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On the use of the gnomonic projection in the
calculation of crystals.

By G. F. Hereert Smite, M.A., D.Sc., F.G.8.
Asgistant in the Mineral Department of the British Museum.!

[Read January 15, 1918.1

ONSIDERED from the crystallographical point of view the out-
standing feature of the gnomonic projection is the fact that all
great circles on the sphere, and consequently all zones on the crystal,
appear on the diagram as straight lines. In order to secure its full
advantages, it is necessary to take the plane of the paper at right
angles to the axis of a zone, and preferably one of the principal zones
of symmetry on the crystal. In such an arrangement the points on the
diagram corresponding to the poles in the zone mentioned—which for
convenience in reference to the diagram we may term the equatorial
zone—all lie at infinity, and therefore, if the straight lines representing
the zones passing through the principal poles of symmetry in the
equatorial zone are drawn, the diagram takes the form of a network
consisting of parallelograms (fig. 1), which in particular cases become
rectangles, or even squares. Except in the monoclinic system when the
pole of symmetry lies in the equatorial zone, and always in the triclinic
system, the pole of the projection O coincidds with a node of the
network.

The linear distance separating the nodes lying on any one straight
line on the diagram are very simply related to the indices of the
corresponding faces. In fig. 1, for instance, we have a series of parallel
straight lines, P,P,P,, Q,Q,Q, R,B,R,, representing zones passing
through a pole 4 lying in the equatorial zone. The straight line Opgr
is drawn through the pole of projection at right angles to the series
intersecting them successively as shown. Suppose the angular distances

1 Published by permission of the Trustees of the British Museum.
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of the poles corresponding to P,P,P, measured from the pole 4 are
1, Py py Tespectively, and the azimuthal angle of the zome measured
from the equatorial zone is ¢, then, if @ be the radius of the sphere
of projection, we have Op = a cot ¢, pP, = a cot p, . cosec ¢, and
similarly for P, and P,, whence it follows that

PP, pP,—pP, _ cotp,—cotp,
PP, pP,—pP, cotp,—~cotp,’
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F1e. 1.—Gnomonie¢ projection. Fre. 2.—Zone in gnomonic projection.

which is equal to the ordinary aunharmonic ratio subsisting between
the indices of the corresponding faces. Suppose now that P, is (010),
P, (110) (fig. 2), then (210) is just twice as far from (010) as (110) is,
and (810) three times, and so on. Similarly, to find the point corre-
sponding to (120), we bisect the unit (010) : (110), and that corresponding
to (130), we take a third of the distance, aud so on. _

In the modern meithod of measuring crystals the position of a pole is
determined by means of hi-angular co-ordinates—generally its distance
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measured from a fixed pole called the origin, and its azimuth measured
from & fixed plane passing through the latter. To make the fullest use
of the zonal properties of crystals, we must take as origin a pole corre-
sponding to a face or at least a possible face on the crystal, and preferably
one of symmetry. If the origin lies in the equatorial plane and we
prepare a gnomonic projection in the manner described above, we shall
in the general case have a diagram similar to the one shown in fig. 1.
Suppose 4 be the origin, then the linear co-ordinates of P, on the diagram
are given by Op = a cot ¢; pP, = a cot p, . cosec ¢, The radius of
the sphere of projection @ shonld be taken as 10 cm., or shnilar simple
unit.

The first of the co-ordinates given above, which depends on the
azimuth only, is readily found, becanse the unit distance pq and the
linear co-ordinate of one of the points p, ¢, » are two of the factors
which are either taken direct from the observations or easily calculated
from them, using a table of natural cotangents. When we know the
co-ordinate of such a point as p we at once deduce that of any other by
multiplying or dividing the unit distance by & simple number or a simple
ratio. Any large error is easily guarded agsinst if we measure the
distances on the diagram. A reference to the table of cotangents gives
us at once the corresponding angle.

The calculation of the angular distances presents greater difficulty,
especially in the general case. If the pole of projection O corresponds
to a possible face on the crystal it coincides with one of the nodes
of the network, and many of the difficulties disappear; the unit distance,
for instance P P, is either given directly by, or readily caloulated
from, the observations made in the zone passing through O and 4.
In the case of a triclinic crystal it might be necessary to calculate the
co-ordinates of C' (fig. 8 a), one of the principal poles. If the poles are
determined as the intersection of zones'—a convenient way of working
up a crystal for which a three-circle goniometer is very useful—then in
the spherical triangle 4 BC (fig. 8a) we know the side ¢ and the angles
4 and B, and can compute in the ordinary way the other two sides,
which are the distances of C from A4 and B, and the angle . We
have next to find the unit distance such as P, P,. If we use as data
some of the azimuths at B, we know or can readily compute the length
of Om (fig. 8b), and we have Ce = Cm cosec o, the angle at the point
C in the diagram being equal to the side ¢ in the equatorial zone.
Once we know one of the nodes such as P, in a straight line, and

