to be as follows :- $(100):(110)=51^{\circ} 16^{\prime}$, $(100):(001)=77^{\circ} 48^{\prime},(100):(101)=40^{\circ} 24 \frac{1^{\prime}}{2},(100):(101)=53^{\circ} 25^{\prime}$; while the corresponding angles given by vom Rath were :-(001) : (021) $=51^{\circ} 3 \frac{1_{2}^{\prime}}{2},(001):(100)=90^{\circ} 0^{\prime},(001):(101)=48^{\circ} 57^{\prime}$. Trechmann's crystals were well developed, and the character of their faces in nearly every instance permitted of a good reading on the goniometer; altogether he observed 87 forms. Crystals 3 and 4 showed the dome-zone well developed and the prism-zone very much striated, but pyramidal faces were entirely absent. The two crystals were joined together 'in an apparently twinned position'. ${ }^{2}$ Crystals 5 and 6 were opposite ends of one and the same complete crystal. 'Both of these crystals have a rich development of pyramidal faces, of which forty-five were counted on No. 5 and about thirteen on No. 6. Twin-lamellae were distinctly observable on both crystals, but especially on No. 6, where some of the faces were devoid of them, and others were closely intersected. The zonal relations of these pyramidal faces were, however, so indistinct, and most of them were so small, that it has not been possible so far to identify them. Some measurements made on crystal No. 6 could not be harmonized with Nos. 1 and 2, nor with the pyramids observed by Baumhauer.' ${ }^{\text {s }}$ As was pointed out early in this paper (p. 260), he clearly did not feel certain that his crystals 1 and 2 were sartorite. Inasmuch as they cannot be brought into harmony with the mineral defined by vom Rath, they must bear another name, and the authors suggest as such sartorite-a.

[^6]A good summary of what at the time of writing was known of sartorite as well as the other minerals found there was given in 1909 by Desbuissons in his book on the Binn Valley. ${ }^{1}$

The publication of a full description of the crystals of sartorite exhibited at the anniversary meeting of the Mineralogical Society in 1903, which were referred to sbove, was deferred by Solly in the hopes that additional and better material might be found which would throw light on the puzzling problem presented by this mineral. In 1909, however, the Lengenbach quarry was closed down, and during the years that have since elapsed the disintegrating effect of snow and rain have filled it with hage boulders and tons of drift. The reopening of the quarry would therefore now be such a difficult and costly task that it may be questioned whether any one will be found sufficiently enterprising to undertake it, especially since there were signs that the veins containing the coveted sulpharsenites were fast becoming exhausted. The chauce of fresh material coming to light which might be of eervice in this investigation being thus very remote, Solly, in the course of the years 1913 and 1914, re-measured all the crystals of sartorite that he had obtained before 1908, and in addition measured some good crystals he had acquired since that date. He communicated the results of his investigation to the Mineralogical Society on June 16, 1914. ${ }^{2}$ Since some of the crystals showed small pyramidal planes the positions of which could not be determined by means of an ordinary goniometer, Solly brought them to the British Museum for measurementon a three-circle instrument in the Mineral Department. G. F. Herbert Smith undertook the work, and determined the positions of the pyramidal faces on the best crystals. The relations between these faces and the dome-faces were found to be so puzzling and mysterious that it was eventually decided to measure on the three-circle goniometer all the crystals which possessed pyramidal faces, but it was not found possible to prosecute the investigation until the year 1916. Attempts made to bring the observations made on Solly's crystals into harmony with the elements and angles published by Trechmann for his crystals 1 and 2 were entirely without success. It

[^7]was thought possible that bi-angular measurements of the latter crystals on the three-circle goniometer might suggest a clue to the riddle, and accordingly an appeal was made to Trechmann for the loan of his crystals. With characteristically ready courtesy, which we are glad to have the opportunity of acknowledging, he at once sent all the crystals referred to in his memoir, together with two others which he had acquired since

Fig. 1.-Sartorite crystal ; habit No. 1 (B.M. 1918, 408 (2)). See p. 314.

Fig. 2.-Sartorite crystal ; irregular growth (B.M. 1918, 408 (59)).
its publication. All of them were measured, but it was his crystal 5 that was found to be of the first importance; upwarls of a hundred faces were observed on the end of the crystal, and a study of the positions of the corresponding poles, when plotted on a gnomonic projection, revealed certain curious zonal relations. With the light thus thrown on the problem by this one crystal the whole of the crystals belonging to both Solly and Trechmann were measnred and studied. The conclusions arrived at are discusfed below (p. 305).

II. Morpholdgical Characterg.

Crystals of sartorite may be classified according to three different kinds of babit :-
(1) Dome-zone (100:010) large with bright, smooth planes, and prism-zone (100:001) well developed, though deeply grooved (cf. fig. 1). A few crystals show pyramids (cf. figs. 4-9).
(2) Dome-zone (100:010) large, but irregularly developed owing to interruptions in the growth of the faces. The crystals sometimes have a tessellated appearance due to repested twinning, and are sometimes cavernous, the interior of the holes being lined with faces in harmony with the external development (cf. figs. 2 and 3).
(3) Columnar crystals, deeply striated, which have been attached at both ends to the dolomite, and are therefore without faces at the ends. They have been found in masees weighing as much as a hundred grams.

Twinning about (100) appears to be invariable, and it is often repeated so that the crystals are laminated; even in the case of crystals without faces at the ends the re-entrant angles in the prism-zone testify to the presence of twinning. Crystals are occasionally grouped. together in

Fig. 3.-Sartorite crystal ; cavernous growth (B.M. 1918, 408 (54)). parallel or nearly parallel position, and sometimes cross; it is doubtful, however, whether the latter phenomenon is due to twinning (cf. p. 268).

There is a fair cleavage parallel to (100), and the fracture is of the ordinary conchoidal type. The crystals are extremely brittle, and occasionally break with an audible report, as was noticed by vom Rath. The hardness is about the same as calcite, viz. 3. The colour is leadgrey, the lustre metallic, and the streak chocolate-brown in colour. The crystals are, of course, opuque. The general symmetry is monoclinic,
the plane of symmetry being at right angles to the length of the crystals; but, as is explained below, the crystal development is abnormal in character.

III. Observations on Cryetals with Pyramidal Facrs.

All the crystals discussed below were measured on the smaller threecircle goniometer in the British Museum, viz. the one which was devised by Herbert Smith in 1899, ${ }^{1}$ in every instance the striated prism-zone being selected as the zone of reference. All of them were measured from the clearage-face (100), as origin, and, where the development of the pyramidal faces was sufficient for the determination of the corresponding poles, from (001), (101), and (101) also. The pole (100) could generally be accurately fixed because the corrosponding face in nearly every instance yielded a well-defined image and, failing it, the faces in the dome-zone gave usually such excellent reflections that the pole could be fixed with very fair accuracy as the intersection of this zone with the prism-zone. The case was, however, far otherwise with the other poles. Seldom was a definite image available in the extended band of reflections to serve as the origin of measurements, and it was necessary to fix them as the intersection of cross-zones with the prism-zones; but, for reasons which will appear below (cf. p. 305), the large smooth domefaces were in general not available for this purpose and recourse had to be made to the far smaller pyramidal faces. The settings for the three poles (001), (101), (101) could not therefore be determined with very great accuracy ; but the amounts of the combined error could be gauged by the closeness with which the angles that they subtended with the pole (100) obeyed the usual anharmonic relation.

Many of the pyramidal faces were extremely small; indeed, it was rare for one to messure more than a tenth of a millimetre across in any direction, and they were often of such minute size that the interatomic repulsive forces which manifest themselves in liquids as surface-tension become relatively pronounced and the faces are perceptibly rounded. In such cases it is therefore far from easy to centre the image on the cross-wires in the telescope of the goniometer, since it is necessarily faint on account of the smallness of the reflecting surface, and is rendered diffuse and indistinct on account of the rounding of the face.

[^8]As source of illumination a 100 watt half-watt electric lamp, yielding about 200 candle-power, was used, the light being passed through a small beaker of water in order to reduce the amount of heat transmitted and at the same time to diffuse the light from the glowing wire over the object-slit of the goniometer; in order to secure greater uniformity of illamination a thin piece of oiled paper was placed just in front of the object-slit. By screening the crystal-holder and wax, and, in fact, all but the crystal, from the light a perfectly dark background was secured in the field of the telescope of the goniometer, against which even an extremely faint and nebulous image could successfully be picked up after the approximate position had been first found by means of the microscope into which the telescope may be converted.

We will now proceed to describe the six crystals which alone boast a sufficient development of the pyramidal faces for the determination of their zonal characters, and to give in full detail the bi-angular measurements made on each face. Strictly spenking, the number of distinct crystals is five, because the first two of them are really opposite ends of one and the same crystal. With this exception none of the crystals was doubly terminated.

It will, however, first be necessary to say a few words in explanation of the tables of co-ordinates. For reasons which are discussed below (p. 305) we have come to the conclusion that the faces appearing on the ends of the crystals can be referred to three distinct and incongruent space-lattices; these are numbered I, II, III respectively in the tables. The first of them has monoclinic symmetry, and, including, as it does, the dome-zone, is the most prominent of them. The other two have triclinic symmetry, but each of them is twinned about the pole (010), so that in such a crystal as No. 1 there are no fewer than five distinct lattices traceable in the crystal. Lattice II is far better developed than lattice III; but it is to the latter that the solitary pyramidal form observed by vom Rath and selected by him as the unit pyramid belongs. The prism-zone is common to all three lattices. As data for computing the elements of the several lattices and the co-ordinates of the faces corresponding to them we selected the angle (100):(110), ${ }^{1}$ either as directly measured or as calculated from a more trustworthy angle in the same zone, and the most concordant set of angles subtended by the poles (001), (101), and (101) at (100) as determined by the cross-zonal relations of the pyramidal faces. In the case of the triclinic lattices we have still to select the pole to bear the indices (010). It should be near the
${ }^{1}$ This is the face (041) of vom Rath and Baumhauer.
corresponding pole of lattice I, but which one is determined by the consideration that on the gnomonic projection a slight lateral shift away from the centre should bring the poles of one lattice into coincidence with those of the adjacent one. The azimuthal angles, ϕ_{2}, ϕ_{3}, of the zones belonging to the lattices II and III are very simply derived from the corresponding azimuthal angle ϕ_{1} of I by the relations $\cot \phi_{2}-\cot \phi_{1}$ $=c$, and $\cot \phi_{3}-\cot \phi_{1}=2 c$, where c is a constant for the particular pole of the crystal, but varies for this pole from crystal to crystal (cf. below p. 810).

For designating the forms we have found it convenient to make use of a two-letter notation, the principle of which-viz. the determination of a pole as the intersection of two zones-will be evident from a study of the gnomonic projection shown in fig. 10 (p. 306). Capital letters denote zones passing through (100), and small letters cross-zones passing through (001); but, whereas all poles with the same capital letter lie in the same zone, that is true in the case of poles with the same small letter in general only when they belong to the same space-lattice. Poles lying within dissimilar quadrants are distinguished by a dash; thus $H b$ is (112), $H b^{\prime}$ (112) or (112). The prism-zone has been harmonized with the dome-zone, but, of course, the significance of the small letters is no longer the same; thus $A a$ is (001), $B a(010), A b(101), B b$ (110), Δb^{\prime} (101), $B b^{\prime}$ (110), and so on.

