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C ONSIDERED from the crystallographical point of view the out- 
standing feature of the gnomonic projection is the fact that all 

great circles on the sphere, and consequently all zones on the crystal, 
appear on the diagram as straight lines. In order to secure its full 
advantages, it is necessary to take the plane of the paper at right 
angles to the axis of a zone, and preferably one of the principal zones 
of symmetry on the crystal. In such an arrangement the points on the 
diagram corresponding to the poles in the zone mentioned--which for 
convenience in reference to the diagram we may term the equatorial 
zone--all lie at infinity, and therefore, if the straight lines representing 
the zones passing through the principal poles of symmetry in the 
equatorial zone are drawn, the diagram takes the form of a network 
consisting of parallelograms (fig. 1), which in particular cases become 
rectangles, or even squares. Except in the monoclinic system when the 
pole of symmetry lies in the equatorial zone, and always in the triclinlo 
system, the pole of the projection 0 coincides with a node of the 
network. 

The linear distance ~eparating the nodes lying on any one straight 
line ou the diagram are very simply related to the indices of the 
corresponding faces. In fig. 1, for instance, we have a series of parallel 
straight lines, PIPsPs, QIQ, IQs, .RIRgRs, representing zones passing 
through s pole A lying in the equatorial zone. The straight llne Opqr 
is drawn through the pole of projection at right angles to the series 
intersecting them successively as shown. Suppose the angular distances 

I Published by permission of the Trustees of the British Museum. 
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of the poles corresponding to PIPzP s measured from the pole A are 
Pt, P,, Ps respectively, and the azimuthal angle of the zone measured 
from the equatorial zone is @, then, if a be the radius of the sphere 
of projection, we have Op = a cot ~, PPt = a cot Pt �9 cosec r and 
similarly for P2 and P3, whence it follows that 

P, P3 _ PP.~ - PP, _ cot Ps -- cot.p, 
1', P2 pI)2--pP, cot P2-- cot p~ 

o . ~ z ! p  . . . . .  q - . - -  lr 

he. l.---Gnomonie projection. 
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Fie. 2.--Zone in gnomonic projection. 

which is equal to the ordinary anharmonic ratio subsisting between 
the indices of the corresponding faces. Suppose now that Pj is 4010), 
P, (110) (fig. 2), then (210) is just twice as far from (010) as (110) is, 
and 4310) three times, and so on. Similarly, to find the point corre- 
sponding to 4120~ we bisect the unit 4010) : 4110), and that corresponding 
to (180)~ we take a third of the distance, aud so on. 

In the modern method of measuring crystals the position of a pole is 
determined by means of bi-angular eo-ordinates~gencrally its distance 
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measured from a fixed pole called the origin, and its azimuth measured 
from a fixed plane passing through the latter. To make the fullest use 
of the zonal properties of crystals, we must take as origin a pole corre- 
spending to a face or at least a possible face on the crystal, and preferably 
one of symmetry. I f  the origin lies in the equatol~al plane alid we 
prepare a gnomonic projection in the manner described above, we shall 
in the general case have a diagram similar to the one shown in fig. 1. 
Suppose A be the origin, then the lineal" co-ordinates of P1 on the diagn~m 
are given by 0p  = a cot ~ ;  IvP! ---- a cot Pl �9 cosec ~b. The radius of 
the sphere of projection a should ~ taken as 10 cm., or sitailar simple 
unit. 

The first of tile co-ordinates given above, which depends on the 
azimuth only, is readily found, because the unit distance pcl and the 
linear co-ordlnate of one of the points p, ~, r are two of the factol~s 
which are either taken direct from the observations or easily calculated 
from them, using a table of natural cotangents. When we know the 
co-ordinate of such a point as ~ we at once deduce that of any other by 
multiplying or dividing the unit distance by a simple number or a simple 
ratio. Any large error is easily guarded against if we measure the 
distances ou the diagram. A reference to the table of cotangents gives 
us at once the corresponding angle. 

The calculation of the angular distances presents greater difficulty, 
especially in the general case. I f  the pole of projection 0 corresponds 
to a possible face on the crystal it coincides with one of the nodes 
of the network, and many of the difficulties disappear; the unit distance, 
for instance P1P2, is either given directly by, or readily calculated 
from, the observations made in the zone paesing through 0 and A. 
In  the case of a triclinic crystal it might be necessary to calculate the 
co-ordinates of C (fig. 3 a), one of the principal poles. I f  the pe]es are 
determined as the intersection of zones ~--a convenient way of working 
up a crystal for which a three-clrcle goniometer is very useful--then in 
the spherical triangle A BC (fig. 8 a) we know the side r and the angles 
A and B, and can compute in the ordinary way the other two sides, 
which are the distances of C from A and B, and the angle C. We 
have next to find the unit distance such as P~Pr.  I f  we use as data 
some of the azimuths at B, we know or can readily compute the length 
of C,n (fig. 8 b), and we have Ce -" Cm cosec o, the angle at the point 
C in the diagram being equal to the side r in the equatorial zone. 
Once we know one of the nodes such as P1 in a straight line, and 

See Mineralogical Magazine, 1902p vol. xiii, p. 126. 



