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Statistical analysis of X-ray data for olivine 

By F. P. AGTERBERG 

Geological Survey of Canada, Ot tawa 

[Taken as read 30 January 1964] 

Summary. A diagram of the relationship between d17 a and % forsterite in olivines 
is presented in fig. 1 of the preceding paper by Jambor and Smith. In this note, 
statistical aspects of Jambor and Smith's data are considered in detail and compared 
to equivalent data by Yoder and Sahama (1957). This analysis leads to the con- 
clusion that the relationship of mol. % :Fo and d174 or d130 can be expressed as a 
straight line for Fo > 30 %. Olivines with Fo < 10 % are not related to this 
straight line. 

J .  L. J A M B O R  and C. H.  Smi th  (this vol., p. 730) have studied the varia-  

t ion of the  dl~ 4 spacing of olivines with their  chemical  composi t ion ; their  

fig. 1 shows tha t  the d17 ~ de te rmina t ive  curve is approx imate ly  a s t ra ight  

line wi th  a possible curva ture  near the  fayal i te  end. The first hypothesis  

to tes t  is whether  the  relat ionship between tool % Fo  and d17 ~ for the 

26 points  is cont inuous and m a y  be represented by a power series in 

d174, and if  one or more higher-order  te rms  of this series are justified. 

Nei ther  of the variables m a y  be considered as independent  for a l inear 

regression analysis. Therefore,  there are two possible linear regression 

equations,  for % Fo  on d174 and for d174 on % Fo  ; they  are, respect ively:  

% Fo = 4446.29--4264"55 d17 4 and % Fo  = 4458.98-4276.89  d17 ~. 

The difference be tween the  equat ions is small and i t  appears t ha t  

regardless of which assumpt ion  is used for fur ther  tests the stat is t ical  

conclusions would be similar. The conclusions based on the use or 

ei ther equat ion  m a y  therefore be a p p f e d  to the  t rue  relat ionship be tween  

d174 and % Fo, which are bo th  liable to a cer ta in  unknown error. The 

following analysis contains  d174 as the  independent  variable.  1 

When mol. per cent. Fo is considered as the independent variable, the estimated 
residual variances for linear, quadratic, and cubic fit are respectively 2.19 • l0 -7, 
1.06X 10 7, and 0.97• l0 -7, and for linear and quadratic fit for data with Fo > 
30 %:0.88• 10 -7 and 0.92• 10 -7 A 2. When fitting curves to the data with Fo > 
30 %, the estimated residual variance increases with higher-order fits. This is the 
effect of the decrease of the number of degrees of freedom on the approximately 
constant unaccountable sum of squares. 
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The second-order equat ion  is: ~o Fo  = -25295"61+53431 .07  d174 

- 27978.62 d21w. The s tandard  error of the coefficient of the  second-order 

term amounts  to 6034-76 and a t-test shows tha t  the  second-order t e r m  

is significantly different f rom zero. 

The analysis of var iance  presented in table I also demonst ra tes  the  

just if icat ion of a high-order  term. The F- ra t io  of the  es t imated  var iance  

due to the quadrat ic  effect and the unaccountable  var iance  is significant 

a t  the 99 % confidence level of the F-d is t r ibu t ion  for 1 and 22 degrees 

of freedom. The second-order fit reduces the  unaccountable  or residual 

TABLE I. Analysis of variance, range Fo 0 to 100 (~) 
(Cf. Quenouille, 1952, p. 96, table 6.3a) 

~o Fo for d17 4 data ~o Fo for d13 0 da~% 

r Sum of Estimated r Sum of Estimated 
Variation d.f. Squares Variance d.f. Squares Variance 

Linear effect 1 33092-758 33092.758 1 29951.755 29951.755 
Quadratic effect 1 47-376 47.376 1 36.685 ~6.685 
Cubic effect 1 5.272 5.272 1 14-883 14.883 

Overall effect 3 33145.406 - -  3 30003.323 - -  
Unaccountable 22 43.114 1.960 25 50.698 2.028 

Total effect of d 25 33188.520 - -  28 30054.021 - -  

var iance  f rom 3-990 (linear fit) to 2"152. The effect of the th i rd-order  fit 

( reduction to 1.960) is seen to be negligible by  the  F- ra t io  test.  

The analysis of var iance  is based on the  assumpt ion of cont inu i ty  for 

the  relat ionship be tween ~o Fo and d174. More sat isfactory results  are 

obta ined  when discont inui ty  instead of cont inu i ty  is assumed:  the  

residual var iance is fur ther  reduced f rom 2"152 (quadrat ic  fit) or 1.960 

(cubic fit) to 1.386 when the  da ta  wi th  Fo  > 30 % are f i t ted by a s t ra igh t  

line. The analysis of var iance  for the  da ta  wi th  Fo  ~ 30 % is g iven in 

table  I I  ; i t  will be seen tha t  the  effect of the  quadra t ic  fit is negligible. 