Crystal No. 1 (fig. 4).
This remarkable crystal ('Trechmann's No. 5; B.M. 1917, 392), which, before removal from the dolomite matrix, formed part of a slightly larger individual, measures about 1.2 mm . in length, and 0.9 by 0.5 mm . in cross-section. The illustration is a reproduction of an orthogonal drawing projected on to a plane perpendicular to the edge of the prismzone. The drawing was prepared with the aid of a microscope fitted with a camera lucida, and gives as faithful a picture of the end of the crystal as was found to be practicable. Work of this kind presents considerable difficulty, because, owing to the extremely small size of the crystal; an objective of high power had to be used, and consequently any edge, or even any part of an edge, lying appreciably outside the focal plane was indistinct, if not partly or wholly indiscernible, and the necessary adjustment of the focus invariably upset the coincidence between the drawing and the visual picture. With care it was possible to some extent to overcome this difficulty, but, to assure accuracy, the
relative inclinations of the edges on the drawing were determined in the customary manner from a gaomonic projection.
The crystal is twinned about (100), the sector running sideways across the middle being in twinned position with respect to those above and below it, which themselves are therefore in parallel position. The boundaries are very straight and sharp, slight interpenetration taking place only in the case of the lower one on the left-band side. The large stippled portions represent fractured portions, and the narrow stippled patches, running up and down, indicate clefts, which are lined with faces in harmony with the external development; the narrowness of the

Fig. 4. Sartorite crystal No. 1.
clefts in comparison with their depth prevented observations being made of the faces lying at the bottom. The corresponding faces on the several humps are very nearly parallel to one another, the spreading of the combined reflection being only slight. At the right-hand top-corner of the crystal in the position of the figure occur a number of additional faces, of which some were in the twinned position; they were omittel from the drawing, because otherwise, owing to the lack of perspective, their presence would have led to confusion. Reflections corresponding to isolated crystal-faces occur also on the fractured part of the crystal on the right-hand side as seen in the drawing. An extremely small crystal of pyrites emerges from the prism-zone low down towards the right-hand corner in the position depicted.

Altogether, on the end of the crystal observations were made of no
fewer than 123 different faces, representing sixty-seven different forms, and it may be remarked that in arriving at this number we reckoned parallel faces as one. Of these faces fifteen lie in the dome-zone, and therefore 108 are pyramidal. Eighty-five of the faces appear in the figure; the remainder are mostly too minute to be drawn even on that large scale, only a few of them being peculiar to the part of the crystal omitted from the drawing. The left-hand bottom-corner of the crystal is by far the best developed portion of it. As we pass to the upper corner on the same side, we find the faces rapidly diminishing in size, and the growth becoming interrupted and irregular, more so than, owing to the minuteness of the faces, could be indicated on the drawing. The reflections from the large faces in the dome-zone were brilliant and sharp, but from the faces on the farther side they were dispersed and extended in the direction of the zone owing to the rounding that always accompanies narrowness of width in faces. The twin-individuals shown in the figure are combined in such a way that only close observation at a glancing angle will reveal on the large face $B b$ the fine lines indicative of the twin boundaries. Since at the re-entrant angle on the left-hand side of the crystal the prism-zone on both individuals is considerably striated, an overlapping pair of banded reflections was afforded in the field of the telescope of the goniometer, and to determine to which of the two individuals a particular image belonged was a task of some difficulty. The near face (100) was small and considerably stepped, but gave a single distinct reflection; the farther one, on the other hand, was large and divided vertically into two parts which gave readings differing by 21^{\prime}.

That there is something unusual in the zonal characters of the crystal is suggested by the perceptibly wedge-shaped contour of such faces as $J c^{\prime}, F c^{\prime}$, and $E y^{\prime}$, certain opposing edges being nearly, but unmistakably not, parallel to one another as we should expect to find in the case of an ordinary crystal.

There are two faces, viz. $G w^{\prime}$ and $G x^{\prime}$, which are not quite in the position where we should have expected to find them, the azimuthal angle subtended at (100) as origin differing, as will be seen from table below, by about a degree of arc from that of $G y^{\prime}$, which is normal in position and which should presumably have been in their zone. Possibly the cause may be their relative smallness of size as compared with the contiguous faces belonging to another lattice.

The elements of the crystal and the co-ordinate angles of the various forms were computed from the following angles:- $(100):(001)=74^{\circ} 28^{\prime}$ (the observed value), $100: 101=36^{\circ} 6^{\prime}$ (observed value $36^{\circ} 4^{\prime}$),
(100): $(101)=50^{\circ} 48^{\prime}$ (observed value $50^{\circ} 40^{\prime}$), and (100) :(210) $=$ $51^{\circ} 7^{\prime}$ (the observed value).' In the prism-zone, owing to its oscillatory character, it was often difficult, if not impossible, to assert with confidence whether a particular reffection corresponded to a positive or a negative face; accordingly, in many instances both sets of indices corresponding to a particular angle were computed, and the simpler of them, if the corresponding angle was in fair agreement, was selected. The question of the development of this zone is discussed more fully below (p. 314).

The shear governing the transition from lattices I to II and II to III was determined thus:-If $\phi_{1}, \phi_{2}, \phi_{5}$ be the azimathal angles, measured from the prism-zone, of some particular pole ($h k l$) in the various lattices subtended at any pole in that zone, then the following relations hold $\cot \phi_{8}-\cot \phi_{2}=\cot \phi_{2}-\cot \phi_{1}=f . A$,
where A is the cotangent of the azimuth corresponding to the pole (111) in lattice I and f is a fraction. The values of f and A in the case of the four poles (100), (001), (101), (101) are-

		f		A
(100)	\ldots	0.3	\ldots	0.36872
(001)	\ldots	0.1	\ldots	0.38845
(101)	\ldots	0.1	\ldots	0.47510
(101)	\ldots	0.2	\ldots	0.62488

Elements of the Lattices.

$$
\begin{aligned}
\text { I. } \quad a: b: c & =2.5737: 1: 2.7118 ; \beta=105^{\circ} 22^{\prime} . \\
\text { II. } \quad a: b: c & =2.5769: 1: 2.7309 ; \\
(010):(001) & =82^{\circ} 51^{\prime},(001):(100)=74^{\circ} 28^{\prime},(100):(010) \\
=85^{\circ} 57^{\prime} ; & \\
a & =96^{\circ} 19^{\prime}, \beta=105^{\circ} 10^{\prime}, \gamma=92^{\circ} 18 \frac{1}{2}^{\prime} . \\
\text { III. } \quad a: b: c & =2.5820: 1: 2.7786 ; \\
(010):(001) & =75^{\circ} 56^{\prime},(001):(100)=74^{\circ} 28^{\prime},(100):(010) \\
=82^{\circ} 6^{\prime} ; & \\
a & =102^{\circ} 28 \frac{1}{2}^{\prime}, \beta=104^{\circ} 7^{\prime}, \gamma=94^{\circ} 26 \frac{3^{\prime}}{\prime^{\prime}} .
\end{aligned}
$$

[^9]Table IF. Caloulated and observed values of the co-ordinate angles.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Face.} \& \multirow[b]{2}{*}{Refl. \({ }^{1}\)} \& \multicolumn{2}{|c|}{Observed.} \& \multicolumn{2}{|l|}{Calculated.} \\
\hline \[
\begin{aligned}
\& \dot{8} \\
\& \text { 華 } \\
\& \text { Hin }
\end{aligned}
\] \& \& 稒 \& \& \(\phi\) \& \(\boldsymbol{p}\) \& \(\phi\) \& \(\rho\) \\
\hline \multicolumn{8}{|l|}{(a) Co-ordinates from (100)-} \\
\hline \& \(A d^{\prime}\) \& \& \& \(0^{\circ} 0^{\prime}\) \& \& \(0^{\circ} 0^{\prime}\) \& \\
\hline \& \(A b^{\prime}\) \& 101 \& b \& " ", \& 508 \& " \& 5048 \\
\hline \& \& 509 \& 5 \& \& \(\begin{array}{ll}71 \& 87\end{array}\) \& \& 7145 \\
\hline \& \& 807 \& 8 \& ", \& 7987 \& \& 7912 \\
\hline \& Ad \& 801 \& b \& " \& 1588 \& " \& 1542 \\
\hline \& \& 603 \& b \& ", " \& 8281 \& " \& 3255 \\
\hline \& 48 \& 102 \& \({ }^{8}\) \& " " \& 49
48
59 \& ", " \& \({ }^{50} 80{ }^{291}\) \\
\hline \& \(4 a\) \& \({ }^{207}\) \& 8 \& " " \& 5910 \& " " \& 59
7428
74 \\
\hline \& \(4 a\) \& 409 \& b \& ", ", \& \begin{tabular}{rrr}
7810 \\
78 \\
\hline 1
\end{tabular} \& \& 7488
78
18 \\
\hline \& \& 8.0.10 \& f \& \& 8732 \& \& 878 \\
\hline \& Af \& 50 I \& 8 \& \& 1139 \& \& \begin{tabular}{lll}
10 \& \(54 \frac{1}{2}\) \\
\hline
\end{tabular} \\
\hline \& \(\boldsymbol{A d}\) \& 801 \& \(f\) \& ", \& 1535 \& ", ", \& 1542 \\
\hline \& \& 403 \& b \& " , \& 4225 \& \& 4220 \\
\hline \& \(46^{\prime}\) \& 101 \& ? \& " \& \({ }_{60}^{60} 48\) \& " " \& \({ }^{60} 48\) \\
\hline \& \& 104 \& \(f\) \& " " \& \({ }^{61} 52\) \& " " \& \begin{tabular}{rr}
61 \\
\hline 67 \\
\hline 8 \\
\hline 8
\end{tabular} \\
\hline \& A \(x^{\prime}\). \& 108 \& b \& " " \& \begin{tabular}{l}
67 \\
\hline 67 \\
\hline 78 \\
\hline 14
\end{tabular} \& " " \& \begin{tabular}{l}
67 \\
74 \\
74 \\
\hline 87
\end{tabular} \\
\hline \& A \& 104 \& b \& ", ", \& \({ }^{85} 10\) \& \& 8627 \\
\hline \& A \(w^{\prime}\) \& 702 \& f \& \& 1547 \& \& 1544 \\
\hline \& \& 705 \& \(f\) \& \& 2918 \& \& 2356 \\
\hline \& \& 405 \& \(s\) \& " \& 4241 \& ", " \& 4284 \\
\hline \& \& 305 \& 8 \& \& 4688 \& \& \({ }^{46} 571\) \\
\hline \& 40 \& 102 \& \(f\) \& " " \& 5028 \& " " \& \(\begin{array}{lll}50 \& 291 \\ 81 \& 8\end{array}\) \\
\hline \& \& 104 \& b \& " " \& \({ }^{61} 88\) \& " " \& \(\begin{array}{ccc}61 \& 8 \\ 68 \\ 68 \& 251\end{array}\) \\
\hline \& Aa \& 105 \& b \& " " \& \begin{tabular}{l}
68 \\
74 \\
74 \\
74 \\
\hline 8
\end{tabular} \& \& \(\begin{array}{ll}63 \& 251 \\ 74 \& 28\end{array}\) \\
\hline \& \& 205 \& \% \& \& 8047 \& \& 8056 \\
\hline \& \& 104 \& b \& \& 8658 \& \& 8627 \\
\hline III \& \& 217 \& b \& 190 \& 8780 \& 1831 \& 8814 \\
\hline \& \(Q d^{\prime}\) \& 815 \& b \& 2500 \& 7639 \& \(25 \quad 501\) \& 7624 \\
\hline " \& \& \& b \& \({ }^{26} 1\) \& 7619 \& \& \\
\hline " \& Pro' \& 729 \& \({ }^{\text {f }}\) \& 280 \& \({ }^{69} 26\) \& \& \(\begin{array}{ll}69 \& 14 \\ 79 \& 14 t\end{array}\) \\
\hline " \& \({ }_{\text {Pr }}\) \& 529
829 \& \(f\) \& \& \& \& \\
\hline ", \& \(\stackrel{P y^{\prime}}{ }{ }^{\text {Pro }}\) \& \(\mathbf{8 2 9}\)

789 \& f \& 28 " \& \begin{tabular}{l}
89

89

69

\hline 8

 \& \&

89

69

\hline 9814
\end{tabular}

\hline " \& $P x^{\prime}$ \& 529 \& b \& \& 797 \& \& $7914 \frac{1}{2}$

\hline III \& $\underline{M} x^{\prime}$ \& 529 \& b \& 2936 \& 7647 \& 2988 \& 7649

\hline III \& Of' \& 514 \& \& 8083 \& 5388 \& 3081 \& $\begin{array}{lll}58 & 32 \frac{1}{2} \\ 71 & 82\end{array}$

\hline " \& od ${ }^{\prime}$ \& 814 \& b \& \& 7145 \& \& $\begin{array}{ll}71 & 82 \\ 82 & 38\end{array}$

\hline " \& Oc
$0 c^{\prime}$
$0 d^{\prime}$ \& ${ }_{314} 14$ \& b \& \& 8252
7159 \& " " \& $\begin{array}{ll}82 & 38 \\ 71 & 32\end{array}$

\hline
\end{tabular}

' In the column headed 'Reflections' the letters indicate the quality of the reflected image and therefore the trustworthiness of the measured angle, viz. g good, f fair, b bed, s striated.