F~o. $ a. 

O. F. HERBERT S M I T H  ON 

the unit distance in the series of straight lines to which the latter 
belongs, as before we find the co-ordinates of the other nodes by 
adding or subtracting simple proportio~ of the unit, and can check 
the accuracy of the computation by direct measurements on the diagram. 
To obtain the corresponding angular values, we have to multiply the 
linear co-ordinates by sin ~b, and look up in the tables the angles 
corresponding to the cotangents thus found. I f  the diagram consists 
of rectangles, we have fi~m zone to zone the same linear co-ordinates 
in the several straight lines, and have only to multiply by the sine 
of a different azimuthal angle. In the general case, however, to pass 
from a pole such as P1 to another such as QI we shall have to add 
or subtract a simple proportion of ]r which is equal to/x] cot c. 
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FzG. 3 b. 
Stereographic and gnomonic projections of a triclinie crystal. 

This method was devised to facilitate the lengthy calculations required 
in the case of sartorite, t 

The only serious objection to the use of the gnomouic projection 
in the general discussion of the morphological charactel~ of crystals 
is that from its nature it is impossible to show on it the points 
representing the faces whose normals are parallel to the plane of 
the projection, or in fact to show on a diagram of reasonable elze the 
points representing faces whose normals are inclined to the pel~en- 
dicular to the plane of the projection at angles greater than 65~ In 
practice the objection is not of much moment, because few faces on 
s crystal, with the exception of those in the equatorial zone, are Bo 

i This vol., p. 259. 
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steeply inclined that their poles lie beyond the limit mentioned, and 
the equatorial zone may be depicted in t he  usual way on the outer 
edge of the diagram. Nevertheless, for some purposes it is convenient 
to view the whole of the poles representing the faces on a crystal, and 
we may accomplish this by projecting on to the faces of a cube touching 
the sphere of projection at, if possible, the principal poles of symmetry. 

Now, when a straight line repreasnting a zone crosses the boundary 
on the diagram separating the two planes of projection, its direction 
is in general changed, but the new direction is readily found by graphical 
means in the following manner. Suppose .4 and B (fig. 4) are the oles 
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of projection on the two planes of projection. Join AB, and let it 
meet the boundary at c. Let PQ be some zonal line in the first plane, 
and let it meet A~, produced, if necessary, in P.  I f  PQ be inclined 
to hA at an angle 0, the poles in which the corresponding zones 
intersect the equatorial zone, whose edge is perpendicular to this plane, 
subtend at the centre of the sphere the same angle 0. This equatorial 
zone appears on the second plane as a straight line through B parallel 
to the boundary between the two planes, and, if R is the second pole, 
we have J ~ R -  a tan 0, where a is the radius of the sphere. But ~ 
is a. Therefore the angle J~cR is 0, and cR is parallel to PQ. Now R 
is a pole on the zone in question, and hence, if we join QR and prolong 
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it, we have on the second plane the straight line representing that zone. 
The rule, therefore, for finding the new direction is very simple. Draw 
through the Point r a straight line parallel to the zonal line in the first 
diagram. The Point in which it meets the straight line through B at 
right angles to Bc represents a pole on the zone. The straight line 
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FIG. 5.--Composite gnomonic projection on five adjoining faces of a cube. 

Passing through this point and the point in which the zonal line in 
the first plane intellects the common boundary is the zonal line in the 
second plane. 

Fig. 5 shows a composite gnomonic projection of the kind suggested. 
Suppose that the cube face 8 lies in the plane of the p~per, and that the 
cube faces 1 and 2 are turned about their respective edges with 3 until 
they likewise lie in the plane of the paper. Sir.co faces on the under 
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half of the crystal may be represented by tile parallel faces on the upper 
half, the lower halves of the diagram drawn on the side faces 1 and 2 
need not be included. The latter faces, after rotation into the plane 
of the paper, meet only at the respective corners, but the intervening 
gaps may conveniently be made use of for continuing the zonal lines 
up to the boundaries equally inclined to both squares in the manner 
depicted in the figure; this method may be very useful in the case 
of poles lying on one or other cube face near their common edge. Of 
course, the poles appearing in the triangles adjoining $ appear also 
on the face 8, and v/ce versa. The procedure for finding the new 
direction of a zonal line crossing the boundary between the cube faces 
1 ~nd 2 is only slightly different from that given above. Let us 
consider the zonal line PQQrR in fig. 5;  then kQ-~ ~ ,  and cR is 
drawn at right angles to PQ. I t  will be noticed that zonal lines 
passing through the pole of projection on one of tile cube faces, after 
crossing a boundary, traverse the next face in the direction at right 
Angles to that boundary. 