I t  is concluded t h a t  if  we assume cont inui ty  a second-order fit for all 

the  da ta  is satisfactory,  or if  we assume discont inui ty  consisting of  

a break in the  fayal i te  side of the  curve  a first-order fit is sat isfactory and 

the  degree of fit is improved  considerably.  1 

By  analysis of var iance  i t  has been shown t h a t  a s t ra ight  line is the  

best  fit for the  da ta  for Fo  > 30 %. Fu r the r  analysis is necessary 

1 Another explanation would be that the residual variance is very large in the 
fayalite portion of the curve. This hypothesis is rejected because the residual 
variance for linear fit to the data with Fo ~ 10 % amounts to 2.736, and the 
F-ratio for this value and the residual variance for 20 points is 1.97, which is less 
than 2.93, the 95 % confidence Revel for the F-distribution with 4 and 18 degrees 
of freedom. 
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because the errors of the variables need consideration, and  because the  
above test  by  analysis of var iance lacks a significance level. Two signi- 
ficance tests will be given to demonst ra te  t ha t  the da ta  for Fo < 30 % 
are no t  related to the straight  line of the first 20 points  for Fo > 30 %. 

Both  variables d174 and  % Fo are subject  to error. An est imate of the 
error of d174 can be made from the differences in 20, which has been 
measured by  two different observers (Jambor  and  Delabio) in m = 18 
out  of 26 cases (see the preceding paper,  table II) .  The variance of 20 is 

TABLE II. Analysis of variance, range Fo 30 to 100 ~o 

~o Fo for dl~ 4 data ~o Fo for d130 data 

r Sum of Estimat"ed ~ Sum of Estimated 
Variation d.f. Squares Variance d.f. Squares Variance 

Linear effect 1 7847.224 7847.224 1 6105.646 6105.646 
Quadratic effect 1 0.005 0.005 1 0.082 0.082 
Overall effect 2 7847.229 - -  2 6105.728 - -  
Unaccountable 17 24.940 1.467 19 16.045 0.844 
Total effect of d 19 7872.170 - -  21 6121.773 - -  

by  S~0 __ m~ �89 = 0"002056, where Ai is es t imated 1 the difference 
i--1 

between the two measurements  of 20. I t  follows tha t  $20 ~ 0"0453 ~ = 
7.912.10 -4 radian.  The corresponding s tandard  error in dlv 4 is found by  
applicat ion of the theory of the propagat ion of error (Deming, 1943, 

pp. 37-48) to the equat ion 2 d m sin 0 = 1.93579, giving Ss ~ 0.1875. S2t ~ 
= 1.48.10 4. The d m da ta  used for the determinat ive  curve are, for 
the larger part ,  values for two observations,  so tha t  Sd mus t  be corrected 
by  a factor somewhat  smaller t h a n  1/~/2. The u l t imate  est imate of Sd 
is therefore slightly larger t h a n  1 .10 4 ; this is a m i n i m u m  estimate, since 

other sources of error ma y  be present  above the one detected by  com- 
par ing measurements  by  two observers. A m a x i m u m  est imate is ob- 
ta ined  by  assuming tha t  % Fo is free of error, giving after regression 
analysis  Sd 2.96.10 -a. The t rue s tandard  error is thus  between 1 and  
3 .10  -4. 

If, on the other hand,  d174 is assumed to be free of error, a n l a x i m u m  
est imate of the error in the tool. % Fo data  is obtained,  amount ing  to 
1.18 ~o. In  this case, the true s tandard  error is probably  21--1%. 

For  calculat ing the least square fit of associated points  with bo th  
variables subject  to error, the rat io of the variances of these variables 

1 Each combination of the two values provides an independent estimate of S~e 
equal to {(�89 (�89 - 1); the overall estimate is the average of m of these 
individual values. 
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should be known (Kummell 's equation, see Deming, p. 184). Although, 
in the present case, their order of magnitude is known, the values cannot 
be established with enough precision for further analysis along these 
lines. Fortunately,  the true regression line must lie between the esti- 

mates of regression of ~o Fo on d17 a and regression of d17 ~ on ~ Fo, and 
these equations differ very little, being: 

% Fo = 4144"99--3970"14 d174 and % Fo = 4157.92--3982.76 dlv a. 

TABLE III. Values of dl: a calculated from : a, the regression of ~o Fo on dl: a ; b, the 
regression of dl7 a on ~o Fo ; c, the mean of these regressions. Lt, =c 95 ~o confidence 

limits for % Fo from the mean of the regressions 

4174 
r 

a b c ~o Fo Lt 
1.01885 1.01887 1-01886 100 0.87 
1.02389 1.02389 1.02389 80 0.57 
1.02893 1.02892 1.02892 60 0.72 
1.03397 1.03394 1.03395 40 1.16 

I t  is reasonable to consider the average of these lines as a satisfactory 
estimate 1 of the regression line : 

~o Fo = 4151.46--3976"45 dlV 4. (1) 

Values of dlv 4 calculated from these equahons for selected ~o Fo values 
are given in table I I I .  

