THE MINERALOGICAL MAGAZINE

AND

JOURNAL OF
 THE MINERALOGICAL SOCIETY

No. 146. September, 1934. Vol. XXIII.

> The form relations of the lead oxychlorides, laurionite, paralaurionite, and fiedlerite.

By Charles Palache, ${ }^{1}$
Professor of Mineralogy, Harvard University, Cambridge, Massachusetts.
[Read June 7, 1934.]

THE published data on these three minerals, first found in the Laurion lead slags, is well summarized in Hintze (Handb. Min., 1915, vol. 1, pp. 2632-2641). In studying the original papers for the purpose of recalculating the elements of each, LaForge was impressed with their close crystallographic relationship in certain respects and with the curious complexity of the form series of fiedlerite, which seemed to call for further observations. Accordingly, crystals of all three minerals from Laurion were studied on the goniometer, specimens loaned by the U.S. National Museum furnishing a welcome supplement to those found in the Harvard Mineralogical Museum. In the following pages the results of these studies will first be presented in brief form. Following this, the conclusion arrived at as to the most appropriate positions of the three minerals to bring out their mutual relationships will be stated.

[^0]Fig. 1 shows the relations of the angles given in the angle-tables :

$$
A=(h k l): a(100) ; B=(h k l): b(010): C=(h k l): c(001)
$$

$\phi \rho$: co-ordinate angles in normal position.
$\phi^{\prime \prime} \rho^{\prime \prime}$: ", ", second inversion.
In the orthorhombic system $c(001)$ lies at the pole and $\rho=C$; in both the orthorhombic and mono-

Fre. 1. Angular relations in the monoclinic system. clinic systems $\rho^{\prime \prime}=B$.

Laurionite- $\mathrm{PbCl}_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$, orthorhombic.

LaForge computed the elements of laurionite from the measurements of Koechlin (1887), vom Rath (1887), Smith (1899), de Schulten (1897), Cesàro (1904), and Russell (1928), and obtained the values in the first line of table 1. Palache and Peacock measured ten crystals of laurionite on the two-circle goniometer and from the observations made on sixty faces of five forms (table 2) calculated the elements in the second line. Combining this new set of values (weighted as one) with those resulting from older measurements (weighted as four), the final values were obtained. These elements, transformed to the new position described below, were made the basis of the new table of calculated angles (table 3).

Table 1. Laurionite. Elements.

| | | $a: b: c$. | $p_{o^{.}}$ | q_{0} |
| :--- | :--- | :---: | :---: | :---: | :---: |
| LaForge (computed) | \ldots | $0.7331: 1: 0.8304$ | 1.1327 | 0.8304 |
| Palache \& Peacock | \ldots | $0.7354: 1: 0.8302$ | 1.1288 | 0.8302 |
| Weighted mean | \ldots | $0.7336: 1: 0.8304$ | 1.1320 | 0.8304 |

Table 2. Laurionite. Two-circle measurements on ten crystals. (Position and symbols of Koechlin.)

LaForge, calculated

Form.	Number of faces. crystals.		Palache, measured		from earlier observations		Calculated from new elements		
			$\phi^{\prime \prime}$ 。	$\rho^{\prime \prime}$.	$\phi^{\prime \prime}$.	$p^{\prime \prime}$.	$\phi^{\prime \prime}$.		-
$m(k)(110)$	21	8	$53^{\circ} \mathbf{4 5}^{\prime}$	$90^{\circ} 0^{\prime}$	$53^{\circ} 45 \frac{1}{\frac{1}{2}}$	$90^{\circ} 0^{\prime}$	$53^{\circ} 44 \frac{1}{2}{ }^{\prime}$	90	
$n \quad$ (120)	15	6	3418	"	34 171	"	$3416 \frac{1}{2}$,
d (012)	8	6	$0 \quad 0$	2240	0 0	2233	00	22	33
q (122)	9	4	3421	$45 \quad 6$	34 171 ${ }^{1}$	459	$3416 \frac{1}{2}$	45	$8 \frac{1}{2}$
r (132)	9	3	24 271	5344	2427	53 501	24.26	53	50

Table 3. Laurionite. Angle-table.