! See Mineralogical Magazine, 1902, vol. xiii, p. 126.
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the unit distance in the series of straight lines to which the latter
belongs, as before we find the co-ordinatés of the other nodes by
adding or subtracting simple proportion of the unit, and can check
the accuracy of the computation by direct measurements on the diagram.
To obtain the corresponding angular values, we have to multiply the
linear co-ordinates by sin ¢, and look up in the tables the angles
corresponding to the cotangents thus found. If the diagram consists
of rectangles, we have from zone to zone the same linear co-ordinates
in the several straight lines, and have only to multiply by the sine
of a different azimuthal angle. In the general case, however, to pass
from a pole such as P, to another such as @, we shall have to add
or subtract a simple proportion of 2@, which is equal to pg cot c.

4 A

Fre. 8 a. Fra.8 b,
Stereographic and gnomonic projections of a triclinic erystal.

This method was devised to facilitate the lengthy calculations required
in the case of sartorite.!

The only serious objection to the use of the gmomonic projection
in the general discussion of the morphological characters of crystals
is that from its nature it is impossible to show on it the points
representing the faces whose normals are parallel to the plane of
the projection, or in fact to show on a diagram of reasonable size the
points representing faces whose normals are inclined to the perpen-
dicular to the plane of the projection at angles greater than 65°. In
practice the objection is not of much moment, because few faces on
a crystal, with the exception of those in the-equatorial zone, are so

1 This vol., p. 259.
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steeply inclined that their poles lie beyond the limit mentioned, and
the equatorial zone may be depicted in the usual way on the outer
edge of the diagram. Nevertheless, for some purposes it is convenient
to view the whole of the poles representing the faces on a crystal, and
we may accomplish this by projecting on to the faces of a cube touching
the sphere of projection at, if possible, the principal poles of symmetry.
Now, when a straight line representing a zone crosses the boundary
on the diagram separating the two planes of projection, its direction
is in general changed, but the new direction is readily found by graphical
means in the following manner. Suppose 4 and B (fig. 4) are the oles

B.. ... AR

Fie. 4.

of projection on the two planes of projection. Join AB, and let it
meet the boundary at ¢. Let P@ be some zonal line in the first plane,
and let it meet 4B, produced, if necessary, in P. If PQ be inclined
to BA at an angle 6, the poles in which the corresponding zones
intersect the equatorial zone, whose ‘edge is perpendicular to this plane,
subtend at the centre of the sphere the same angle . This equatorial
zone appears on the second plane as a straight line through B parallel
to the boundary between the two planes, and, if R is the second pole,
we have BR = a tan 0, where a is the radins of the sphere. But Be
is @, Therefore the angle BeR is , and ¢R ia parallel to PQ. Now R
is a pole on the zone in question, and hence, if we join @R and prolong
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it, we have on the second plane the straight line representing that zone.
The rule, therefore, for finding the new direction is very simple, Draw
through the point ¢ a straight line parallel to the zonal line in the first
diagram. The point in which it meets the straight line through B at
right angles to Bc represents a pole on the zone. The straight line

A

Aip

Fra. 5.—Composite gnomonic projection on five adjoining faces of a cube.

passing through this point and the point in which the zonal line in
the first plane intersects the common boundary is the zonal line in the
second plane,

Fig. 5 shows a composite gnomonic projection of the kind suggested.
Suppose that the cube face 8 lies in the plane of the paper, and that the
cube faces 1 and 2 are turned about their respective edges with 3 until
they likewise lie in the plane of the paper. Siice faces on the under
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half of the crystal may be represented by the parallel faces on the upper
half, the lower hulves of the diagram drawn on the side faces 1 and 2
need not be included. The latter faces, after rotation into the plane
of the paper, meet only at the respective corners, but the intervening
gaps may conveniently be made use of for continuing the zonal lines
up to the boundaries equally inclined to both squares in the manner
depicted in the figure; this method may bo very useful in the case
of poles lying on one or other cube face near their common edge. Of
course, the poles appearing in the triangles adjoining 2 appear also
on the face 8, and vice versa. The procedure for finding the new
direction of a zonal line crossing the boundary between the cube faces
1 snd 2 is only slightly different from that given above. Let us
consider the zonal line PQQ'R in fig. 5; then kQ = k¢, and cR is
drawn at right angles to PQ. It will be noticed that zonal lines
passing through the pole of projection on one of the cube faces, after
crossing & boundary, traverse the next face in the direction at right
angles to that boundary,