$\rightarrow \sigma m \sigma=\sigma \sigma=\frac{8}{8}$	
-	

(c) Co-ordinates from (101)-

III	Of $f^{\prime \prime}$	514	b
,	$N v^{\prime}$	927	b
"	$0 e^{\prime}$	414	b
,"	$P w^{\prime}$	729	f
	$\underline{q} a^{\prime}$	315	b
II	$K v^{\prime}$	927	b
III	$P x^{\prime}$	529	g
	$o a^{\prime}$	314	b
II	Je'	413	f
	$K w^{\prime}$	727	b
III	Py'	329	f
"	$0 c^{\prime}$	214	f
"	$\mathrm{He}{ }^{\prime}$	${ }_{72}{ }^{412}$	b
"	$\stackrel{L}{w^{\prime}}$	725 315	b
"	$1{ }^{1}$	313	${ }_{f}^{\text {f }}$

45°	14'	$42^{\circ} 36^{\prime}$	$45^{\circ} 22{ }^{\prime}$
	6	4550	79 21
86	52	47 01	8646
86	52	", "	
71	33	", ",	7233
59	10	", "	5917
58	58		
38	3	4813	3813
80	16	529	$8019 \frac{1}{2}$
49	30	53.34	49-36
61	18	, ",	$6129 \frac{1}{2}$
49	30	", ",	4936
61	15	"	$6129 \frac{1}{2}$
76	19		7646
37	40	$55 \quad 2$	37 555
70	19	5946	7024
69	31	" "	
88	${ }_{5}^{6}$	$\cdots 1$ ä8	88 41 41
50	56	, , "	51 21
64	31	" ,	6443
50	50	", "	$51 \quad 2{ }^{51}$
64	16		6443
31	33	6312	3144
47	21	6652	$47 \quad 251$
60	1		$60 \quad 27 \frac{1}{2}$
65	23	6846	6525
84	14		8415
42	13	$70 \quad 43$	4216
33	58	7653	$34 \quad 3 \frac{1}{2}$
41	59	" ,	$42{ }^{4}{ }^{6}$
53	17		53 8
84	5	79 010	8219
87	5		8658
44	20	8110	${ }_{44}^{44} 32 \frac{1}{2}$
56	43	" "	5788
44	23	" ",	44 321 57 28
56 48	+		57 48 48 8
38	0	"	$\mathrm{Br} \mathrm{r}^{88} 9$
48	6	" "	$48 \quad 19$
85	34	24 71	$8542{ }^{\frac{1}{2}}$
85	34	2637	$8537 \frac{1}{2}$
85	44	", "	8621
78	20	" "	78 281
70	48		71
82	17	${ }^{27} 10 \frac{101}{2}$	8282
68	48	2938	6853
76	52		7658
81	48		8156
89	12		89
58	31	$33 \cdot 20$	5842
66	17		6626
72	11	$3410 \frac{1}{2}$	7156
81	40	"	8127
88	21	"	8833
88	29	" "	" "

Crystal No. 2 (fig. 5).

This tiny crystal (Trechmann's No. 6; B.M. 1917, 392), which measures about 1 mm . in length and about 0.2 by 0.2 mm . in crosssection, originally formed, as has been explained, with the preceding crystal opposite ends of a single individual. According to Trechmann ${ }^{1}$ the central portion of this individual was overlain by a similar one, almost at right angles to it, and he mentions the suggestion made by Baumhauer ${ }^{2}$ that such a conjunction, which has several times been observed, resulted from twinning. That may be true, because, as will be seen from the gnonomic projection (fig. 10), twinning about at least

Fia. 5. Sartorite crystal No. 2.
four poles, viz. $B x, G x^{\prime}, H c^{\prime}, I z^{\prime}$, would result in the prism-zones of the two individuals crossing nearly at right angles. Actual measurement of such a group will, however, be necessary before the existence of twinning of this kind can be accepted; in the case of Trechmann's crystals 3 and 4 the mutual relation is not ordinary twinning (cf. p. 268).

Altogether, 19 pyramidal faces, representing 14 forms, and 7 domefaces, representing 7 forms, were observed; as is implied by the latter half of the statement, only one half of the dome-zone is developed. Some of the pyramidal faces are striated parallel to the edge of the zone connecting them with (100), the result of repeated twinning about the latter. Except for the faces of the form (100), the prism-zone is much

[^10]striated, and gives bands of reflections extending over wide angles; in the table below the angles given refer to the positions of the brightest portions of these bands. Cross-zonal measurements were not made, because the pyramidal faces were neither sufficiently numerous nor well enough developed for the purpose. The calculated values of the co-ordinate angles were determined from the same elements as in the case of the preceding crystal. It will be noticed that in the case of the zone with azimuthal angle $44^{\circ} 6^{\prime}$ the oscillation between the faces $I y^{\prime}$ and $I z^{\prime}$ of the twin-individuals has led to the formation of intermediate vicinal faces, the polar distances of which are $80^{\circ} 27^{\prime}$ and $83^{\circ} 40^{\prime}$. There is a small twinned sector on the right-hand side of the crystal in the position of the drawing; the development here is most oscillatory, but it would only have confused the drawing to have attempted to depict this feature. The pyramidal forms $R y^{\prime}(3 \cdot 2 \cdot 11)$ and $O b^{\prime}(114)$ were not observed on the preceding crystal.

Table V. Calculated and observed values of the co-ordinate angles from (100).

Face.			Refl.	Observed.		Calculated,	
				ϕ	ρ	ϕ	ρ
III	$A w^{\prime}$	702	f	$0^{\circ} 0^{\prime}$	$16^{\circ} 9^{\prime}$	$0^{\circ} 0^{\prime}$	$15^{\circ} 44$
	$A b^{\prime}$	101	s		$50 \quad 9$	", "	5048
		3.0.10	s	" "	8719	," ,"	878
		16.0.5	b	", ",	17 3		1715
		304	s	", ",	4215	" ',	4220
		105	S	", ",	636		6335
	$A a^{\circ}$	001	s	" ",	7418	", "	7428
	Ad	301	b	", ",	1538	'" "	1542
		207	s	" ",	5931	", "	5922
		803	b	", ",	2029	" , "	2046
		503	b	" ",	3333		3255
	$A b^{\prime}$	101	s		516		5048
	$R y^{\prime}$	3.2.11	b	2410	8710	2358	8739
"	$0 b^{\prime}$	114	b	3022	8551	3031	8541
,	$0 c^{\prime}$	214	b	3030	8413		8238
III	$J c^{\prime}$	213	b	3924	$75 \cdot 3$	3925	7448
"	$J a$	013	b		765		7623
"	$J b^{\prime}$	113	f		8911	" , "	896
"	$J c^{\prime}$	213	f	3926	7446	", ",	7448
"	${ }^{\prime} \mathbf{b}^{\prime}$	113	f		8918		896
"	$I x^{\prime}$	525	b	446	6451	445	6439
	I y^{\prime}	325	b	" "	802	", "	79 1

Crystal No. 3 (fig. 6).
This crystal (B.M. 1917, 400), which measures about 1 mm . in length and 2 by 1 mm . in cross-section, was acquired by Trechmann subsequent to the publication of his paper; he included it with the other crystals presented by him to the British Museum in 1917. It is noteworthy for the unusual smoothness of the prism-zone and the comparative absence of signs of distortion ; on rotation of the crystal about the zone-edge when the zone was in adjustment, practically all the images crossed the field of the telescope of the goniometer accurately bisected by the horizontal wire. The measurements made in the zone are consequently exceptionally trustworthy. A face affording a sharp image of the object-slit was in the position corresponding to (10I); it rarely happens that the cross-zones meet the prism-zone in faces giving such good reflections. The nearer face of the form (100) as seen in the figure, although it is step-like in character, gives an excellently defined image, the various parts being strictly parallel to one another. On the opposite side, on the other hand, the face is very narrow, being almost linear in character and the reflection is consequently faint and diffuse. The faces in the dome-zone are brilliant and relatively large. The uncommon face (010) occurs in the curious form of a bevelling of only part of the edge common to the two adjacent faces of the form $B b$. The small triangular face alongside it gives an indistinct reflection corresponding to a face of the form (123) in lattice II ; this form has, however, not been observed on any other crystal, and it remains doubtful whether the plane is really a face of the crystal. The pyramidal faces, which, except for the one
just referred to, occur only on the bottom right-hand corner of the crystal in the position of the figure, give mostly excellent reflections; all the faces belong to lattice II, not a single face of the third lattice being observed. As customary, the stippled portions of the figure indicate broken or incompletely developed portions of the crystal.

Altogether, on the end of the crystal, observations were made of 12 dome-faccs, representing 7 different forms, and of 11 pyramidal faces,

Fig. 6. Sartorite crystal No. 3.
all belonging to different forms. The elements of the crystal and the co-ordinate angles of the various forms were computed from the following angles:- $(100):(001)=75^{\circ} \quad 27^{\prime}$ (the observed value), (100):(101) $=37^{\circ} 26^{\prime}$ (observed value $37^{\circ} 42^{\prime}$; no weight was attached to this angle because the setting was far from trustworthy), (100): (101)=51 47^{\prime} (the observed value), $(100):(110)=68^{\circ} 1^{\prime}$ (the value calculated from the measurements obtained for all the faces in the zone). The values of f and A defining the shear are-

		f		A
(100)	\ldots	0.200	\ldots	0.38560
(001)	\ldots	0.150	\ldots	0.39074
(101)	\ldots	0.025	\ldots	0.49076
$(10 \mathrm{I})$	\ldots	0.175	\ldots	0.63434

Elements of the Lattices.

I. $a: b: c=2.5583: 1: 2.5938 ; \beta=104^{\circ} 33^{\prime}$.
II. $a: b: c=2.6224: 1: 2 \cdot 6015$;

$$
\begin{aligned}
& (010):(001)=84^{\circ} 35^{\prime},(001):(100)=75^{\circ} 27^{\prime},(100):(010) \\
& =85^{\circ} 24^{\prime} ; \\
& \quad \alpha=94^{\circ} 25^{\prime}, \beta=104^{\circ} 13^{\prime}, \gamma=93^{\circ} 23^{\prime} .
\end{aligned}
$$

No faces belonging to the third lattice were observed.

Table VI. Calculated and observed values of the co-ordinate angles.

Face.			Refl.	Observed.		Calculated.	
¢	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{1}{6} \\ & \text {. } \end{aligned}$	+ís		ϕ	ρ	ϕ	ρ
(a) Co-ordinates from (100)-							
			f	$0^{\circ} .0^{\prime}$	$11^{\circ} 24^{\prime}$	$0^{\prime} 0^{\prime}$	$11^{\circ} 22^{\prime}$
	$A w^{\prime}$	702	f		1630		1622
		703	8	"	2438	", ",	$2436{ }^{2}$
	$A y^{\prime}$	302	b.	",	3750	", "	3720
		907	${ }^{\text {f }}$	" "	$42 \quad 27$ 51	",	$4237 \frac{1}{4}$
	$A b^{\prime}$	${ }_{407}^{107}$	g	" "	5147 7150	" "	$\begin{array}{lll}51 & 47 \\ 71\end{array}$
	$A z^{\prime}$	102	b	", ",	$\begin{array}{r}74 \\ \hline 13\end{array}$	", ",	71 75 71 18
		5.0.11	b	\because ",	77 80	", ",	$7747 \frac{1}{2}$
		205	f	", "	8045	", ",	8057
	$A d$	${ }_{801}^{301}$	f	", ",	$\begin{array}{lll}16 & 59 \\ 21 & 39\end{array}$	"	$\begin{array}{ll}16 & 24 \\ 21 & 33\end{array}$
		803 503	b	", ",	2139 2648	", ",	$\begin{array}{lll}21 & 33 \\ 26 & 31\end{array}$
	$A c^{\prime}$	${ }_{201}^{503}$	b	", ",	26 278 27	", ",	26 28 28 36
	$A z$	102	b	",	5147	", ",	5156
		107	s	" ,	68 0	" ",	6745
		5.0.1i]	g	" "	7758	", "	$\begin{array}{ll}77 & 47 \frac{1}{2} \\ 11\end{array}$
	$A f^{\prime}$	501		", "	1132	" "	1122
	$A b^{\prime}$	705 101 101	s	"	$\begin{array}{r}11 \\ 39 \\ 59 \\ 50 \\ \hline 16\end{array}$	", "	11 39 5140 16
	$A d$	301	f	", ",	1650	", ",	1624
		503			279		2631
II	Ab	101	s		3546		3726
	$K y^{\prime}$	327	g	358	8358	$35 \quad 1 \frac{1}{2}$	8416
",	$J b^{\prime}$	113	g	394	8855	$\begin{array}{ll}39 & 1\end{array}$	8910
	$\underline{I} x^{\prime}$	525	g	4355	6444	4351	$64 \quad 49 \frac{1}{2}$
"	$\stackrel{\text { I }}{ }{ }^{\prime}{ }^{\prime}$	325	b	, 9			7918
"',	$H e^{\prime}$ $H a^{\prime}$	412 812	f g		44 48 54 36	49 , $41 \frac{1}{2}$,	$4430{ }_{2}^{1}$ 54 189
"	$H c^{\prime}$	212	$\stackrel{8}{8}$		68.10		$68 \quad 7$
	$H^{\prime}{ }^{\prime}$	112	b		83 11		$8438 \frac{1}{2}$
"	Gy'	${ }^{323}$	g	5643	7242	5645	7236
"		123	b	7530	8630	7454	864