The dominant habit of laurionite crystals is tabular parallel to a pinacoid taken by most observers as (010) and elongated in the direction of the vertical axis. Ktenas (1910) was the first to suggest a different orientation in which the dominant pinacoid is taken as (100) and the direction of elongation as the b-axis. This orientation is adopted in the present paper, and the following description is in terms of that position. The crystals are of three habits:
(1) Thin rectangular tables with dominant macropinacoid a, the edges of the tables truncated by narrow faces of the prism d and the macrodome k (fig. 2). Rectangular striations on a are due to oscillatory combination with p or some vicinal form near it (fig. 3).
(2) Thicker tabular crystals with the pinacoids a, c (narrow or missing), the macrodomes k and n, the prism d, and one or more of the pyramids o, q, r, s, t forming a diagonal striated zone (figs. 4 and 5). The form u was also found on a crystal of this type and the new form $e(310)$, but these are not figured.
(3) Tabular or lath-shaped crystals with a, c, and k, the end spearshaped, due to the development of p without the prism or with the point of the spear truncated by d (figs. 5 and 6). The form here indicated as $p(812)$ is really a group of vicinal forms with large and brilliant faces which vary in position through a range of several degrees both in ϕ and ρ. They have been recorded by several observers and have been assigned symbols such as (812), (922), and (511) in our
notation. A large number of observations are shown in fig. 8 plotted in gnomonic projection. The plot shows that the symbol (812) expresses the simple rational position to which most of the observa-

Fig. 2.

Fig. 3.

Fig. 4.

Crystals of laurionite.
tions were nearest. All considerations point, however, to vicinal development. Table 4 correlates the observations of various authors on laurionite.

Table 4. Laurionite. Forms and symbols according to various authors.

The cleavage of laurionite has been variously described. Vom Rath stated that it was parallel to $b(010)$, which in our position is (001), with which Dàna (System, 1892, p. 171) agrees. Cesàro gives

Frg. 5.

Fra. 6.

Fig. 7.

Crystals of laurionite.
the cleavage parallel to his $m(110)$. This we found to be correct, and in the new orientation this becomes the macrodome $k(101)$. Although the pinacoid $a(100)$ has a pearly lustre which suggests cleavage in that direction, none could be discovered. Cesaro states that the plates are easily bent about the direction of the brachyaxis. Of this character, so prominent in paralaurionite, we were unable to find a trace. It seems likely that Cesàro mistook a crystal of paralaurionite for laurionite, which is very easily done.

The optical properties of laurionite were re-determined by Mr. Berman, whose observations are in essential agreement with those of Smith. Berman found by immersion in melts:

$$
\alpha 2.08, \gamma 2.16(\pm 0.01)
$$

In the new orientation: $a=c$,

Fig. 8. Laurionite. Gnomonic projection of vicinal forms observed on seven crystals : interpreted as constituting the form p (812). normal to cleavage cracks; $\beta=a$, normal to dominant pinacoid; $\gamma=b$, parallel to elongation. 2 V is large and probably negative. The plane of the optic axes is parallel to $a(100)$. Consequently, no optical figure can be obtained on the
ordinary crystals which are tabular parallel to a, in contrast to paralaurionite whose plates exhibit a characteristic optical figure.

$$
\text { Paralaurionite- }-\mathrm{PbCl}_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2} \text {, monoclinic. }
$$

Paralaurionite was first described from Laurion by G. F. H. Smith (1899) and simultaneously, under the name of rafaelite from Chile, by Arzruni (1899). The position and elements of Smith are satisfactory for this monoclinic mineral. LaForge has recalculated elements from all published angles of the observers named and has combined the results with those obtained from the measurements of five crystals from Laurion made in the present study. The resulting elements, practically the same as those derived by Smith, are the basis for computation of the angle-table shown below.

> Table 5. Paralaurionite. Angle-table.
> $a: b: c=2.7042: 1: 1.8090, \beta=62^{\circ} 47 \frac{1^{\prime}}{}$.
> $p_{\circ}=c / a=0.6687, \quad q_{\mathrm{o}}=c \sin \beta=1.6088$.

