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Sumrr~zry. Existing descriptions of the biaxial ray surface are, in general, mis- 
leading. A more accurate description, stressing the simplicity of the surface, is pro- 
posed and this is supported by numerous sections drawn through or near the 
singular points. 

T O the mathematician,  the equation to the ray  surface (Fresnel, 
1827, p. 138) 

aaxa(b~--r2)(c~--r 2) +b~y2(a ~-r~)(c ~ - r  2) -~c~z2(a 2-r~)(b 2 - r  2) = 0 (1) 

indicates one continuous surface whose configuration is indicated 
exact ly  and in every detail  by  the equation (e.g. Bell, 1926, pp. 267-269). 
To those who are less mathematical ly  competent,  including the ordinary 
s tudent  of crystal optics, such an equation has lit t le meaning: students 
in this category must  rely upon published sections and writ ten descrip- 
tions for their  impressions of the surface. 

Most published sections of the biaxial  ray  surface tend to give one 
the impression tha t  i t  consists of two surfaces, one tota l ly  enclosed 
within the other, in contact  with each other a t  four points;  published 
verbal descriptions do litt le to erase this misconception. 

The methods used by  different authors to describe the ray  surface fall 
in general into three categories (purely analytical  unil lustrated t reat-  
ments are not  considered): 

Analytical or non-analytical treatment in three coordinate planes, usually with 
illustration of these three planes; e.g. Fletcher (1892, pp. 32-35) and Born (1933, 
pp. 234-238). 

Analytical or non-analytical treatment of three principal planes supported by 
three-dimensional representation showing all three planes, but with virtually no 
verbal description; e.g. Eskola (1946, pp. 109-110), Groth (1905, pp. 91-96; 1910, 
pp. 129-135), Joos (1934, pp, 357-.358), Liebiseh (1896, pp. 357-358), Miers (1929, 
pp. 159-160), Nye (1957, p. 240), Rogers and Kerr (1942, pp. 99-101), Schulz 
(1928, p. 472), Tunell (1933, pp. 335-336), and Wahlstrom (1949, pp. 124-128). In 
addition, Joos (1934, fig. 3, plate 1) provides a photograph of a well-made solid 
model of the ray surface depicting, in one octant, the inner sheet and, in the adjacent 
octant, the outer sheet. The continuity of both sheets through the singular point is 
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suggested by several continuous lines on the  surface, all of  them passing through the  
singular  point ;  bu t  a t tent ion is no t  drawn to this  most  impor tan t  feature of  the  
surface. 

Third,  usual ly as in the  second method  plus a verbal description of the  con- 
figuration of the  surface in three dimensions;  for example:  

Basset  (1892, p. 120): " . . .  the  wave s u r f a c e . . ,  consists of  an outer  and an inner 
sheet,  which intersect  a t  four point~ in the  plane xz." 

Courant  and  Hilbert  (1937, p. 459): " D a n a c h  ist  die Strahlenfl~che eine Fl~che 
derselben Ar t  wie die N o r m a l e n f l ~ c h e . . . "  and "Die  Strahlenfl~che zerfltllt genau 
wie die Normalenfl~che in zwei M~mtel . . . .  " Of the  "Normalenf l~che"  they  say  
(ibid., p. 458): "De r  Rnl~ere Mantel  . . . besttzt in den vier Doppelpunkten vier 
nach innen gerichtete konische Ecken, w~hrend d o r t d e r  innere Mantel nach aul~en 
gerichtete konlsche Ecken ha t . "  

])rude (1902, p. 327): "T h i s  surface, like the  hernial  surface, consists of  two sheets. 
These two surfaces are very similar to each other  . . . .  " Of the  normal  surface he says  
(ibid., p. 318): " I n  the  x z - p l a n e . . ,  the  two sheets of  the  normal  surface intersect.  
I t  can be shown tha t  this occurs for no other directio~ of the wave.normal." 

Houstoun  (1921, p. 208) : "  The wave s u r f a c e . . ,  consists of  two sheets which meet  
in four p o i n t s . . ,  and nowhere else." 

Jenkins  and  Whi te  (1953, p. 517): " T h e  outer  surface of the  complete wave 
surfaces touches the  inner at  only four points, where it  forms 'dimples ' ."  In  addition, 
in their  sections, the  inner and outer  portions of the  surface are divorced by the  
former being drawn in heavy lines. 

Johannsen  (1914, p. 97): " I t  is a warped s u r f a c e . . ,  symmetr ical  along the three 
principal axes and having four depressions lying in a single plane." 

Pockeis (1906, p. 44): "Die  Strahlenfl~che der zweiachsigen Kristalle is t  eine 
Fl~che 4. Ordnung und  4. Klasse. Sie besteht  aus  zwei Schalen, welche nur  in den 
vier au f  den Strahlenachsen liegenden Imnischen Doppelpunkten zusammenh~ngen ."  