I	$C^{\prime \prime}{ }^{\prime}$	321	b	$79^{\circ} 28^{\prime}$	$60^{\circ} 41^{\prime}$			61°	$23{\frac{1}{}{ }^{\prime}}$
,	Bf	510	f	$90 \quad 0$	$2621 \frac{1}{2}$				21^{\prime}
"	Bv	920	f	", "	2844		"		$49 \frac{1}{2}$
"	$B e$	410	f	" ",	3150	",	,"		46
"	${ }^{B d}$	310	f	,	3937	"	,"	39	33
"	Bc	210	g	" "	51	,	,"		5
"	${ }^{B b}$	110	g	" "	$67 \quad 59$	",	,"		1
"	${ }^{B a}$	010	f	" "	${ }^{90} 0$	"	,		0
"	${ }_{B 0}$	510	f	,	$26 \quad 27$,"	,"	26	21
"	Be	410	f	" "	3146	"	",	31	46
"	$B d$	310	g	", "	3934	"	"		
"	${ }_{B b}^{B c}$	210	$\stackrel{\mathrm{g}}{\mathrm{g}}$	", "	51 68 68	"	",	51 68	5
"	Bb	110	g	" ",		"	,		
(b) Co-ordinates from (001)-									
II	He^{\prime}	412	f	3344	7450	33	37	74	56
"	${ }^{\prime} a^{\prime}$	312	g	$42 \quad 4$	6831	41	55	68	34
	Ix ${ }^{\prime}$	52.	g	4736	5822	47	$26 \frac{1}{2}$		20
I	$B c$	210	g	5158	8054	51	$59 \frac{1}{2}$	80	55
II	Hc^{\prime}	212	g	5427	6046	54	8	60	50
,	$K y^{\prime}$	327	g	6230	4023	62	11	40	13
"	I y^{\prime},	325	b	, , ,	$50 \quad 0$,	,	50	18
	$G y^{\prime}$	323	g		64.21				27
I	Bb	110	g	6840	8438	68	39	${ }_{90}^{84}$	36
,	$B a$	010	f	8955	8954	90	0	90	0
(c) Co-ordinates from (101)-									
II	$K y^{\prime}$	327	g	3855	6531	38	54		25
"	${ }^{\prime \prime} x^{\prime}$	52. ${ }^{\circ}$	g		8636	,	,	86	37
	H^{\prime}	312	g	396	$82 \quad 6$				
I	Bf	510	g		4445	39	11	44	$38 \frac{1}{2}$
II	$J b^{\prime}$	113	g	$45 \quad 12$	6238	45	11	62	34
	Hc^{\prime}	212	g		8554			86	
I	Be	410	b		4745	45	11	47	32
II	Hb ${ }^{\prime}$	112	b	5315	7119	53	11	71	30
	Gy ${ }^{\prime}$	323	g		8510			85	23
1	$B d$	310	f	5338	5222	53	$38 \frac{1}{2}$	52	15
"	$B c$	210	g	6354	${ }_{60}^{60} 10$	63	$51 \frac{1}{2}$	60	5
	Cy'	321	b			,	"		
"	$D b^{\prime}$	111	b	"\%	8937			89	39
",	Bb	110	g			76	13		$42 \frac{1}{2}$
(d) Co-ordinates from (101)--									
II	$K y^{\prime}$,	327	b	5331	4516	53	18	45	25
	$J b^{\prime}$	113	f		5139			51	
I	Bc	210			$67 \quad 2$	57	37.	67	
II	$H e^{\prime}$	412	f	6230	37	62	$22^{\frac{1}{2}}$	37	
	Ix',	52.	g	8428		83	40	39	7
",	$H c^{\prime}$ $G y^{\prime}$	212 323	$\stackrel{\mathrm{g}}{\mathrm{g}}$,	45 45 53	",	",	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	${ }_{24}^{24}$

Crystal No. 4 (fig. 7).
This crystal (B.M. 83976), which measures about 1 mm . in length and 1 by 1 mm . in cross-section, was acquired by the Trustees of the British Museum in 1898. The prism-zone is of the customary grooved character and its re-entrant appearaice is no doubt due to twinning;
here and there it is comparatively smooth and affords correspondingly distinct reflections. The dome-zone again is large, and the faces are smooth and give brilliant reflections. On the lower corner in the position of the figure appear a number of pyramidal faces. The curious tongue-shape of this corner will be roticed. The face $J b^{\prime}$ has been bent parallel to the left-hand edge, and gives therefore a double image. This distortion is responsible for the shifting of the face (100) nearly a degree ($0^{\circ} \tilde{5} 6^{\prime}$) from the position defined as the intersection of the

Fig. 7. Sartorite crystal No. 4.
prism- and dome-zones. The stippling indicates as usual imperfectly developed portions of the crystal. A region of this kind separates the dome-zone from the large faces of the second lattice, and may result from the shear giving rise to the latter. No face belonging to the third lattice is present. Reflections corresponding to the forms $J u^{\prime}, J x^{\prime}$ were given off the upper rounded edge of the crystal in the position of the drawing; but it is open to question whether they are genuine crystal-faces, since they have not been observed on any nther crystal, and, moreover, belong uot to the ordinary group- $J b, J c$, \&c.-but to the intermediate one, which has seldom been observed in the case of any zone.
Altogether, on the end of the crystal, observations were made of 10 dome-faces representing 6 different forms, and of 27 pyramidal faces, representing 25 different forms. The elements of the clystal and the co-ordinate angles of the various forms were computed from the following angles: $-(100):(101)=33^{\circ} 40^{\prime}$ (the observed value),
(100): (101) $=52^{\circ} 52^{\prime}$ (the observed value), (100): (210) $=51^{\circ} 2^{\prime}$ (the better observed value); no trustworthy setting for the pole (001) was obtainable. The values of f and A defining the shear are :-

		f		A
(100)	\ldots	0.375	\ldots	0.35808
(001)	\ldots	0.085	\ldots	0.37876
(101)	\ldots	0.230	\ldots	0.44832
(101)	\ldots	0.145	\ldots	0.64474

Elements of the Lattices.

I. $a: b: c=2.6395: 1: 2.7929 ; \beta=110^{\circ} 25^{\prime}$.
II. $a: b: c=2.6433: 1: 2.8176$;

$$
\begin{aligned}
& (010):(001)=82^{\circ} 31^{\prime},(001):(100)=69^{\circ} 35^{\prime},(100):(010) \\
& =89^{\circ} 71^{\prime} ; \\
& \quad \alpha=97^{\circ} 39^{\prime}, \beta=110^{\circ} 29^{\prime}, \gamma=91^{\circ} 51^{\prime} .
\end{aligned}
$$

Table VII. Calculated and observed values of the co-ordinate angles.

Face.			Refl.	Observed.		Calculated.	
¢ ¢ H H		边		ϕ	p	ϕ	ρ
(a) Co-ordinates from (100)-							
		301	b	$0^{\circ} 0^{\prime}$	$14^{\circ} 10^{\prime}$	$0^{\circ} 0^{\prime}$	$14^{\circ} 54^{\prime}$
	$A c$	201 405	s	", ",	2132 6159	", ",	2049 621
	Aa	4001	s	", ",	6159 7017	", ",	62 1 695 15
	$A y^{\prime}$	302	g	", ",	3641	", ",	3761
		403	b	". ",	4026	", ",	4125
		907	b	" "	4243	" , "	4248
		101	f		5313	$"$ "	5252
		105	f	"	8127	", "	8145
		304	b	", "	3939	" \quad "	3922
		105	$\underset{\text { b }}{ }$	" "	8840	" ",	8141
		100	f	"	895 056	"	89 09 0
	$A w^{\prime}$	702	s	", ",	1550	",	1536
	$A l^{\prime}$	$30 \overline{1}$	f		1837	", ",	1821
		$70 \pm$	g		3125	"	3156
	$A b$	101	b	" "	3419	", "	3340
		504	s	" "	4258		4353
	$A b^{\prime}$	101	b	" "	52.	" "	5952
		902	f				83 84 84
II	$K v^{\prime}$	927	b	30	520	8347	$5155{ }^{\text {\% }}$
	$J a$,	${ }^{013}$	b	3932	7553	3936	7514
,"	Ju'	11.2.6	b	3935	4042	"	4054

Crystal No. 5 (fig. 8).
This crystal (Solly's No. 28; B.M. 1918, 408 (28)), which measures about 1 mm . in length and 0.7 by 0.4 mm . in cross-section, is set in a kind of alcove of sartorite, which is lined with faces very nearly in harmony with the development of the crystal. Observations were. on that account rendered difficult, because in the case of many of the faces several images, often overlapping one another, were simultaneously visible in the field of the telescope of the goniometer, and in consequence of the small size of the crystal it was often not easy to determine which of the images belonged to the face under observation. On the left-hand

Fig. 8. Sartorite crystal No. 5.
side of the crysta?, in the position of the figure, the prism-zone is only partially developed, the growth having been hindered by some foreign substance. Both for this reason and because the intrusion of the sides of the alcove prevented reflections being obtained from the parts lying back, only a limited portion of the zone was available. What reflections were given were indistinct, and some of them were spread out in a direction nearly parallel to the edge of the prism owing to the fact that the crystal is slightly distorted in the direction of the prism-edge. This zone, as usual, was used for setting up the crystal on the goniometer, the images corresponding to the part of the crystal immediately adjoining the terminal faces being selected. The adjustment was, however, not susceptible of great accuracy for the reasons stated, and the want of agreement between the observed and computed values
noticeable here and there in the table below is perhaps not surprising. Even the face (100) did not as usual yield a good measurable reflection. The most noteworthy feature of the development of the crystal is the prominence of the faces, $G y^{\prime}, H c^{\prime}, I x^{\prime}$, and $J b^{\prime}$, lying in a zone with (101); they, moreover, yielded brilliant reflections. When the crystal was first set up it was thought that this was the dome-zone, and, since this crystal was measured some time before Trechmann's No. 5, it was not for a while clear whether the crystal was sartorite or not. The domezone, on the other hand, is not only itself less prominent, but its faces lack some of their customary smoothness and brilliance, and are, moreover, considerably striated; measurements in this zone are therèfore unusually uncertain. A remarkable feature of the crystal is the almost complete absence of twinning about (100); of all the faces observed, only $C y^{\prime}$ is in the twinned position.

