
625 

Space lattices. 
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T HE concept of a space lattice is fundamentalin crystallography. A 
space lattice, or more simply a lattice, is an indefinitely extended 

regular array of points, in which the environment of each point is exactly 
the same. This implies that  if the lattice is (1) translated parallel to 
itself, or (2) inverted about one of its points, or (3) rotated it will remain 
precisely the same as it was before such transformations. Such projec= 
tive transformations as translation, inversion, or rotation are called 
symmetry operations. A lattice therefore may be said to be invariant 
in respect to certain specific symmetry operations. I t  is then said to 
possess certain symmetry elements. The fundamental symmetry opera- 
tions are translations, inversions, and rotations. There is no symmetry 
element corresponding to translation, which is implicit in all lattices. 
Centres of symmetry correspond to inversion and axes of symmetry 
correspond to specific rotations. Points of mirror symmetry and lines 
of mirror symmetry may also be considered as fundamental elements of 
symmetry, but  the plane of mirror symmetry is a composite element of 
symmetry, being the resultant of two-fold rotation followed by inver- 
sion. 

There are in all twenty types of lattices, as defined by their symmetry 
element: one one-dimensional, five two-dimensional , and fourteen three- 
dimensional. All these lattices have an application in the study of 
material objects: one-dimensional lattice to the chain structural units of 
crystals, two-dimensional lattices to the sheet structural units of crystals, 
and three-dimensional lattices to the crystals themselves. 

The number of lattices in a space of n-dimensions (S~,) is equal to the 
sum of squares of the first n members, i.e. 

Sn-  l~§247 = ~ /c a. 
k=l  

This expression may be transformed into a polynomia ! of the third 
degree :S .  1 3 1 2 1 ~n +~n  §  the solution of which for n -- 1, 2, 3, is 
respectively 1, 5, 14. 
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This equation can only be verified for the spaces of one, two, and 
three dimensions, as space lattices in dimensions higher than three have 
not been as yet constructed. 

Lattices are specified by their parameters. The one-dimensional lat- 
tice, or linear row of equally-spaced points, is specified by one par  a- 
meter--by a vector length (a) of primitive translation ; the two-dimen- 
sional lattice or net is specified by the two vector lengths (a, b) and the 
angle between them (y); the three-dimensional lattice is specified by 
three vector lengths (a, b, c) and three angles between them (a, 8, ~). 
The vector lengths are also referred to as 'axes '  and the angles as 
' directio~ angles'. All parameters may vary in respect of their relative 
equality: all unequal; two equal; all three equal. In addition, angle 
parameters may assume fixed values of 90 ° and 60 ° and also stand in 
certain relation to linear parameters. 

I t  is very important to remember that the choice of axes of reference 
for each array of points is arbitrary and that  each array of points may 
have a number of alternative systems of parameters. On the' other 
hand, the symmetry elements of a lattice are absolutely fixed. Thus 
lattices may be specified by their parameters, but lattice types are de- 
fined by their elements of symmetry. Thus in a triclinic lattice the six 
parameters may exhibit innumerable variations, including that  of two 
clino-angles and one right angle, but a diclinic lattice does not exist 
alongside the triclinie and monoclinie lattices. 

Each lattice type, or more simply lattice, is characterized by an 
assemblage of symmetry elements. All lattices are formed by transla- 
tions, and all are characterized by inversion, so that the diagnostic 
symmetry operations are the rotation and mirror reflections. The diag- 
nostic elements of symmetry are therefore the points or axes of sym- 
metry (As, A3, A~, As), and the points, lines, and planes of mirror 
symmetry (P). The degree of symmetry of a lattice is expressed by the 
symmetry number. As originally defined by W. H. Bragg, i ' symmetry 
number'  is the number of assymetrical molecules in the unit cell of a 
molecular compound. In the case of lattices this number corresponds 
to the number of points geherated by the operation of inversion, rota- 
tion, and reflection on one original point. For three-dimensional lattices 
the symmetry number is equal to the number of the general faces (hk/) 
or (hk~l) of the holosymmetrieal class of the corresponding system. 

Lattices are also characterized, but not uniquely, by their degree of 

i W. H. Bragg, The significance of crystal structure. Journ. Chem. Soc. London, 
1922, vol. 121, pp. 2766-2787. [M.A. 2-328.] 
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freedom, which can be defined as the n u m b e r  of independent  variable 
parameters  which are needed to specify a lattice. The degree of freedom 
is equal to, or less than,  the number  of parameters.  The degree of free- 
dom is reduced when one or more parameters  is given a fixed value such 
as equal i ty  to another  parameter  or, in the  case of angle parameters ,  
equal i ty  to 90 ~ or 60 ~ . 