Tu t ton  (1922, p. 866): " T h e  wave-surface . . . is a surface of the  fourth degree 
composed of two shells, one within the  other. These two shells touch each other  a t  
four points, which are a t  the  bot tom of depressions in the  outer  shell and on the  
summi t s  of  protuberances on the  inner one . . . .  Except  for these depressions and 
protuberances where actual  contact  occurs the  two she/Is resemble ellipsoids o f  
general tr iaxial  form. Indeed i t  is common to regard the  shells as two separate 
wave.surfaces. ~ 

Winchell  (1931, p. 1521: " . . .  the  complete wave-fronts are continuous surfaces 
intersecting in only four p o i n t s . . . " .  

�9 WSlfling (1902, p. 364): "Die  Wellenfl~che besteht  aus zwei Miinteln, welche in 
den Kno tenpunk ten  aneinanderstoBen." (This paper  contains a comprehensive 
bibliography of earlier l i terature on the  subject.) 

Wood (1934, p. 377): " T h e  wave - su r f ace . . ,  consists of  two s h e e t s . . . "  and (ibid., 
p. 379)"  By a little exercise of  the  imagination it  is easy to see the  general form of  the  
inner and outer  sheets . . . .  The outer  sheet  has  the  general form of  an  ellipsoid with 
four depressions or  pits similar to the  pit  found on an apple around the  point  where 
the  s tem is inserti~d, only much  shallower. At  these four points  the  two sheets 
come in contact  . . . .  " 

Givens and Discher (1954, p. 381) carry the  description a stage beyond tha t  
reached in the  foregoing by providing three new sections through and  near  the  
singular points. In  addition they  s tate  (ibid., p. 380): " . . .  considerable point  may  
be made of the  fact t ha t  the  outer  and  inner sheets of  the  wave surface meet  at  only 
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four points"; and (ibid., p. 381), "I t  is not easy to imagine two sheets which can 
'intersect' so cleanly . . . and yet have only point intersections, i.e., no curves of 
intersection. The two sheets do not intersect in the sense that two cylindrical sur- 
faces often do, but like two wide angle cones placed one above the other and having 
their apexes in contact." 

Z 90" I 
S t 

,--X tao" I 

y" Fig. la. Fig. I.b. a-~o" 
1~o. la. Conventional three-dimensional representation of one oetant of the ray 

surface. 
Fie. lb. The Limagon of Pascal (r = 1--2 cos 0). 

o" 

Most of the descript'lons in the last group have one feature in common: 
they tend to stress the double nature of the surface and so give the 

non-mathematician the impression that  two surfaces are involved--two 
surfaces that  at the four singular points intersect, touch, zusammen- 
h~ngen, aneinanderstoSen, come in contact, meet, or even "intersect" ,  
according to the individual authors involved. 

Rossi (1957, p. 293) gives a less misleading impression: " . . .  the wave 
front does not consist of two separate surfaces, but  of a unique continu- 
ous surface folding upon itself and intersectingin a complicated manner" .  

However, in none of the foregoing papers or texts is at tention drawn 
to the essential simplicity of this extraordinary surface--a property that  
is to be expected of this, a very special as opposed to a general, case of 
the fourth degree surface: 

It  is one continuous surface t]mt intersects itself at the four singular 
points; the points of intersection divide the surface into two unequal 
portions of which one is contained wholly within the other. 

(The Lima~on of Pascal (fig. lb), r = b -acosO where b < a (Walker, 
1950, p. 29), is perhaps the simplest two-dimensional analogue). 
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This simple relationship is easy to visualize if one considers the move- 
ment of a free point upon the surface. I t  is obvious from the standard 
3-plane representation of the surface (fig. la) that within the three 
coordinate planes the moving point can neither pass from the outer to 
the inner portion of the surface nor vice versa without passing through 
the singular point S. 

Consider a possible path y l Z l S x ~ 2 S x l y  1 (fig. la) for the moving 
point. Part of this path lies on the outer, part on the inner portion of 
the surface ; but the important point is that, in passing from the outer 
to the inner portion or vice versa through S, the moving point suffers no 
abrupt change of direction at S: there is a ~mooth natural passage 
through S along an elliptical curve (z2Sx 1 is actually circular). Moreover, 
this smoothly effected passage through S from one portion of the ray 
surface to the other is not a peculiarity of the X Z  plane: the transition 
is equally smoothly effected, still through S of course, regardless of the 
direction of transit through S and provided that there is no discontinuous 
change of direction at S. 

To illustrate the complete continuity of the outer and inner portions 
of the ray surface through S a series of partial central sections (figs. 2-5) 
have been constructed through S in several directions (see accompanying 
stereogram, fig. 6). The sections have been constructed using Fletcher's 
(1892, p. 48) equations for the velocities, r 1 and r2, of rays in a direction 
defined by its inclinations, a 1 and 0-3, to the biradials OS 1 and OS 2 
respectively: 

1 1 2o"1--o'2 1 . 20"1--a2 
rl ~ -- ~ cos 2 q- ~ sl~ ~ (2) 

1 _ 1 cos2  a 1-]- ag._~ 1 s in2 a 1 ~ a s (3)  
a 2 2 c 2 2 

Obviously the absolute values of a, b, and c are not critical in this con- 
nexion and, merely to simplify computation, the values 2, 1.5, and 1 
respectively have been used throughout. Hence, from the equation 
(Fletcher, 1892, p. 35) 

tan �89  ~ - -  c~/(a2--b2) (4) 
a~(b2--c 2) 

the angle SsS 2 between the two biradials, measured across Z (fig. 1), 
is 61 ~ 13'. 