Altogether, on the end of the crystal, observations were made of 53 faces, representing 50 different forms. Owing to the partially concealed position of the crystal, certain of the faces were not observable from (100). The elements aud the co-ordinate angles of the various forms were computed from the following angles :-(100): $(001)=72^{\circ} 0^{\prime}$ (observed value $72^{\circ} 15^{\prime}$), (100) : (101) $=84^{\circ} 57^{\prime}$ (observed value $34^{\circ} 47^{\prime}$), (100): $(10 \mathrm{I})=52^{\circ} 1^{\prime}$ (observed value $52^{\circ} 11^{\prime}$), and (100): $(210)=$ $51^{\circ} 7^{\prime}$ (observed value $51^{\circ} 11^{\prime}$). The values of f and A defining the shears are-

		f		A
(100)	\ldots	$\frac{1}{3}$	\ldots	0.36310
(001)	\ldots	0	\ldots	0.38348
(101)	\ldots	$\frac{1}{6}$	\ldots	0.46004
(101)	\ldots	$\frac{1}{6}$	\ldots	0.63560

Elements of the Lattices.

$$
\begin{aligned}
& \text { I. } a: b: c=2 \cdot 6074: 1: 2.7550 ; \beta=107^{\circ} 0^{\prime} . \\
& \text { II. } a: b: c=2.6074: 1: 2.7740 ; \\
& \quad(010):(001)=82^{\circ} 45^{\prime},(001):(100)=72^{\circ} 0^{\prime},(100):(010) \\
& \quad=87^{\circ} 46^{\prime} ; \\
& \quad a=96^{\circ} 54^{\prime}, \beta=107^{\circ} 52^{\prime}, \gamma=90^{\circ} 0^{\prime} . \\
& \text { III. } a: b: c=2 \cdot 6074: 1: 2.8320 ; \\
& \quad(010):(001)=75^{\circ} 44^{\prime},(001):(100)=72^{\circ} 0^{\prime},(100):(010) \\
& =85^{\circ} 38^{\prime} ; \\
& \quad a=103^{\circ} 36^{\prime}, \beta=107^{\circ} 29^{\prime}, \gamma=90^{\circ} 0^{\prime} .
\end{aligned}
$$

Table VIII. Calculated and observed values of the co-ordinate angles.

Face.			Reff.	Observed.		Calculated.	
		動		φ	\boldsymbol{p}	ϕ	ρ
(a) Co-ordinates from (100)-							
	${ }_{A x}{ }^{\text {d }}$	301 502	b	$0^{\circ} 0^{\prime}$	$\begin{array}{ll}14^{\circ} \\ 17 & 53^{\prime} \\ & 45\end{array}$	$0^{\circ} 0^{\prime}$	$\begin{array}{lll}15^{\circ} & 2^{\prime} \\ 17 & 56\end{array}$
	$A b$	101	b	", ",	3417	"" ",	34 57
	$A y^{\prime}$	302	b	", ",	3543	", ",	36.52
	$A b^{\prime}$	$10 \overline{1}$	s	", ",	5211	", "	521
	$A z^{\prime}$	102	b	",	7580	", ",	77 912
		307	b	"	8125	"	$8132{ }^{81}$
		104	b	"	8827	" ",	8718
	$\stackrel{A a}{ }{ }_{\text {a }}{ }^{\prime}$	001	b		724		
III	${ }_{P} x^{\prime}$	529	b	2735	7910 6810	$283 \frac{1}{2}$	$\begin{array}{ll}79 & 23 \\ 69\end{array}$
",	${ }^{P z}$	129	b	2745	6830	" ,"	697
"	${ }_{P}^{P z^{\prime}}$	129	b	\because	7833	", "	79 8 8
"	${ }_{P}^{P w}$	729	f	2750	4630	"	$\begin{array}{ll}46 & 27 \\ 52\end{array}$
İ	$\stackrel{P x}{\boldsymbol{P} x^{\prime}}$	${ }_{5}^{529}$	b		5242 7125	3642	5244 72
	Ky ${ }^{\prime}$	327	b		84 15		72 84 55
",	$J d^{\prime}$	313	b	3950	6242	39,34	62 32
",	$J_{\text {d }}{ }^{\prime}$	213			7456		$75 \quad 15 \frac{1}{2}$
"	J^{\prime}	113	f		8913		8938
"	${ }^{\text {Jd }}$.	318	b	3940	4435	",	4424
"	${ }^{J b}$	113	b		6225		636
"	${ }^{\prime \prime} x^{\prime}$	525	f	4419	${ }_{79} 646$	4411	6451
"	$I y^{\prime}$ $I x$	325	f	4431	$\begin{array}{ll}79 & 6 \\ 39 & 0\end{array}$	" "	7919
",	Iy	${ }_{325}$	b		$\begin{array}{rrr}39 & 0 \\ 55 & 54\end{array}$	" $"$	39 25
",	12	525	b		695		$6931{ }^{2}$
"	Hl	312	f	4926	4145	4944	4126
"	${ }_{\text {Hic }}$	212	f	" "	5057		5028
"	Hb	112	b	" "	${ }^{62} 42$	"	$\begin{array}{ll}62 & 37 \frac{1}{2} \\ \\ 78\end{array}$
"	$\stackrel{H a}{H b^{\prime}}$	${ }_{112} 12$	b	" "	78 84 845	" "	$78{ }^{78}$
"	$H b^{\prime}$ $H e^{\prime}$	112	b	393 ${ }^{43}$	84 44 44	" "	$84825 \frac{1}{24}$
"	$H e^{\prime}$ $H d^{\prime}$	4312	b f		44 54 54	$"$	44 54 54
",	He'	215	g		6755		6756
"	$H b^{\prime}$	112	b		8423		$8425 \frac{1}{2}$
"	Gy ${ }^{\prime}$	323	f.	5542	7146	5621	$72{ }^{7}$
"	${ }^{\boldsymbol{a} z^{\prime}}$	123	b		8935		8918
"	${ }_{6} 8$	${ }_{323}$	b	5616	4432	" "	${ }^{44} 418$
"	Gy	323	b	" "	$\begin{array}{lll}55 & 17 \\ 70\end{array}$	" "	55 70 70
"	${ }_{\text {Fc }}^{\text {Fiz }}$	121	b	63 l	$\begin{array}{rrr}70 & 31 \\ 49 & 3\end{array}$	64 ${ }^{\prime \prime}$	$\begin{array}{cc}70 & 49 \\ 49 & 4\end{array}$
"	Fb	111	b		6343		6314
	Fa	011	b		8210		$8156 \frac{1}{2}$
,	Da	011	b	$70 \quad 0$	8335	70 '3	8458
"		144	b	, ,	8935		8955

 	た

Crystal No. 6 (fig. 9).
This crystal (Solly's No. 24 ; B.M. 1918, $408(24)$), measures 2.6 mm. in length and 1.7 by 1.2 mm . in section. The dome-zone is of unusually large relative size, and the faces are conspicuously bright and smooth. Into the large face $B c$ runs a cleft which is bounded on the farther side in the position of the figure by the face $B d$ and at the sides by some irregular growth. The same sort of hump-like growth occurs on the

Fig. 9.-Sartorite crystal No. 6.
top as was noted in the case of Trechmann's crystal No. 5 (p. 274). As uscial, the crystal is twinned, a small twin section running from side to side just below the hump-like growth referred to. As is often the case, the growth of the prism-zone has been interfered with and the edges bounding the various little faces are slightly tilted towards one another on opposite sides of the crystal; in consequence it is not possible to adjust the crystal so that all the reflected images given by this zone on rotation of the crystal traverse centrally the horizontal wire in the
eye-piece of the telescope of the goniometer, and the positions of the poles determined by the intersections of crose-zones must necessarily be a little uncertain. Of the faces of the form (100) the near one in the figure gives a distinct reflection despite the oscillatory and step-like character; the parallel one on the other side of the crystal affords a far less satisfactory reflection.

Altogether, on the end of the crystal, were observed the pinacoid of symmetry, 9 dome-faces representing 6 different forms, and 28 pyramidal faces representing 17 different forms. The elements and co-ordinate augles of the various forms were computed from the following angles:(100): (001) $=75^{\circ} 1^{\prime}$ (the observed value), $(100):(101)=36^{\circ} 39^{\prime}$ (observed value $36^{\circ} 40^{\prime}$), (100):(10I) $=51^{\circ} 2^{\prime}$ (the observed value), and (100): $(210)=50^{\circ} 55^{\prime}$ (the most trustworthy observed value). The values of f and A defining the shear are :-

		f		A
(100)	\ldots	0.24	\ldots	0.37724
(001)	\ldots	0.16	\ldots	0.39225
(101)	\ldots	0.04	\ldots	0.48478
(101)	\ldots	0.20	\ldots	0.63144

None of the faces referable to the third lattice were observed. It will be noticed that the corresponding faces on different lattices are ou this crystal very nearly in the same zone with the pole (101).

Elements of the Lattices.

$$
\begin{aligned}
& \text { I. } a: b: c=2.5495: 1: 2.6511 ; \beta=104^{\circ} 59^{\prime} . \\
& \text { II. } a: b: c=2.5544: 1: 2.6624 ; \\
& \quad(010):(001)=88^{\circ} 42 \frac{z^{\prime}}{\prime},(001):(100)=75^{\circ} 1^{\prime},(100):(010) \\
& \quad=84^{\circ} 55 \frac{1}{2}_{\frac{1^{\prime}}{\prime}} ; \\
& \quad a=95^{\circ} 10 \frac{1}{2}^{\prime}, \beta=104^{\circ} 34^{\prime}, \gamma=93^{\circ} 35 \frac{1}{2}^{\prime} .
\end{aligned}
$$

I'able IX. Calculated and observed values of the co-ordinate angles.

Face.			Refl.	Observed.		Calculated.	
	$\begin{aligned} & \text { oi } \\ & \text { B } \\ & \text { B } \end{aligned}$			ϕ	ρ	ϕ	ρ
(a) Co-ordinates from (100)-							
	Ad	301	b	$0^{\circ} 0^{\prime}$	$16^{\circ} 35^{\prime}$	$0^{\circ} 0^{\prime}$	$15^{\circ} 571^{\prime}$
		503	b		2555	" "	$25.52 \frac{1}{2}$
		705	b	"	$\begin{array}{ll}29 & 23 \\ 39\end{array}$	" ",	29 29
		708	b	", "	$\begin{array}{cc}39 & 40 \\ 57 & 0\end{array}$	"	3935 57 57
	$A f$	103 501	b	"	$\begin{array}{rr}57 & 0 \\ 9 & 32\end{array}$	" "	$\begin{array}{ll}57 & 56 \\ 10 & \end{array}$
	Af	703	b	", ",	9 19 1988	", ",	$\begin{array}{rr}10 & 2 \\ 19 & 47\end{array}$
		103	b	", "	587	", ",	5756
		105	b	", "	$\begin{array}{lll}64 & 10 \\ 71\end{array}$	", "	6413
		103	f	" $"$	$\begin{array}{r}7149 \\ 84 \\ \hline 10\end{array}$	" "	7050
		705	b	", ",	$\begin{array}{rr}84 \\ 29 & 45\end{array}$	", ",	$\begin{array}{ll}84 & 471 \\ 29 & 24\end{array}$
		708	b	", ",	397		39 35
		3.0.11	b		$60 \quad 38$		6042
		407	b	",	7111		7050
	Ae	$\stackrel{401}{10.0 .3}$	b	",	1146	", ",	1220
		${ }_{703}^{10.0 \cdot 3}$	b	" "	16 16 19	"	1646
		704	b		19 24 24 17	"	1947 24 246
	$A y^{\prime}$	302	b	", ",	3710	", ",	36 365
		203	b		$44 \quad 45$		$4525 \frac{1}{2}$
	$A b^{\prime}$	101	b		5137		${ }_{51}{ }^{5}{ }^{2}$
II	Jb'	113	f	3924	897	3917	$8929 \frac{1}{2}$
"	$\underline{~ I ~}{ }^{\prime}$	525	${ }^{\text {f }}$	4355	650	443	$6454{ }^{2}$
"	$\stackrel{I}{1}{ }^{\prime}$	325	f	" "	7925	" "	7928
"	$1 z^{\prime}$	125		44 ${ }^{\prime}$	8450	", "	8430
"	${ }^{\prime \prime} y^{\prime}$	323	b	$\begin{array}{rr}44 & 0 \\ 44 & 10\end{array}$	8454 7910	"	738
",	$I z^{\prime}$	125	b		8535		8430
"	${ }_{\text {He }}{ }^{\prime}$	212	f	4945	6819	4938	6818
"	${ }^{H} b^{\prime}$	112	b		8415		8459
"	$\stackrel{H}{H}$	012	b	", "	7752	\because "	7728
"	$\stackrel{H b^{\prime}}{H c^{\prime}}$	112	b		84 88 68	"	8459
",	$H c^{\prime}$ $H b^{\prime}$	112	b	4949	${ }^{68} 19$	"	6818
",	H^{\prime}	212	b	$\stackrel{39}{ }{ }^{\prime \prime}$	$\begin{array}{r}84 \\ \hline 88 \\ \hline 88\end{array}$	" "	
"	Ha	012	b		7750		
",	${ }^{H} b^{\prime}$	112	b		8453		8459
"	$G z^{\prime}$	123	b	5646	8836	5643	8812
"	Gy ${ }^{\prime}$	323	,	5647	7240		7253
	$F b^{\prime}$	111	b		790	6456	7856
I	νb^{\prime}	111	b	68 68 68	7416	6920	74 4
,	$\stackrel{D a}{\text { D }}$	111	b	$\begin{array}{ll}68 & 42 \\ 68 & 44\end{array}$	$\begin{array}{ll}84 & 50 \\ 74 & 8\end{array}$		8436
"	$D b^{\prime}$	111	b	6844 -848	748	" \because	744
"	$C z^{\prime}$	121	b	7852	814	7919	8128