Form.$c(001)$	ϕ.	ρ.	C.		B.	A.	
	$90^{\circ} 0^{\prime}$	$27^{\circ} 12 \frac{1}{2}^{\prime}$			$90^{\circ} 0^{\prime}$		472 ${ }^{\prime}$
$b(010)$	0 0	$90 \quad 0$	90	0	0 0	90	0
$a(100)$	90 0	"	62	47 $\frac{1}{2}$	90	0	0
$m(110)$	$2234 \frac{1}{2}$	"	79	531	$2234 \frac{1}{2}$	67	251
$n(310)$	$5116 \frac{1}{2}$	"	69	6	51 161	38	431
$e(201)$	90 0	63 382	36	$25 \frac{1}{2}$	$90 \quad 0$	26	$21 \frac{1}{2}$
$f(401)$,	74	46	561	,,	15	51
$g(\overline{2} 03)$	$-90 \quad 0$	0 442	26	281	"	99	151 ${ }^{\frac{1}{2}}$
$d(\overline{1} 01)$,	13 221	40	35	"	103	221
$h(\overline{2} 01)$	",	4442	71	55	"	134	42
$k(\overline{4} 01)$,,	68	95	$21 \frac{1}{2}$	"	158	9
$i(\overline{5} 01)$	"	72 521	100	5	"	162	$52 \frac{1}{2}$
$l(\overline{6} 01)$	"	75 571	103	10	"	165	$57 \frac{1}{2}$
$j(\overline{8} 01)$	"	7942	106	542	"	169	42
p (111)	$3459{ }^{1}$	6538	52	43	41 4312	58	$30 \frac{1}{2}$
$y(411)$	6249	75 491	52	152	63 421	30	242
$t(511)$	67 31	77 501	53	12	6736	25	482

The paralaurionite crystals measured in our study yielded several new forms which have been included in table 5 . The forms and average observed angles are shown in table 6 (p. 579).
The close agreement between measured and calculated angles is noteworthy. The crystals of this mineral are of an unusual degree of perfection. The habit of paralaurionite is markedly tabular, the broad plates being either rectangular, as in fig. 9, or wedge-shaped owing to the development of pyramid faces at the corners of the plates, as in figs. 10 and 11.

Twinning on (100) is wellnigh universal, the symmetrical contacttwins having full orthorhombic pseudosymmetry. Re-entrant angles between the two members were rarely observed. The twin crystals are generally simple contact-twins as shown in figs. $9,10,11$, and in fig. 12, a more complex crystal. Figs. 13 and 14 illustrate beautifully symmetrical interpenetration-twins on the same law; they recall the type of twin crystal of albite from Roc Tourné in Savoy, figured

Symmetrical contact-twins of paralaurionite.
Table 6. Paralaurionite. Measured and calculated angles.

Form.	Number of faces.	Measured		Calculated	
		ϕ.	ρ.	ϕ.	ρ.
$c(001)$	7	$90^{\circ} 0^{\prime}$	$27^{\circ} 15 \frac{1}{1^{\prime}}$	$90^{\circ} 0^{\prime}$	$27^{\circ} 12 \frac{1}{1}^{\prime}$
$a(100)$	10	"	$90 \quad 0$	"	$90 \quad 0$
$m(110)$	10	2234	,	$2234 \frac{1}{2}$	"
$h(\overline{2} 01)$	5	$-90 \quad 0$	4437	-90 0	4442
$k(\overline{4} 01)$	3	,"	6812	,	689
*i(501)	1	,"	7235	"	$7252 \frac{1}{2}$
$l(\overline{6} 01)$	2	,	$75 \mathbf{5 6}$	"	$75 \quad 57 \frac{1}{2}$
*j($\overline{8} 01$)	1	"	7920	"	7942
p (111)	10	$35 \quad 1$	6540	$3459 \frac{1}{2}$	6538
${ }^{*}(511)$	4	67 0	7750	67 31	77 501

by G. Rose (Dana, System, 1892, p. 329, figs. 10, 11). The resemblance extends to the grooves on the pinacoid which are in these crystals bounded by faces of steep orthodomes. The cleavage is parallel to the base (001), and in the twins the two cleavages simulate closely the macrodome cleavage of laurionite save that the inclination of the cleavage to the vertical is less, $27^{\circ} 15 \frac{1}{2}^{\prime}$ in paralaurionite, $36^{\circ} 15 \frac{1}{2}^{\prime}$ in laurionite. The broad pinacoidal plates of paralaurionite bend so easily parallel to the b-axis that it is difficult to detach crystals from the matrix without distortion. The plates
break easily into slender ribbons parallel to b, the edges showing a fibrous silky cleavage surface much like the ($\overline{1} 11$) cleavage of gypsum.

The optical properties of paralaurionite were studied by Mr.Berman

Fig. 12.

Fig. 13.

Fig. 14. Twinned crystals of paralaurionite.