The values of a 1 and a 2 for any chosen ray direction OR within any 
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FIGs. 2 to 5. Partial central sections of the ray surface through the biradial, OS 1 
(direction represented by vertical line in each case). A 1 B 1 C z . . . and A z B 2 C2 �9 �9 �9 
are extremities of faster and slower rays respectively traversing directions OA, OB, 

OC . . . .  (see fig. 6). 
FIG. 6. Partial stereogram, centre Sl, showing orientation of sections in figs. 2-5 

and 7-12. Section C'D' is symmetrically equivalent to section CD, &c. 
Fins. 7 to 12. Three-dimensional representations of that part of the ray surface 
within 20 ~ of the biradial, OS 1 (direction represented by vertical line in each case), 
prepared by orthographic projection of figs. 2, 3, 4, 5, and their symmetrical 
equivalents on a series of planes parallel to the biradial, OS 1. The projection lines, 
i.e. lines of sight, are all perpendicular to the biradial, OSz, and lie mid-way between 
the following ray directions (see fig. 6): fig. 7, OB and OD'; fig. 8, OD' and OF'; 
fig. 9, OF" and OG; fig. 10, OG and OE; fig. 11, OE and OC; fig. 12, OC and OA. 

plane of  section PQ m a y  then  be calculated f rom the  following equat ions  

(se e s tereograms,  figs. 13 and 14): 

cos a I = cos r cos SxT=t= sin r sin S1T Cos O (5) 

cos % = cos r cos S 2 T i  s i n e  sin 32 T cos 0 (6) 



THE RAY SURFACE 563 

where r = TR = incl inat ion of rays Or 1 and  Or 3 to intersect ion of optic 

axial  p lane  wi th  plane of section, PQ ; 0 = angle S3TR between plane of 

 2o/\ 
F.~. 13. Fiq. 14_=._.: 

FIGs. 13, 14. P a r t i a l  s te reograms,  centre  $1, showing  de r iva t i on  of  equa t ions  (5) 
and  (6). 

section PQ and optic axial plane ; S 1 $2 = 61 ~ 13' ; S~ T = 61 ~ 13' iS1T.  
For  special cases, equat ions (5) and  (6) may  be modified as follows: 

W h e n  0 = 90~ 

coso 1 = e o s r  T ;  

cos% = cosr  T. 

When  S 1 T = 0 ~ : 

cos0-1 = cos~, so 0-1 = r  

cos 0-3 = cos ~b cos S 1 S 2 ~ sin r sin $1 $3 cos 0. 

W h e n 0 = 9 0  ~ a n d s  1 T = 0 ~  

COSO* 1 = COSr SO 0" 1 = r  

COSq$ = COSr COSS 1 S 2. 

When  0 = 0~ 

OOSEr 1 = CO8r SO 0" 1 = r  

cos 0-3 = cos r cos $1 S 2 i  sin r sin S 1 S 3 = cos (S 1 S 3 ~ ~b) 

= COS(S1S2:~0-1) , SO 0" 3 = S1S2-~-0-1. 

I n  addi t ion,  par t ia l  central  sections (figs. 15 and  16) have been con- 
s t ructed perpendicular  to the plane SiS 3 and  crossing i t  5 ~ on either side 
of S 1 (see accompanying  stereogram, fig. 17). These serve to i l lustrate 

t ha t  a point  on the surface, a l though moving  close to a singular point ,  
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FIGS. 15, 16. Partial central sections of the ray surface, crossing the optic axial plane 
(broken vertical line) 5 ~ each side of the biradial, 081 (see fig. 17). 

FIG. 17. Partial stereogram, centre 81, showing orientation of sections in figs. 15 
and 16. 

U, V, _~ i~, 
$2 

FrO. 18. Serial section of ray surface passing twice through and twice near the 
biradial, OS 1 (see fig. 19). 

FIG. 19. Partial stereogram, centre 81, showing orientation of serial section in fig. 18. 

cannot pass from the outer to the inner portion of the surface or vice 
versa without  passing exactly through the singular point. This is further 
i l lustrated by  combining several of the foregoing sections in a serial 
section (fig. 18) passing twice through and twice near the point  ~ql (see 
accompanying stereogram, fig. 19). 

Finally,  the sections in figs. 2 -5  have, by  orthographic projection on 
a series of planes parallel to the biradial,  been combined in a series of 

Fig. 19. 
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d iagrams (figs. 7-12) which show in some detai l  the  complete  cont inui ty  

in three  dimensions of  the  inner  and outer  por t ions  of t he  ray  surface 

th rough  any  singular point.  
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