I	$\nu{ }^{\prime}$	$11 \overline{1}$	b	$63^{\circ} 42^{\prime}$	$89^{\circ} 25^{\prime}$	$64^{\circ} 8^{\prime}$	$88^{\circ} 59^{\prime}$
"	${ }^{\prime \prime}$, 3	f	$64 \quad 9$	8921		${ }^{3} 8$
"	${ }^{\text {Bc }}$	${ }^{210}$	$\underline{0}$	6411	5945	" "	59 37
"	${ }^{\text {Cy }}$	321	f		$\begin{array}{r}73 \\ \hline 60\end{array}$	" "	7312 59 97
$"$	Bc $D a$	210 011	g	$\begin{array}{rr}64 & 17 \\ 76 & 8\end{array}$	$\begin{array}{rr}60 & 0 \\ 73 & 23\end{array}$		5937 73 73
"	${ }_{\text {b }}^{\text {D }}$ a	111 110	b	$\begin{array}{lrr}76 & 8 \\ 76 & 18\end{array}$	7323 7215	$\begin{array}{ll}76 & 22 \frac{1}{2} \\ " & \prime \prime\end{array}$	73 72 726
"			f	7631	7224		
"	Cx	521	f	8935	7219	$90 \quad 0$	7228
"	"	,	f	8956	7240	" "	"
(d) Co-ordinates from (101)-							
I	Be	410	g	3855	5735	$3822 \frac{1}{2}$	5737
",	$\stackrel{3}{B a}$	310	$\stackrel{\mathrm{g}}{\mathbf{g}}$		5746 6059	$\stackrel{36}{ } \mathbf{3 6}$	${ }_{60} 6$
"	"	,"	f	471	${ }_{61} 6$		
			f		6112		"
II	Ha	012	f	$\stackrel{3}{310}$	5258	$\stackrel{32}{2} 31$	5236
"	Iz ${ }^{\prime}$	125	b		6039		6016
"	$J b^{\prime}$	113	f		6943	$"$ "	${ }_{69}^{69} 18$
"	$\underline{I} x^{\prime}$	525	b	5314	6017	"	60 6 68
$\stackrel{1}{1}$	${ }^{J b^{\prime}}$	113 210	${ }_{\text {b }}$		69 69 68	$\ddot{87}$	69 18 66 38 1
	$B C$	210	f		66 68 66		6638
III	${ }^{\prime \prime} y^{\prime}$	335	b	58 66	48 25	${ }_{66}{ }^{\prime \prime}$	4882
"	\ddot{H}		b	6629	4848	", "	
"	$\stackrel{\text { Hb }}{\text { Bb }}$	112	b				$\begin{array}{ll}56 & 18 \\ 76\end{array}$
1	${ }_{C z}^{B b}$	110	b	7234	7623		76 89 89
"	${ }^{\text {cz }}$	121	f			" "	8921
"	$\stackrel{\rightharpoonup}{B b}$		f	7240 7242		, "	
"	${ }_{C y}{ }^{\text {Bb }}$	${ }_{321} 11$	f	7242 7256	$\begin{array}{cc}76 & 5 \\ 64 & 52\end{array}$	", ",	7619 64
III	${ }^{\prime \prime} c^{\prime}$	113	b	8235	3923	8248	3924
"	$I x^{\prime}$	525	b		4548	" ",	4550
"	${ }^{\prime \prime}{ }^{\prime}{ }^{\prime}$	323	b		$\begin{array}{ll}46 & 8 \\ 54 & 1\end{array}$	" "	$3{ }^{3} 38$
"							

Other Crystals.

Nineteen of the remaining measured crystals showed pyramidal faces, though neither sufficiently numerous nor well enough developed for the cross-zonal relations to be determined. These crystals comprised fourteen in R. H. Solly's collection (B.M. 1918, 408), namely, those numbered 11 (a), 11 (b), 14, 15, 20, 21, 23, 25, 28 (b), 44, 54, 58, 59, 60 ; and five formerly in C. O. Trechmann's sollection, namely, the one numbered 7 in his memoir, ${ }^{1}$ and four othe. , the several pairs being numbered 1917, 395, and 1917, 399, in the British Museum Rigıster of Accessions. A few additional forms on the end of the crystals were noted, namely, two pyramidal forms $I u(11 \cdot 2 \cdot 5)$ and $J z(126)$ each of which was represented by a single tiny face giving a faint and ill-defined

[^11]reflection and is rather doultful, and fifteen dome-forms-(23.1.0), (16.1.0), $B l(11.1 .0), B k$ (10.1.0), $B r$ (17.2.0), $B g$ (610), (16.3.0), (31.6.0), Bw (720), (830), (13.6.0), (11.7.0), (760), (570), (15.8.0). Owing to the striated character of the prism-zone and the consequent banded nature of the reflections, readings in this zone were very uncertain. It will be noticed from the table that reflections were met with almost continuously through a right angle from the origin of measurement, or, in other words, through the whole of the zone. The grouping of the angles as given in the table was therefore to some extent arbitrary, but as far as possible thick clusters of readings were brought together. The values given in the column of calculated angles are those computed on the data found for Crystal No. 1 above (p. 278); the nearest concordant pole with simple indices, whether positive or negative, was entered in the column.

Table X. List of forms observed on 19 other crystals and the corresponding co-ordinate angles from (100).

Face.		Observed Means.		Limits of Observations.		No.	Calculated.	
$\begin{aligned} & \text { ®i } \\ & \text { B } \\ & \text { B } \\ & \text { on } \end{aligned}$		ϕ	ρ	ϕ	ρ		ϕ	ρ
$A^{\prime \prime}$	901	$0^{\circ} 0^{\prime}$	$5^{\circ} 48^{\prime}$			1	$0^{\circ} 0^{\prime}$	$5^{\circ} 58$
$4 h^{\prime}$	701		732			1	" ",	743
$A g^{\prime}$	601	" ",	917			1	" ",	93
An	902						", "	1053
$A f^{\prime}$	$50 \overline{1}$						" "	$1054 \frac{1}{2}$
Ae	401	", "	1144		1028-13 37	14	" "	128
$A v^{\prime}$	902						$"$ "	12 y
Aw	702						" ",	13 411
$A e^{\prime}$	401						" ",	1343
Ad	301	" "	1550		$\begin{array}{llll}14 & 7-17 & 5\end{array}$	20	" "	1542
$A w^{\prime}$	702	3					",	1544
A x	502	" "	1826		17 46-19 12	16	", "	1822
$A d^{\prime}$	301							18251
	803		2025		1956-21 23	6	, ; ;	$2045 \frac{1}{2}$
Ac	201	", "	2222		22 0-2233	5		22.5
$A x^{\prime}$	502						", ",	2291
	905						" ",	$24 \quad 0$
	704	", "	2433		23 6-25 51	13	", ",	2432
	503						", "	$\begin{array}{ll}25 & 27 \frac{1}{2}\end{array}$
	805						" ",	2615
$A{ }^{\text {A }}$ A ${ }^{\prime}$	302		$27 \quad 7$		26 39-27 40	3	" ",	2732
	201				-10-31		", "	2739
	905	", "	3028		29 40-31 18	7	" $\%$	3036

Fc^{\prime}	211	$63^{\circ} 58^{\prime}$	$60^{\circ}{ }^{\prime \prime}$		59 5-61	2	64 ${ }^{\circ} 24^{\prime}$	$60^{\circ} 17^{\prime}$
$D b^{\prime}$	111	7027	74.87	69 40-71 15	78 32-75 42	2	69451	74 141
	144		8955			1		89 48 48 80
$C x$	521	7919	4848	78 38-80 12		1	7983	4850
Cx'	$52 \overline{1}$		4644		$4689-4781$	8		46451
$C^{c y}$	321	" "	5655		56 87-57-28	5	" "	5710
Cy'	$32 \overline{1}$		6130		60 15-62 6	7		$6125 \frac{1}{2}$
${ }^{\text {cz }}$	121		$\begin{array}{ll}76 & 8 \\ 82\end{array}$		75 50-7626	2		$76{ }^{76}$
$C z^{\prime}$	121		$82 \quad 2$			1	$\because "$	8135
	23.1.0	900	67	8922		1	900	${ }^{6} 89$
	16.1.0		858			1		849
Bi	11.1.0	" "	1284		12 28-12 44	5	" ",	1242
$B k$	10.1.0	" "	1852		18 44-13 58	5		1856
Bj	9.1.0	"	$15 \quad 21 \frac{1}{2}$		15 14-15 30	6		15.24
Br	17.2.0	" "	1629		16 26-1632	2		1616
Bi	810	" "	1714		17 6-17 21	5		17 181
Bh	710	"	1932		1921-19 45	8		19 30
Bt	13.2 .0	" "	2112			1	" ",	2058
Bg	610	"	2226		22 20-22 30	7		$22.27 \frac{1}{2}$
	16.3.0 $31.6 .0$	" "	$\begin{aligned} & 2450 \\ & 2543 \end{aligned}$		$\begin{aligned} & 24-46-2456 \\ & 25-20-25 \end{aligned}$	8		24 2588 258
	31.6.0	" "			25 20-25 56	4		$2588 \frac{1}{2}$
Bf	510	" "	2628		26 14-27 4	17	" "	26 28
$B 0$	920	,	2856			1		2852
Be	410		3145		$\begin{array}{ccc}31 & 14-32 & 4\end{array}$	15		8148
Brc	720	" "	3584		85 23-85 45	2		8582
$B{ }^{\text {d }}$	310	" "	3987		89 2-39 56	20	" "	8985
	830		4284		42 27-42 41	2		4255
$B x$	520	" "	4431		48 42-45 0	8		44 48 481 481
	13.6.0		4858			1	" ${ }^{\prime}$	4851
Bc	210	" "	517		50 52-51 29	30	" "	${ }^{51} 817$
	11.7.0	" "	5744		57 30-5758	2	" "	57 64 48 8
Bb	780 110	" "	$\begin{array}{rrr}64 & 45 \\ 68 & 3\end{array}$		67 15-68 32	28	", ",	64 48 68 88
	570		748			1		$7858{ }^{2}$
	580		7543		75 81-75 56	8		7551
Bz	120		7844		78 25-79 19	11		7886
$B a$	010	" "	$90 \quad 0$		8989	8	"	$90 \quad 0$

IV. The Lattice Arrangements.

The advantages of the use of the gnomonic form of projection in the determination of the zonal properties of a crystal is well known. Owing to the fact that all great circles on the sphere, and therefore zones on the crystal, appear as straight lines on the projection, it follows that, if the projection be made on a plane perpendicular to the axis of some zone-usually the, or one of the, principal zones of symmetry on the crystal-all the zones passing through a pole in this zone are projected as straight lines intersecting one another at infinity, or, in other words, as parallel straight lines. In the case, therefore, of a simple crystal of the usual kind a gnomonic projection prepared in the foregoing manner takes the form of a continuous network, the nodes of which represent the principal observed faces. If, however, we prepare a guomonic
projection of sartorite on a plane perpendicular to the edge of the prismzone (fig. 10), we see at once that we obtain a patchy network which

Fig. 10.-Gnomonic projection of sartorite.
is not continuous over the whole of the projection. A brief study of the projection shows that the discontinuity cannot be set down as due to
twinning or repeated twinning about (100), which is the ordinary twinplane, or about any other face or axis. Zones passing through the pole (100) are continuous right across the diagram, and are, indeed, individually quite normal. It is, however, otherwise with zones passing through other poles in the prism-zone. The spacing in all straight lines parallel to a particular direction remains the same-that is to say, the linear distances between the points representing crystal-faces are simple multiples of the same unit; but these straight lines, if extended over the diagram, do not in general cross at nodal points the series of parallel straight lines representing the zones radiating from the pole (100).