The coefficients of these equations may not be rounded off further if 
dlv ~ is to remain accurate to the third decimal place. However, the 
number of digits does not represent their accuracy; the standard error 
of the coefficient of dlv4, b, may be estimated by: 

S b = ~/{ �89 2 } = 53.22, 

where 8b is the difference of the coefficients of the two regressions and 
r is the correlation coefficient of d174 and ~o Fo. The standard error of 
the constant term of equation (1) amounts to 54.55, and the corrected 
value for the residual variance is 1.420 (as against 1.386 for the linear 
regression of % Fo on dlTa, see table III) .  

The 4- 95 % confidence limits for ~o Fo of table I I I  have been calcu- 

lated by the formula Lttrue %~'o = 4 - S . t ~ ( R §  where t is taken 

1 The 'reduced major axis' (Imbrie, 1956), which is simply the geometric mean 
of the two regressions, gives 3976"44-4-50.10 for the coefficient of dl~ 4. 
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from a table of double-sided confidence limits, for n - - 2  degrees of free- 

dora, and R = (d-~/) 2 (d i - ( t )  2. This 1 confidence limit defines a 
i 

band within which we expect to find 95 ~ of the true points, on error- 
laden measurements of which equation (1) was based. 

Two procedures may be applied for testing whether the 6 points at  the 
fayali te  end of the determinative curve are related to equation I or not. 

The average slope of the regression lines for all 26 points is 

b' • s b, - --4270"72• 

Let  us assume tha t  the slope of this line should be the same as tha t  of 
equation (1), the line for the first 20 points only, which has slope b = 
--3976'45; the quotient Ib-b'l/Sb, = 6-221 is a measure of the proba- 
bil i ty of this assumption, a large value suggesting tha t  the difference 
of slopes is real;  at  the 95 ~o and 99 ~o significance levels of Student 's  
t-distribution for 25 degrees of freedom the quotient should be 2"093 
and 2"861 respectively, and we conclude tha t  the slopes b' and b are 
significantly different. 

Again, in fig. h ,  the 95 % confidence belt for testing whether further 
observations are related to the line of equation 1 has been plotted for 
points with Fo < 30 %. This belt  defines a band within which 95 % of 
any new data may be expected to fall: Ltnew = • 2 4 7 2 4 7  
where t and R are as defined above. The six values at  the fayalite end 
of the curve fall below this belt  when they are tested individually, while 
combinations of further observations such as the three values for pure 
fayMite should be tested in relation to a confidence belt  narrower than 
tha t  of fig. h (Quenouille, p. 65). 

For  testing whether the first 20 points individually are related to the 
fitted straight line, a third confidence limit must be used: 

Ltobs = 4-S . t~ / (1 - -R- -1 /n ) ;  

this l imit defines the band within which 95 % of the observations used 
in deriving the equation should lie. I t  is plot ted in fig. h ,  and it will 
be seen tha t  one point (5 % of 20) falls just  outside the belt  ; this exact 
agreement is, of course, fortuitous. 

I t  is concluded tha t  statistieM analysis suggests that  there is a linear 
fit for the data  with Fo > 30 %, but  in the fayalite portion a break 
probably occurs tha t  cannot be described more precisely for lack of 
observations in the 7 to 30 % Fo par t  of the curve. 

i For this and the other confidence limits defined below see Quenouille, 1952, 
pp. 64-66. 
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FIG. I. 95 % con~deneebelts for d174 and dlao olivine data. Formulae for calculating 
the belts a r e  given in text, and only sample3 falling outside the belts are indicated. 
Note that  samples with less than 10 % Fo fall below belts in both cases. Samples over 

F%o represent the normally expected scatter for 95 % confidence limits. 



748 F . P .  AGTEt~BEP~G ON STATISTICAL ANALYSIS 

Analysis of the dla o data 

The preceding analysis for the d17 a data  may  be repeated for the dis 0 
data  of Yoder and  Sahama (1957). The analysis of variance 1 leads to 
similar conclusions (tables I and  II) .  The residual variance amounts  to 
3.79 for l inear fit to all 29 points. I t  is reduced to respectively 2.52 and  
2,03 for quadrat ic  and  cubic fits. I f  the 22 points  for Fo > 30 ~ are 
analysed separately, the residual var iance becomes 0.81 for l inear fit, 
which is a considerable improvement .  

The average regression equat ion,  equivalent  to equat ion (1), for 

olivines with Fo > 30 % is: 

~o Fo --  4088.89--1442.44 d~s 0. (2) 

The corrected s tandard  errors of cons tan t  t e rm and  coefficient of dla o 
are respectively 46.41 and  16"69. The 95 % confidence limits for Fo 
equal to 100, 80, 60, and  40 % are respectively 0.69, 0.41, 0.57, and  
0.97 %. The corrected residual variance of 0"819 is less t h a n  the value 
of 1-420 for the d17 a data,  indicat ing tha t  the diffractometer method is 

more precise t h a n  the powder camera method.  
Ext reme observations are tested in  fig. 1B, which is comparable to 

fig. 1A. The dla o values for synthet ic  fayalite and  forsterite belong to the 
point  clusters for na tu ra l  olivines. There is no reason to assume tha t  
there are different de terminat ive  curves for synthet ic  and  na tu ra l  

olivine. 
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