Fra. 15. Optical orientation of twinned paralaurionite.
with the aid of the Fedorov stage (fig. 15). On (100) the twin plates show a highly diagnostic abnormal interference-figure due to twinning. The optical axial plane is parallel to (010) and the extinction is 25° to the twinplane (100), in the obtuse angle $\beta ; \beta=b$, $\gamma: c=+25^{\circ}$. Biaxial negative, 2 V medium to large, $r<v$ strong.

$$
a 2.05, \beta 2.15, \gamma 2.20(\pm 0.01)
$$

The indices were obtained in melt immersions; the heat required for immersion produced a slight alteration in the substance revealed by a change of colour from white to light yellow. That this change is not a large one is indicated by the close agreement of the value found for β with that (2-146) measured by Smith without heating. There was also slight alteration in birefraction and axial angle after immersion in the melt.

Fiedlerite- $2 \mathrm{PbCl}_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$, monoclinic.
Fiedlerite was first described from Laurion by vom Rath (1887) and again by Smith (1899). The complex indices of the forms reported by both observers invited a re-examination of the crystallography. This was made possible by the study of crystals found on a specimen from the Roebling collection, kindly loaned by the United States National Museum. Fiedlerite is generally tabular

Fig. 16.

Fig. 17.

Fig. 18.

Crystals of fiedlerite.
parallel to (100) and elongated in the direction of the symmetryaxis. Five crystals were measured, their habit making it convenient to mount them on the two-circle goniometer with the orthodome zone as a prism-zone and the (missing) clinopinacoid as pole (second inversion). The measured and calculated angles are therefore given in that position (table 7).

Most of the crystals are twins on (100) as shown in figs. 16 and 17. One simple crystal, however, while its faces were not of the best, yielded new forms which permitted the choice of a new unit pyramid and a satisfactory simplification of the form series. This crystal, a left-hand end, is shown in fig. 18, projected on (010).

From the data of table 7 elements were calculated as follows:

$$
\begin{aligned}
& a: b: c=1.0121: 1: 0.8996, \beta=77^{\circ} 39^{\prime} \\
& \text { Second inversion } p_{\circ}^{\prime \prime}=1.1386, q_{\circ}^{\prime \prime}=1.0121 \\
& \text { Normal position } p_{\circ}=0.8888, \quad q_{\circ}=0.8783
\end{aligned}
$$

A graphical comparison of these elements with those employed by vom Rath and Smith showed that with our choice of units the symbols are considerably simplified. It proved that the equivalence of the elements could be expressed by the following transformations:

$$
\begin{aligned}
\frac{5}{4} a(\text { vom Rath }) & =\frac{5}{4} a(\text { Smith })=a(\text { Palache }) \\
c \quad & =\frac{5}{4} c \quad " \quad=c
\end{aligned}
$$

Number
of faces.

* New forms.

Transforming the elements of each observer accordingly and averaging the values with our own with equal weights we obtain :

vom Rath	$a=0.8192$	${ }_{4}^{\frac{5}{4}} a=1.0240$	-	$c=0.8915$	$\beta=77^{\circ} 20^{\prime}$
Smith	$a=0.8299$	$\frac{5}{4} a=1.0372$	$c=0.7253$	${ }_{4}^{5} c=0.9066$	$\beta=7731$
Palache	... -	$a=1.0121$	-	$c=0.8996$	$\beta=7739$
	Mean (adopted)	$a=1.0244$		$c=0.8992$	$\beta=7730$
		$p_{\text {o }}=0.8778$		$q_{\mathrm{o}}=0.8779$	

Table 8 is calculated from these mean elements.
Table 8. Fiedlerite. Angle-table.

$$
\begin{aligned}
& a: b: c=1.0244: 1: 0.8992, \beta=77^{\circ} 30^{\prime} \\
& p_{\mathrm{o}}=c / a=0.8778, q_{\mathrm{o}}=c \sin \beta=0.8779 .
\end{aligned}
$$