There are in fact five different networks corresponding to as many lattices. Lattice I, which includes the, if present, usually conspicuous dome-zone, is monoclinic in symmetry. Close to it on either side of the vertical straight line (in the position of the drawing) which corresponds to the dome-zone lie a pair of similar networks, which are related to one another by twinning about the axis of symmetry; this lattice II is triclinic in symmetry. Farther away from the central straight line, and close to the sides of the diagram, we find another puir of similarly related networks; this lattice III is likewise triclinic in symmetry. Lattice III is far less conspicuous than lattice II, crystal No. 1 alone possessing many faces belonging to the former; but, strange to say, the unit pyramidal form selected by vom Rath belongs to lattice III.

Besides the identity of spacing in parallel straight lines on the diagram to which we have already alluded, there is another relation between the several lattices. If we extend the networks until they overlap, we obtain for the five crystals whose cross-zonal relations we were able to determine, the lattice arrangements depicted in fig. 11. The underlying feature of all of them, despite certain noticeable differences, is that the three adjacent nodes, ench belonging to a different network, are co-linear, and the node belonging to lattice II bisects the distance between the nodes belongiug to lattices I and III. This property was determined from the observations made on crystal No. 1, and was confirmed by observations made on its companion crystal No. 2 and ou crystal No. 5; the three crystals Nos. 3, 4, and 6 were entirely lacking in faces of lattice III. From this property it follows, as is shown on the gnomonic projection (fig. 10), that the faces $H b^{\prime}$ and $O c^{\prime}$, belonging to lattices II and III, lie in a zone with $B a$ and therefore with the same faces $H b^{\prime}$ and $O c^{\prime}$ belonging to the companion lattices. The diagrams in fig. 11 show that crystals Nos. 1 and 5 are of the one, and crystals

Nos. 8, 4, and 6 are of the other kind, a distinction indicative of the end of the crystal represented; none of the crystals is double-ended. but, as has been mentioned, Nos. 1 and 2 were at one time opposite ends of a single crystal.

Fre. 11 an-Lattice of crystal No. 6 (p. 298). [The lattice of crystal No. 8 is practically identical with this.]

Fig. 11 c.-Lattice of crystal No. 1 (p. 274).

Fig. 11 b.-Lattice of Crystal No. 4 (p. 289).

Fig. 11 d.-Lattice of crygtal No. 5 (p. 298).

It may fairly be asked-do the differences in the arrangements shown in fig. 11 as characterizing the five crystals really exist, or may they not be due to errors of observation? We have admitted that the determination of the origin of measurements as the intersection of zones is necessarily liable to error when the reflections used for the purpose
are neither very bright nor very distinct, and further that the faces belonging to lattices II and III, especially the latter, often afford faint and nebulous reflections, the concordance between the observed and the computed values of the co-ordinate angles being, as may be seen from the tables above, far: from exact. Were it not for actual tests of the zonal characters made on the three-circle goniometer-one of the great advantages of this type of goniometer-we should have hesitated to believe in the reality of the differences in the lattice arrangements, or even have overlooked them altogether. In the case of crystal No. 6, which was the first one to be measured on the three-circle goniometer, the zomality with respect to the pole (101) between faces belonging to different lattices is so close that any slight divergence might readily be attributed to the small departures from the theoretical positions which are common in the faces of all crystals. In the case of crystal No. 5 , which was the next one measured on that instrument, on the contrary, while there was almost perfect zonality with respect to the pole (001), there was none with respect to (101), as in the previous instance. No further light was thrown on the problem until crystal No. 1 was investigated, when it was clear that in this case there was no zonality with respect to either of the poles mentioned, or, indeed, to any other pole in the prism-zone except (100). The want of zonality was not large in the case of the pole (101); but even in this instance it was found impossible to adjust the crystal in such a way that the reflections given by the faces of different lattices crossed the field of the telescope of the goniometer along the horizontal wire on rotation of the crystal about the axis of the first circle. Crystal No. 3 is very similar to crystal No. 6, while the want of zonality in crystal No. 4 is even more marked than in crystal No. 1, but the arrangement is less certain owing to the inferior development of this crystal. It is, of course, precisely to this want of zonality in the cross-zones that the abnormal charactar of the indices given by Baumbauer for the faces observed by him is due (cf. p. 266).

It may be noticed from the gnomonic projection (fig. 10) that the several networks overlap but slightly: Further, a reference to the drawings of the crystals, especially fig. 4, shows that the faces are arranged with respect to one another exactly according to the positions of the poles corresponding to them, and that all the interfacial angles are salient, except possibly the angles between contiguous faces of different individuals of the same twinned crystal, a phenomenon that is in no way connected with the problem under consideration. In the
following table we have tabulated the amount and direction of the shear which defines the transition of one lattice to that adjacent to it, the amount and the azinuthal angle being measured from the pole of monoclinic symmetry and from the plane at right angles to the common edge of the faces in the dome-zone respectively.

Crystal.	Amount.	Azimuth.
No. 1 (fig. 11 e) ...	$7^{\circ} 29$	$5^{\circ} 27^{\prime}$
No. 3 (cf. fig. $11 \begin{aligned} & \text { a }\end{aligned}$..	621	4347
No. 4 (fig. 11 b)	815	8354
No. 5 (fig. 11 d)	711	720
No. 6 (fig. 11 a)	714	4533

The amount of the shear is constant for three of the crystals in spite of considerable variation in the azimuthal angle; it lies sbout a degree $\left.{ }^{(57}{ }^{\prime}\right)$ above or below this menn value in the case of the remaining two crystals, but this deviation may partly at least be explainable by errors of observation. Evidently the azimuthal angle may vary considerably, and to this variation is due the difference in zonal characters of the crystals to which we have drawn attention above.

For a plausible solution of the prollem presented by the morphological characters of sartorite we may look to the changed physical conditions in which the crystals now find themselves. Uudoubtedly they were formed at very much higher than ordinary pressures and temperatures. That many of the crystals are still in a state of strnin is shown by their extreme brittleness; it is by no means uncommon for one spontaneously to break in two with an audible report. In the case of a well-developed crystal such as No. 1 we find five distinct sections running vertically from front to back in the position of the drawing (fig. 4). The central layer has apparently suffered no deformation. In the adjoining sections on either side the vertical lnyers of atoms appear to have successively slipped downwards in such a way that planes which were horizontal became inclined thereto at an angle of $7^{\circ} 18^{\prime}$ (the mean value). On the outside of the crystal, right and left, we find another pair of sections, in which a similar amount of slipping of the vertical layers of atoms has occurred with respect to the positions of the atoms in the adjoining sections. The rigidity of sartorite is therefore relatively weak in certain directions. From the variability of the azimuthal angle of the shear we may argue that slipping of the atoms has taken place parallel to two different planes in relatively varying amounts. Since
there is a cleavage parallel to (100), the simplest explanation is to suppose that slipping of the kind in question has occurred parallel to that plane both in a downward direction, i.e. parallel to the axis of symmetry, and at right angles thereto, the relative amount of slip being probably constant vertically, but variable in the other direction. It will be noticed that the variability in shear is accompanied by a perceptible difference in the constauts defining the constituent lattices of the several crystals. We have, in fact, in sartorite a deformation similar to that long known in the case of crystals showing the so-called optical anomalies ; but in this instance, as also in the case of calaverite, it is so comparatively large as to be measurable on a goniometer.

The extremely strinted character of the prism-zone and the variability from crystal to crystal of the observed angles in this zone is suggestive not only of the oscillatory effect of repeated twinning about (100), which undoubtedly often occurs, but also of some interruption of the homogeneity of the internal structure. In a many-faced zone on a normal crystal we find the whole gamut of simple indices represented, but such is not the case with sartorite, as a reference to the tables of measured angles will show; not only are many simple ratios not found, but, in order to obtain eveu fair approximation with the observed angles, it was necessary to select unusual indices. It is possible that certain of the prism-faces are determined as the intersection with zones connecting faces each of which belongs to a different lattice. Thus the zone $B a H b^{\prime} O c^{\prime}$ intersects the prism-zone in a face which subtends with (100) an angle of $81^{\circ} 28^{\prime}$ calculated on the data for crystal No. 1. A reflection giving an angle of about this amount has not infrequently been observed. A few further points counected with the crystalline development are worth noting. The angle subtended between the poles (101) and (101) is in all cases very nearly a right angle, the following respectively being the values determined for the crystals Nos. 1, 8, 4, 5, and $6:-86^{\circ} 44^{\prime}, 89^{\circ} 29^{\prime}, 86^{\circ} 32^{\prime}, 86^{\circ} 58^{\prime}$, and $87^{\circ} 42^{\prime}$. Other angles of nearly a right angle are met with. For instance, the distance angle of the face $P y^{\prime}$ differs only a few minutes of are from a right angle, the observed value in the case of crystal No. 1 being $89^{\circ} 52^{\prime}$. The distance angles for two other faces approximate to a right angle, although not so closely as in the previous iustance. Thus we bave for $J b^{\prime}$ on crystal No. $189^{\circ} 4^{\prime}, 89^{\circ} 11^{\prime}, 89^{\circ} 15^{\prime}$, crystal No. $489^{\circ} 53^{\prime}$, crystal No. 5 $89^{\circ} 18^{\prime}$, and crystal No. $689^{\circ} 7^{\prime}$: and for $G z^{\prime}$ on crystal No. $188^{\circ} 30^{\prime}$, crystal No. $489^{\circ} 50^{\prime}$, crystal No. $589^{\circ} 35^{\prime}$, and crystal No. $688^{\circ} 86^{\prime}$.

V. Sartorite-a.

The two crystals (B.M. 1917, 390) which were numbered by Trechmann 1 and 2 and formed the principal subject of his memoir were measured on the three-circle goniometer with the view of ascertaining whether any way of bringing them iuto erystallographieal harmony with the ordinary sartorite of vom Rath would suggest itself, bat without success; although the angles in the dome-zones were almost identical with those found for sartorite, the dissimilarity in the case of any other zone can only mean that these two crystals belong to a different, though no doubt closely related, species, which for distinction we have named sartorite-a. Besides the close relation in the dome-zone there is a certain similarity in the azimuthal a gles at (100), as may be seen in the following table, in which we compare the calculated values for sartorite- α with those given in Table IV for crystal No. 1 (p. 278).

The additional facilities provided in the forn of goniometer used enabled us to note a few faces not recorded by Trechmann; the measurements determining then are given below. The calculated values are based on the data recorded by him.

Table XIII. Additional faces of Trechmann's Crystals Tos. 1 and 2 (Surtorite-a).

In addition to these two crystals, a tiny crystal (B.M. 1917, 401) of sartorite, measuring only 1 by 0.5 by 0.2 mm ., was met with on one of Trechmann's specimens and the measurements given in Table XIV were made on it. The forms (140) and (8.12.3), the latter being somewhat doubtful, are new. The crystal showed also faces at the other end, but unfortunately it fell off the wax of the crystal-holder and was lost before that end was measured.

Table XIV. Observed and calculated values of the co-ordinate angles from (100) of Crystal No. 7 (Sartorite-a).