Figures relat ive to the two-dimensional  and  to the three-dimensional  
latt ices are given in  tables I and  I I .  Symbols  used for lattices are:  L 
(line) one-dimensional  lat t ice ; N (net) two-dimensional  lattices, bear ing 
qualifying subscripts (No, No, &e.) ; P primit ive  three-dimensional  lat-  
tices, bearing qualifying subscripts ;  also C (c-face-centred); F (face- 
centred) ; and  I (body-centred).  

A one-dimensional  lattice, or a line lattice, is a row of equally-spaced 
point.s along a s traight  line of an  indefinite length  (geometrical lattices, 
in dis t inct ion to real crystals, have no b o u n d a r y  points). I t  has one 
degree of f r eedom-- the  l inear parameter  (a). Besides t rans la t ion  and  
inversion i t  is characterized by  points  of mirror  symmet ry  (lattice points  
and  half-way points).  I n  vi r tue  of its one-dimensional i ty  i t  cannot  
possess either axes or planes of symmetry .  

Two-dimensional  lattices, plane-lat t ices or net  lattices, can be postu-  
lated to be made of equally-spaced ar ray  of line lattices. I n  all, there are 
five two-dimensional  lattices, part iculars  of which are given in  table I.  

TABLE I.  T w o - d i m e n s i o n a l  l a t t i ces .  

Points of 
rotation 
(An) and 

Degree lines of Sym- 
Parameters. of mirror merry 

Symbol. i~Iesh. Linear. Angles. freedom, symmetry, number. 
Nr Clino- a b ~, 3 As 2 
2Y o Ortho- a b 90 ~ 2 A2, 2P 4 
N r Rhombo- a a ~, 2 A2, 2/) 4 
N t Tetra- a a 90 ~ 1 A4, A2, 4P 8 
N h Hexa- a a 60 ~ 1 A 6, A 3, A s, 6P 12 

o r  
a b--a~/3 

90 ~ 

The n o m e n c l a t u r e  followed, namely  clino-mesh, ortho-mesh, rhombo-  
mesh, te tra-mesh,  a n d  hexa-mesh, is tha t  proposed b y  W. L. Bond. 1 
Besides t rans la t ion  and  inversion these lattices possess ro ta t ion  points  

1 W. L. Bond, The fourteen space lattice. Univ. Toronto Studies, Geol. Ser., 
1947, no. 51 (for 1946), pp. 9-20. [M.A. 10-149.] 
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and lines of mirror symmetry.  I t  is usual to divide two-dimensional 
lattices into four primitive (No, No, Nt, and Nh) and one compound 
(N~) lattice. In  accordance with this I have arranged the four primit ive 
lattices along the cardinal points of a centred triangle and have placed 
the rhombo-latt ice outside this triangle (fig. 1). As will be seen later, 

~ b,~TICE3 .Nr~ 
. + Nr . N(" "Nr 

Nt ~ ~ l h / N r  ~ / 
. 2 . .  No . ' ' 4 "  . 

N I"" ":'-'3 6" "2 

No "='.4./ 2 

FIG. 1. FIG. 2. 

Two-dimensional lattices. 

such a pa t te rn  has a direct relation to the pat tern  of the three-dimen- 
sional lattices. The double-triangle pa t te rn  of the two-dimensional 
lattices provides an arrangement in which there is a regular transit ion 
of the values of the degree of freedom and symmetry  number of the 
lattices as shown graphically in fig. 2. 

Other groupings arc possible. For  example, the rhombo-latt ice may  
be called primit ive and the ortho-lattiee compound, as being derived by  
the combination of two N~ lattices. In  the same way, the hexa-latt ice 
may be considered to be formed from the combination of two No lattices. 
Such a principle of equivalence is a normal case among lattices and is 
constantly to be found among three-dimensional lattices. The choice of 
co-ordinate axes is also arbi t rary.  Thus the hexa-latt ice can be referred 
to three axes of equal length at  120 ~ to each other, or to two axes of 
equal length at  60 + to each other, or to two axes a and b -- ar a t  90 ~ 
to each other. Rhombo-lat t ice may also be referred to two axes of equal 
length, or two axes at  r ight angles to each other (ortho-axes). 

Three-dimensional lattices arc usually divided into seven primitive 
and seven compound lattices, the total  number being fourteen. The 
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principle of equivalence discussed above wi th  regard  to two-dimensional  

lat t ices m a y  be appl ied to some os these latt ices,  such, for example,  to 

the  hexagonal  la t t ice  or to the  rhombohedra l  latt ice.  The same applies 

to the  f reedom of choice of axes of reference. Par t iculars  for the  seven 

pr imi t ive  lat t ices are  given in table  I I .  Compound lat t ices have  the  

TABLE II. Primitive three-dimensional lattices. 

Axes of rotation 
Degree (An) and planes Sym- 

Parameters. of of mirror sym- merry 
Symbol. Lattice. Linear. Angles. freedom, merry (P). number. 