Form.	ϕ.	ρ.	$\phi^{\prime \prime}$.	$\rho^{\prime \prime}=B$.	c.	A.
$c(001)$	$90^{\circ} 0^{\prime}$	$12^{\circ} 30^{\prime}$	$77^{\circ} 30^{\prime}$	$90^{\circ} 0^{\prime}$	$0^{\circ} 0^{\prime}$	$77^{\circ} 30^{\prime}$
$a(100)$	"	90 0	0 0	"	7730	0 0
$l(140)$	142	,,	"	142	$8659 \frac{1}{2}$	7558
$w(110)$	450	"	"	450	8112	450
$m(540)$	5120	"	"	5120	8016	3840
$n(320)$	$5618 \frac{1}{2}$	"	"	56 182	79 371	$3341 \frac{1}{2}$
$g(015)$	$50 \quad 57 \frac{1}{2}$	1556	7730	$80 \quad 2 \frac{1}{2}$	9 571	$7741 \frac{1}{2}$
$f(011)$	1351	4248	,"	4843	4117	$8038 \frac{1}{2}$
$d(101)$	90	48 151	41 441	$90 \quad 0$	$3545 \frac{1}{2}$	$4144 \frac{1}{2}$
$x(\overline{1} 01)$	-90 0	347	-5553	,,	4637	-55 53
$y(\overline{2} 01)$		5737	-32 23	"	707	-32 23
r (111)	51 152	5510	41 441	$59 \quad 5 \frac{1}{2}$	45 471	$50 \quad 11 \frac{1}{2}$
$e(144)$	$2624 \frac{1}{2}$	457	65 561	$5036 \frac{1}{2}$	4047	7138
$t(122)$	$3644 \frac{1}{2}$	$48 \quad 17 \frac{1}{2}$	56 71	$5315 \frac{1}{2}$	4144	63 281
$o(544)$	5615	$58 \quad 17 \frac{1}{2}$	3637	$6147 \frac{1}{2}$	4813	4459
$u(322)$	60 122	$61 \quad 4 \frac{1}{2}$	32 291	6413	$5027 \frac{1}{2}$	40 341
$s(342)$	41 72	67 161		45 591	59 221	5239
$p(\overline{\mathbf{1}} 22)$	-14 13	4251	-77 10	48 451	4711	-8023
$v(\overline{3} 44)$	-2643	$4511 \frac{1}{2}$	-65 39	$5040 \frac{1}{2}$	5123	-71 24

For the symbols of forms in the three positions the following transformations serve:

vom Rath.	Smith.	Palache.
$(h k l)$	$(5 h .5 k .4 l)$	$(5 h .4 k .4 l)$
$(4 h .4 k .5 l)$	$(h k l)$	$(5 h .4 h .5 l)$
$(4 h .5 k .5 l)$	$(4 h .5 k .4 l)$	$(h k l)$

The crystals of fiedlerite are poor and the angles for any given form show considerable variation as all observers have remarked. With the adoption of the new elements on which the angle-table is based the form series is clarified as may be seen from table 9 in which the forms and symbols of each observer are compared.

The reason for changing vom Rath's symbols is that the new symbols are required by the transformation determined by his unit o (111). In all cases, but that of u, calculation showed that the angles corresponding to the symbols obtained by transformation are as close to the measured angles as those given by vom Rath's symbols. We have no explanation for the lack of agreement in the case of u.

Table 9.	Fiedlerite.	Correlation of forms.	
	vom Rath.	Smith.	Palache.
...	... (001)	(001)	(001)
...	... (100)	(100)	(100)
\cdots	... -	(150)*	(140) \ddagger
	... -	-	(110)
\ldots	... (110)	(110)	(540)
...	... (650)	(650)	(320)
\ldots	... -	-	(015)
\ldots	... -	-	(011)
...	-	(101)	(101)
	$(\overline{4} 05) \dagger$	($\overline{1} 01$)	(1̄01)
	(805) \dagger	(201)	(201)
...	... -	-	(111)
...	(155) \dagger	(154)	(144)
\cdots	...	-	(122)
	... (111)	(554)	(544) \ddagger
	(655) \dagger	(654)	(322) \ddagger
\cdots	... -	-	(342)
...	... ($\overline{2} 55$) \dagger	($\overline{2} 54$)	(1̄22)
...	... -	-	(344)

* Observed by Lacroix (1908).
\dagger These symbols differ from those given by vom Rath as follows:

$x(\overline{4} 05)$	vom Rath	(506)	$u(655)$	vom Rath (544)	
$y(\overline{8} 05)$,"	(503)	$p(\overline{2} 55)$	"	(5.12.12)
$e(155)$	(5.24.24)				
\ddagger Not observed by Palache.					

