A new mineral, isomorphous with trechmannite, from the Binn valley, Switzerland.

By R. H. Soniy, M.A.

[Read March 21, 1911.]

IN August 1904 I discovered in the Lengenbach quarry a specimen on which were three small, round-shaped crystals, about the size of small shot, grown upon a prismatic crystal of sartorite. I measured them, and owing to their small size experienced some difficulty in determining the position of some of the faces with the goniometer at my disposal, which was of the ordinary single-circle pattern. In the course of the short account of the history of the Lengenbach quarry which I gave at the meeting of the Mineralogical Society held on November 13, 1906, I briefly described these crystals, and a note based on information supplied by me was inserted by Desbuissons in his book. ${ }^{1}$ I waited in the hope that further crystals might be discovered in subsequent years so as to permit of a chemical analysis of the mineral, but none was found, and I finally decided to place on record the result of my observations.

Just as in the case of trechmannite these crystals belong to the diplohedral-rhombohedral type of symmetry, and the fandamental angle (111: 100) $=(0001: 0111)$, is $38^{\circ} 18^{\prime}$, as compared with $87^{\circ} 1^{\prime}$ for the correeponding angle of trechmannite. The new crystals possess a cleavage parallel to the basal plane $(111)=(0001)$, and most probably another parallel to the faces of the primitive rhombohedron $(100)=(0111)$; trechmannite exhibits a good cleavage parallel to the latter faces, and one less conspicuous parallel to the basal plane. Just as with trechmannite the faces of the forms $(100)=(0111)$ and $(101)=(1210)$ are well developed. The parallel hemihedrism is well shown in the zones $[010: 001]=[1011: 1101]$ and $[110: 001]=[1120: 1101]$. The

[^0]prism-zone is irregularly developed, many of the faces being absent, and this irregularity coupled with the parallel hemihedrism disguises the nature of the symmetry.

Altogether twenty-one forms were observed as under, of which all except the last six have been found on trechmannite :-c (111) $=(0001)$, $m(211)=(0110), \quad F \pi(321)=(1450), \quad d \pi(725)=(1430), \quad a(101)$ $=(1210), H(122)=(0115) . e(011)=(0112), s(111)=(0221), r(100)$
$=(0111), a \pi(311)=(0441), x \pi(212)=(1481), V \pi(531)=(2681)$, $b \pi(210)=(1231), \quad z \pi(313)=(2641), \quad p \pi(012)=(1213), \quad I \pi(776)$ $=(1.13 .14 .6), P \pi(350)=(5382), K \pi(\mathrm{I} 30)=(3142), L$ (140) $=(4153), M \pi(170)=(7186), N \pi(332)=(1562)$. There were also present some tiny faces, lying outside the measured zones, which were too minute for measurement on the goniometer. The observations are tabulated below.

Trechmannite, which is ecarlet-vermilion in colour and has a streak of the same colour, contains sulphur, arsenic, and silver; the new mineral, on the other hand, is lead-grey in colour, and gives a chocolate-coloured streak, and probnbly therefore contains sulphur, arsenic, and lead. Since the two minerals are isomorphous, the new one may conveniently be termed trechmannite-a.

Measurements from $(110)=(1120)$ in the zone with $(110)=(1102):-$

Measurements from $(110)=(1120)$ in the zone with $(001)=(1101):-$

Form.

$(381)=(2461)$
$(221)=(1811)$
$(776)=(1.18 .14 .0$
$(\mathrm{T} 11)=(0251)$
$(\overline{112})=(\overline{1322})$
$(001)=(1101)$
$(1 \overline{1} 1)=(2021)$
$(2 \geqslant 1)=(3141)$
$(\overline{1} 0)=(\overline{1} 120)$
$(\overline{12})=(3 \overline{122})$
$(\overline{1} 1 \overline{\mathrm{I}})=(20 \overline{1})$
$(382)=(5162)$
$(22 \overline{1})=(314 \overline{1})$
$(33 \overline{1})=(42 \overline{1} \overline{1}$;

Calculated
Values.
$17^{\circ} 15 \frac{1^{\prime}}{} \cdot 17^{\circ} .57^{\prime}$
$24592456,25^{\circ} 8^{\prime}$
$3887 \quad 8840$
4259 42 53, $4254,42^{\circ} 55^{\prime}, 42^{\circ} 56^{\prime}, 42^{\prime} 57^{\prime}, 48^{\circ} 5^{\prime}$
$6117 \quad 61$ 12, 6136
$90 \quad 0 \quad 8952,900,900$
$\begin{array}{lll}137 & 1 & 18736\end{array}$
$\begin{array}{lll}155 & 1 & 154 \\ 59\end{array}$
$180 \quad 0 \quad 180 \quad 0$
$29843 \quad 298$ 16, 29816
$317 \quad 1 \quad 316 \quad 56,8174,817 \quad 8$
$\begin{array}{llll}328 & 9 & 328 & 12\end{array}$
$\begin{array}{llll}335 & 1 & 335 & 59\end{array}$
$34244 \frac{1}{2} 342$ 12, 344 อ 6

Measurements from $(110)=(1120)$ in the zone with $(111)=(2501)$:-

Form.

```
(13i)}=(4041
(02\overline{1})=(3\overline{1}\1)
(11\overline{1})=(2201)
```

Calculated Values. $34^{\circ} 21^{\prime} \quad 34^{\circ} 8^{\prime}, 34^{\circ} 9^{\prime}$ $5349 \quad 53$ 35, 5335 $90 \quad 0 \quad 8948$

Measurements from (110) $=(1120)$ in the prism-zone:-

Form.

\begin{tabular}{|c|}
\hline \multirow{9}{*}{$=$
$=$

$=$

$=$

$=$}

\hline

\hline
\end{tabular}

Calculated
Values. $21^{\circ} 47^{\prime} \quad 22^{\circ} 33^{\prime}$
$\begin{array}{llll}30 & 0 & 31 & 9\end{array}$
$\begin{array}{llllll}60 & 0 & 59 & 57 & 60^{\circ} & 3\end{array}$
$8147 \quad 8147$
$8748 \quad 8754$
$\begin{array}{lllll}120 & 0 & 120 & 5,12055\end{array}$
$180 \quad 0 \quad 17952$
$240 \quad 0 \quad 240 \quad 56$
$300 \quad 0 \quad 300 \quad 1$
.Trasured Angles.
Measured Angles.
$30^{\circ} 3$

Measurements from $(110) \mp(1120)$ in the zone with $(111)=(0001):-$

Form.

```
(351) = (4483)
(131) = (2248)
(201) = (II23)
(3\1) = (2248)
```

Calculated Values. $28^{\prime} 45^{\prime} \quad 28^{\circ} 4^{\prime}$
$4739 \quad 4658$
$11480 \quad 11455$ $13221 \quad 13253$

Measured Angles.

Measurements from (121) $=(1010)$ in the zone with $(111)=(0001)$:-

Form.
$(010)=(10 \mathrm{~T} 1)$
$(111)=(0001)$
$(101)=(\overline{1012})$

Calculated
Valuea.
$51^{\circ} 42^{\prime} \quad 51^{\circ} 29^{\prime}, \quad 51^{\circ} 55^{\prime}$
$\begin{array}{lllll}90 & 0 & 89 & 87, & 90 \\ 1\end{array}$
1113211132,11182

Measured Angles.

[^0]: ${ }^{1}$ L. Desbuissons, 'La Vallée de Binn (Valais),' Lausanne, 1909, p. 66: '5' Cristaux gris de plomb rhomboódriques. $111: 100=38^{\circ} 18^{\prime}$. Très petits et très modifiés.'