Ptr Triclinic a b c a /J ~ 6 - -  2 
Pm Mono- a b c 90 ~ fl 90 + 4 A~,P 4 

clinic 
Pc Ortho- a b c 90 ~ 90 ~ 90 ~ 3 3A~, 3P 8 

rhombie 
Pte Tetra- a a c 90 ~ 90 ~ 90 ~ 2 A 4,4A~,5P 16 

tonal 
Pc Cubic a a a 90 ~ 90 ~ 90 ~ 1 3A~, 4As, 6A~, 9P 48 
Pr Rhombo- a a a a a cr 2 A s,3A2,3P 12 

hedral 
Ph Hexa- a (a~/3) c 90 ~ 90 ~ 90 + 2 A 6, 6A~, 7P 24 

gonal or 
a a c 90 ~ 90 ~ 60 + 

same symmet ry  and degree of f reedom as their  mother  p r imi t ive  lattices. 

The hexagonal  latt ice,  for the  sake of  uniformity,  is referred to a three-  

axial  system. This, however ,  does not  replace the  four-axial  sys tem used 

in crystal  morphology,  bu t  is in t roduced so t h a t  the  hexagonal  lat t ice 

can be compared  and cont ras ted  with  the  two neighbouring l a t t i c e s - -  

rhombohedra l  and or thorhombie .  

The seven pr imi t ive  three-dimensional  lat t ices are ar ranged in a 

classificatory pa t t e rn  which has the  form of a centred hexagon (fig. 3). 

The seven compound  latt ices are a r ranged in places adjoining thei r  

mother  lat t ices (fig. 4). The re la t ion of this pa t t e rn  to the  pa t te rns  of  the  

degrees of f reedom and symmet ry  numbers  of the  seven pr imi t ive  lat t ices 

is shown by means  of a special d iagram (fig. 5). I t  will be seen f rom this 

d iagram t h a t  an  a t t e m p t  has been made  to arrange lat t ices in such a 

way  that ,  wi th  some exceptions,  the  t rans i t ion  f rom one lat t ice into 

another  is effected with  a m i n i m u m  change in the degree of f reedom 

and s y m m e t r y  number .  According to their  symmet ry  the  seven lat t ices 

can be d iv ided into three  classes, which in the  d iagram form three dis- 

t inc t  zones: high symmet ry  (Pc, Ph) ; med ium s y m m e t r y  (Pie, Pr) ; and  

low s y m m e t r y  (Pc, Pro, Ptr). 
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In  the hexagonal pat tern the hexagonal circuit (Ptr, Pro, Po, Pie, Pc, 
P~) must be distinguished from the vertical diagonal traverse, in which 
all the four lattices can be referred to the same system of orthorhombie 

Ic Pc 

Ire 

Ph 
Ptr 

Co * 

Io Fo 
FIG. 3. Three-dimensional lattices. 

axes, and can all be postulated to be modifications of the primitive 
orthorhombic lattice, in the following way: 

Co = 2Po; Ph - Co (a~ b = aV3);  P,. = 3P~,  

with co-ordinate points (0, 0, 0), (0, 1/3, --1/3), (0, --1/3, 1/3); and 
c ~ a~/3/2 (at c = a~3/2, Pr becomes P,~). 
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The triangular pattern of the two-dimensional lattices and the hexa- 
gonal pattern of the three-dimensional lattices provide two simple 
schemes of classification of these lattices on the basis of axes of refer- 

I 

Fin. 4. Three-dimensional  
lattices. 

L/~T T ICEs 
P, 

I I 

,e2 4 4 

0o/w S'~ 
FIG. 5. Three-dimensional  lattices. 

l~IO. 6. Point  relationship of 1-, 2-, and 3-dimensional lattices. 

ence, degree of freedom, and symmetry number. But the net lattices 
are generated by the line lattices, and the three-dimensional lattices are 
generated by the net lattices. This means that  all the twenty lattices 
can be brought together into one scheme of classification. This can be 
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done by means of three horizontal parallel planes (fig. 6). The upper 
plane contains one point only, corresponding to one line lattice. The 
middle plane contains five points corresponding to the net lattices 
arranged in a double triangle pattern. The lower plane eontains the 
fourteen three-dimensional lattices arranged about the hexagonal pat- 
tern. Remembering that Ptr is generated by three No; Po by three 
No; Pc by three Nt; Pr by three N,; and Ph by one Nh and two No; 
we ean place the generating net. lattices above the generated three- 
dimensional lattices, Nr above Ptr ; No above Po ; Nt above Pc ; N, above 
P~ ; and Nh above Ph. This diagram is a graphical representation of the 
twenty lattices in their genetic relationships and in a general way it 
summarizes our knowledge of all lattices. 

The whole scheme can be easily remembered ; point, triangle, hexagon 
corresponding respectively to one-, two-, three-dimensions. I t  is a har- 
monious and interconnected system of lattices. 

In conclusion, I would like to thank Dr. K. M. Jack and Mr. F. t~. 
Bonsall for their friendly advice, and Mr. J. Lee for his help with the 
illustrations. 