Fiedterite has a good cleavage parallel to (100) which is also the twin-plane and the dominant crystal-form. Twins are the rule in our crystals. The optical properties were determined by Mr. Berman, using the universal stage and immersion melts (fig. 19).
$\gamma=b, \beta: c=-34^{\circ} \pm 1^{\circ}$ in the acute angle β
$\alpha 1 \cdot 98, \beta 2 \cdot 04, \gamma 2 \cdot 10(\pm 0 \cdot 01)$
Biaxial negative. 2 V large. $\quad r<v$ perceptible.

Due to twinning most of the crystals fail to show complete extinction on (100).

Gnomonic projections of the three minerals under consideration are shown drawn to the same scale in figs. 20, 21, and 22. Fiedlerite, which has a composition different from the other two, is distinct from them in elements and forms series. Laurionite, orthorhombic, and paralaurionite, monoclinic, show many points of similarity, the homeomorphism being better expressed by the new choice of position and elements of laurionite. Both are tabular parallel to $a(100)$. The cleavage, k (101) in laurionite and $c(001)$ in paralaurionite, is similar in attitude. The prism-zone of each exhibits the same

Fig.19. Opticalorientation of twinned fiedlerite.

Fig. 20.

Fig. 21.

Fig. 22.

Gnomonic projections of the confirmed forms of laurionite (fig. 20), paralaurionite (fig. 21), and fiedlerite (fig. 22).
forms, both are chiefly developed in two zones, domal and pyramidal; and the spacing of the poles in both the P and Q directions is nearly the same.

Laurionite $\quad \ldots p_{\circ}=0.7336, q_{\circ}=1.7668$.
Paralaurionite $\ldots p_{\circ}{ }^{\prime}=0.7520, q_{\circ}{ }^{\prime}=1.8090$.
The resemblance of the projections is increased greatly when we have a twin of paralaurionite on $a(100)$ with perfect orthorhombic pseudosymmetry. Nevertheless the contention of Ktenas that the two minerals are identical, the orthorhombic symmetry of laurionite being due to ' molecular' twinning of monoclinic individuals of paralaurionite, finds no support in observation. No evidence of twinning is visible in laurionite; the cleavage and optical properties are entirely distinct; and the position angles of the forms are consistently, although slightly different. The dimorphism of laurionite and paralaurionite is clearly established.

Summary.-New observations on laurionite, paralaurionite, and fiedlerite are presented. The separate identity of each of the first two minerals is confirmed and their homeomorphism is exhibited by a reorientation of laurionite. The form series of fiedlerite has been simplified by the choice of a new unit form. New forms are described on all three minerals. The crystallography of all three species is summarized in new angle-tables and their habits are illustrated by a series of drawings.

References.

A. Arzruni und K. Thaddeeff, 1899. Neue Minerale aus Chile. ... Zeits. Kryst. Min., vol. 31, pp. 229, 233.
G. Cesìro, 1904. Contribution à l'étude de quelques minéraux. Bull. Acad. Roy. Belgique, p. 1198.
R. Koechlin, 1887. Ueber Phosgenit und ein muthmasslich neues Mineral vom Laurion. Ann. Naturhist. Hofmus. Wien, vol. 2, p. 185.
C. A. Ktenas, 1910. Sur les relations cristallographiques entre la laurionite et la paralaurionite. Bull. Soc. Franȩ. Min., vol. 33, p. 173.
A. Lacroix and A. de Schulten, 1908. Note sur des minéraux plombifères des scories athéniennes du Laurion. Bull. Soc. Franç. Min., vol. 31, p. 79.
G. vom Rath, 1887. Sitz.-ber. Niederrhein. Gesell. Natur. Bonn, pp. 102, 149.
A. Russell, 1928. On laurionite and associated minerals from Cornwall. Min. Mag., vol. 21, p. 221.
A. de Schulten, 1897. Sur la production artificielle de la laurionite. . . . Bull. Soc. Franç. Min., vol. 20, p. 186.
G. F. H. Smith, 1899. On some lead minerals from Laurium, namely, laurionite, phosgenite, fiedlerite, and (new species) paralaurionite. Min. Mag., vol. 12, p. 102.
_- Note on the identity of paralaurionite and rafaelite. Ibid., p. 183.

[^0]: ${ }^{1}$ The author desires to acknowledge his indebtedness to his co-workers in this study. Dr. L. LaForge made the preliminary studies and calculated some of the tables. Dr. M. A. Peacock made some of the measurements and all of the drawings. Mr. H. Berman determined the optical properties of all three of the minerals.