Face.	Refl.	Observed.		Calculated.	
		中	p	¢	ρ
401	g	$0^{\circ} 0^{\prime}$	$14^{\circ} 41^{\prime}$	$0^{\circ} \quad 10$	$15^{\circ} 27^{\prime}$
$20 \overline{1}$	f	"	2984		30) 28
403	b	" "	4226	" "	4317
101	b		5231		5325
708	b	" "	5820	", "	586
901	b	"	654	" ",	647
401	f	" "	1510	" "	1527
803	b	" "	2247	" "	${ }^{23} 9$
201	b	" "	2958		3028
403	f	" "	$43 \quad 5$	"	4317
$10 \overline{1}$	f	" "	5242	" "	53.5
401	b	"	14.25		1527
502	b	" "	$\begin{array}{ll}25 & 17\end{array}$		2439
704	f	"	3411	" $"$	3423
302	b	"	4040	$"$	39181
403	b	$"$	4386	" "	4317
001	b	" "	7756		7748
401	b	"	1581	" "	1527
703	b	" ,	2559	" "	2620
704	g	"	3427	$"$	8428
705	b	6712	4141	66 ${ }_{6}$	4137
$\frac{221}{121}$	b	6712 6788	5032 73 78	6650	50 74 74
241	1	788	7041	7811	7051
041	b		8629		8724
441	b	7815	5024	" ${ }^{\prime}$	$5017 \frac{1}{2}$
241	f	" "	${ }^{66} 20$		6621
041	b	\bigcirc	8719		8724
441	f	7819	5018	" "	${ }^{50} 1717 \frac{1}{4}$
8.12 .8	b	" "		" "	64 70
241	g	" "	7045 8740 18	" "	7051 8724
041 410	b	8893	8740 1830	90	8724 1719
210	b		8155	"	3156
320	g	" "	3944		3944
480	b	" "	4839		485
110	8	" "	51 68 68 17	" "	51.16 68 8
120		" "	6814 78 14	$"$ "	68 88 78 80
820	b		3981	", ",	8944
110	,		5110	" $"$	51.16
120	f	" n	682	" ",	68

Although no attempt to determine the chemical composition of sartorite-a has been possible, it is not a very hazardous conjecture to suppose that in this respect both species, sartorite and sartorite-a, are alike, the relation between them resembling that between calaverite and krennerite. In the case of the latter pair, it will be remembered, the chemical composition is the same, but the crystalline form very different, although certain angles are very similar ; ${ }^{1}$ krennerite is normal in its crystallization, but calaverite shows the same type of arrangement of lattices as we have found in sartorite.

VI. Doubtful Crystals without pyramidal faces.

Since the prism-zone of sartorite-a is little striated and the reflections yielded by it correspond to the positions required for poles with normal simple indices, it is probable that the remaining measured crystals which showed dome-, but not pyramidal, faces are, because of the striated nature of the prism-zone and the uncertainty of the readings afforded by it, sartorite and not sartorite-a. To illustrate the variable nature of the measurements in the prism-zone, we may take two well-formed crystals, 8 and 9 (B.M. 1918, 408 (2), and B.M. 1918, 408 (9)), which are numbered respectively 2 and 9 in Solly's collection, the former (fig. 1, p: 270) measuring about 6 mm . and the latter 15 mm . in length. It will be seen from the table below that whereas the agreement in the dome-zone is close, very few, if any, of the angles in the prism-zone appear to correspond. The angles in every case have been measured from (100) and the calculated angles are based on the data found for ciystal No. 1.

[^12]Table XV. Measurements made on Crystals Nos. 8 and 9.

Crystal No. 8.

Face.	Refl.	Observed.	Calculated.
810	g	$89^{\circ} 24^{\prime}$	$39^{\circ} 85^{\prime}$
210	g	516	517
110	8	68.2	$68 \quad 2 \frac{1}{4}$
180	b	8220	8221
010	b	900	900
210	g	5058	517
110	${ }^{\text {g }}$	6755	68 21
120	b	7853	7836
704	b	2456	2432
101	8	3439	366
302	s	389	8617
307	b	589	$5315 \frac{1}{4}$
101	s	5110	5048
103	${ }^{8}$	5726	5717
509	${ }^{\text {b }}$	7225	71 45
101	s	3640	866
101	s	4815	5048
205	8	8030	8056
201		2148	225
704	f	2447	2482
805	f	2625	2615
403	b	2945	2957
101	f	3730	866
304	b	4214	4220
208	b	4421	4448
307	8	5821	$5315 \frac{1}{2}$
001	b	7441	7428
205	b	8126	8056

Crystal No. 9.

Face.	Refi.	Observed.	Calculated.
810	g	$89^{\circ} 88^{\prime}$	$89^{\circ} 35^{\prime}$
520	f	4415	44 421
210	f	5045)	817
	f	5115	
110	b	6758	68 21
210	b	5118	517
110	g	6759	68 21
509	5	4842	4829
405	b	5830	5910
301	b	1525	1542
509	8	4810	4829
10 I	b	5145	5048
405	b	5910	5910
105	b	6836	$6835 \frac{1}{2}$
702	b	1520	1544
503	f	32.49	3255
705	b	3757	$3835 \frac{1}{2}$
405	f	4041	4057
$10 \overline{1}$	f	5024	5048
18.0.1	b	859	357
601	b	828	819
301	b	165	1542
102	s	4956	50291

The striations ou the face $B b$ (110) of crystal 8 (fig. 1) are parallel respectively to the edges with (001) and (403). The bracketed angles in the column of observed angles correspond to the ends of a nearly continuous band of reflections.

VII. Summary.

As the result of the investigation forming the subject of this paper the following conclusions have been drawn:-

1. The six crystals, the measurements of which are given in complete detail above, belong to the same species (sartorite) as that described by vom Kath and Baumhauer. The faces observed on the ends of the crystals are referable to three distinct and non-congruent lattices, of which one is monoclinic and the other two are triclinic in aymmetry.

The latter two are, however, twinned about the axis of symmetry so that in the case of a fully-developed crystal there are altogether five distinct lattices. The shear by means of which each lattice may be imagined to be transformed into the one adjoining it is constant in amount, but variable in direction. At the same time there is a perceptible difference in the constants defining the constituent lattices of the severul lattices.
2. The two crystals figured and described by C. O. Trechmann, together with a third described in this paper, belong to a distinct, though no doubt closely allied, species, which for convenience we have named sartorite-a.
3. Sartorite and sartorite-a have probably the same chemical composition, and the relation between their morphological characters is parallel to that existing in the case of calaverite and krennerite.

[^0]: 1 C. Lardy, Essai sur la constitution géognostique du St.-Gothard. Denkschriften der allgemeinen Schweizerischen Gesellschaft für die gesammiten Naturwissenschaften, 1833, vol. i, pp. 200-280. See p. 244: 'La dolomie de Binden renferme, en outre du Feldspath adulaire, de l'arsenic sulfure rouge et jaune, du zinc sulfuré jaune en beaux cristaux et une substance métallique d'un gris de plomb qu'on a prétendu être de l'untimoine.'
 ${ }^{2}$ D. F. Wiser, Beiträge zur mineralogischen Kenntniss des Schweitzerlandes. Neues Jahrbuch Min., 1839, pp. 406-415. See p. 414.
 ${ }^{8}$ D. F. Wiser, ibid., p. 557.
 ${ }^{4}$ D. F. Wiser, Neues Jahrbuch Min., 1840, p. 216.
 "Cf. Annalen der Physik u. Chemie, 1885, vol. xciv, p. 335.
 ${ }^{6}$ A. Damour, Notice sur le sulfo-arséniure de plomb du Mont Saint-Gothard. Annales de Chimie et de Physique, 1845, 3rd series, vol. xiv, pp. 879-388. Also see l'Inst. 1845, p. 141 ; Compt. Rend. Acad. Sci. Paris, 1845, vol. xx, p. 421.

 7 W. Sartorius von Waltershausen, Ein Beitrag zur näheren Kenntniss des Dolomits in den Walliser Alpen. Annalen der Physik u. Chemie, 1855, vol. xciv, pp. 115-141. See also Sitzb. Akad. Wien, 1854, vol. xiv, p. 291.

[^1]: ${ }^{1} \sigma \kappa \lambda \eta{ }^{\prime} \dot{\prime}$, hard, $\kappa \lambda{ }^{\prime} \in \iota \nu$, to break. See loc. cit., p. 126, 'seiner ausserordentlichen Sprodigkeit halber." The name is not very happily derived; the first of the Greek words has much the same shades of meaning as the Latin durus, and the obvious meaning of the word scleroclase would be a substance difficult to break, which is just the opposite to what was intended.
 ' Mineralogieal Magazine, 1907, vol. xiv, p. 287.

[^2]: ${ }^{1}$ C. Hensser, Ueber den Dufrenoysit, Binnit und Adular des Binnenthales. Annalen der Physik u. Chemie, 1856, vol. xevii, pp. 115-129.
 ${ }^{3}$ C. Heusser, loc. cit. Cf. also ibid., 1855, vol. xciv, pp. 334-335. 'Binnit, cin Name, der in der Schweiz auch bisher statt Dufrenoysit allgemein gebraucht wurde (-man wusste noch Nichts von zwei verschiedenen Schwefelmetallen, sondern glaubte damit den Dufrenoysit des Hrn. Damour zu bezeichnen-) und der ganz passend an den bisher einzigen Fundort erinnert.'
 ${ }^{3}$ A. L. O. Des Cloizenux, Sur les formes cristallines de la dufrenoysite. Annales des Mines, 1855, 5th series, vol. viii, pp. 389-398.

[^3]: ${ }^{1}$ Cf. G. vom Rath, Annalen der Physik u. Chemie, 1864, vol. exxii, p. 378.
 ${ }^{2}$ R. H. Solly, Mineralogioal Magazine, 1900 , vol. xii, p. 283.
 ${ }^{8}$ As was pointed out above (p. 262) von Waltershausen's hypothetical species had the composition of dufrenoysite ; no doubt some of his material was sartorite.

 4Throughout the present paper the authors use the term 'prism' for the striated zone the edge of which is parallel to the length of the crystal, and the term 'dome' for the, when present, generally broad and well-developed zone running over the end of the crystal. Since, as will be seen below (p. 307), the symmetry is really monoclinic with the plane of symmetry at right angles to the length of the crystals, the terms should, if to accord with the old convention, be interchanged.

[^4]: ${ }^{1}$ For convenience of reference the forms are lettered in accordance with the notation adopted in this paper (p. 274).
 ${ }^{2}$ J. D. Dana, System of Mineralogy, 5th edit., 1868, p. 88.
 ${ }^{3}$ H. Baumhauer, Úber den Skleroklas von Binn, Sitzungsber. k. preuss. Akad. Wiss. Berlin, 1895, pp. 248-252.

[^5]: ${ }^{1}$ R. H. Solly, Sulpharsenites of lead from the Binnenthal. With analyses by H. Jackson. Mineralogical Magazine, 1900, vol. xii, pp. 282-297.
 ${ }^{2}$ R. H. Solly, loc. cit., pp. 286, 287, 289.

[^6]: ${ }^{1}$ C. O. Trechmann, Crystallography of sartorite from Binn. Mineralogical Magazine, 1907, vol. xiv, pp. 212-229. The crystals were presented by Dr. Trechmann to the British Museum in 1917, just before his death ; those numbered by him 1 and 2 are entered under 390, 8 and 4 under 391, 5 and 6 under 392, and 7 under 893 for the year 1917 in the Register of Accessions in the Mineral Department.
 ${ }^{2}$ C. O. 'Trechmann, loc. cit., p. 214. This statement is incorrect. No semirevolution about any axis will bring the poles of the one cryatal into coincidence with those of the other.
 ${ }^{3}$ C. O. Trechmann, loc. cit., p. 226.

[^7]: ${ }^{1}$ L. Desbuissons, La Vallée de Binn (Valais). Lausanne, 1909. For sartorite see pp. 104-106.
 ${ }^{2}$ R. H. Solly, On sartorite. Mineralogical Magazine, 1914, vol. xvii, p. xxxi. Abstract in ' Nature', 1914, vol. xciii, p. 471, 'From a goniometrical examination of 200 crystals it is contended that Dr. Trechmann's crystals, Nos. 1 and 2, belong to a species olosely allied to sartorite and smithite. Many new forms for sartorite were found.'

[^8]: ${ }^{1}$ G. F. Herbert Smith, Mineralogical Magazine, 1899, vol. xii, pp. 175-182. It may be mentioned that in October 1906, when a convenient opportunity offered itself, the second circle was returned to Mesars. Troughton and Simms, and the vernier made adjustable, with the view of obviating the small zero correction previously necessary in the case of the azimuthal angles.

[^9]: ${ }^{1}$ The angles stated to have been observed in the prism-zone were those determined from the cross-zonal relations of the pyramidal faces by means of the third circle of the three-circle goniometer. Wherever possible, three angles were thus measured, of which theoretically only two were necessary; the actual angles taken as data were, however, those considered, having regard to the probable accuracy of the adjustment of the several origins, to accord best with the measured angles. In the case of orystals 8 and 5 , a somewhat similar procedure was adopted for the dome-zone, the datum angle being based on more than one angle.

[^10]: ${ }^{1}$ Loc. cit., p. 226.
 2 Loc. cit., p. 251.

[^11]: ${ }^{3}$ Loc. cit., pp. 214, 225, 226.

[^12]: ${ }^{1}$ See Mineralogicai suagazine, 1902, vol. xiii, p. 142.

