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Symmetry-entropy-volume relationships in 
polymorphism 

By R. G. J. ST~ENS ~ 

Department of Earth Sciences, The University, Leeds 2 

[Taken as read 3 November 1966] 

Summary. Group theoretical analysis of the normal vibrations of isolated mole- 
cules and of macroscopic crystals indicates that the principal effect of symmetry 
reduction is to remove the degeneracy of the normal vibrations, thus reducing the 
number of microscopic complexions of the phonon distribution, and reducing the 
entropy. This mechanism is effective only in point groups containing a rotation 
axis of order 3 or greater, and may play a part in the high-low cordierite transition. 

Two other symmetry-related entropy contributions are discussed : the first is the 
loss of positional degeneracy in systems in which the number of available positions 
exceeds the number of atoms, as in high-low quartz, vlasovite, and many ferro- 
electrics. The second is the loss of positional degeneracy in a solid solution, which 
leads to unnfixing, as in high-low albite, microcline-sanidine, and high-low cordier- 
ite transitions. These mechanisms are effective in all point groups down to 1 ~ C1, 
and can proceed even within C1 by a change in the unit cell volume. 

Consideration of entropy-volume relationships suggests that the glaucophane 
I - I I  transition has less order-disorder character than previously supposed. It  is 
suggested that zoisite-clinozoisite, anthophyllite-cummingtonite and enstatite- 
clinoenstatite relationships are polytypic rather than polymorphic in the usual sense, 
and the mechanisms responsible for producing the stacking order are discussed. 

The implications of the differences between the behaviour of the classical double 
oscillator (often used as a model for displacive transitions) and its quantized ana- 
logue are discussed. 

T WO general izat ions are commonly  made  regarding the  relat ion-  

ships be tween symmet ry ,  entropy,  and v o l u m e  changes in poly-  

morphic  t ransi t ions:  first, t h a t  the h igh- tempera ture  h igh-ent ropy form 

has the  higher symmet ry ,  and second, t h a t  the  h igh-volume form nor- 

mal ly  has the  higher entropy.  The first serious a t t e m p t  to ra t ional ize  

these observat ions and to apply  them to complex s t ructures  appears  to 

have  been tha t  of Fyfe,  Turner,  and Verhoogen (1958), who suspected 

the  existence of a general  relat ionship be tween en t ropy  and symmet ry ,  

and considered t h a t  the  l ink would lie in the  relat ionship be tween  the  

symmet ry  of the  crystal  and the  number  and f requency of its normal  

vibrat ions.  The analysis was not  carried far  because of the  difficulty at  

t h a t  t ime of enumera t ing  the  v ibra t ional  modes of s t ruc tura l ly  complex 
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macroscopic crystals, many of them of low symmetry. The same authors 
achieved greater success in relating entropy and volume changes. 

I t  will be convenient to adopt Ehrenfest's thermodynamic classifica- 
tion of polymorphic transitions according to the order of that derivative 
of the Gibbs free energy with respect to pressure or temperature that 
first becomes discontinuous in the course of the transition. Thus in first- 
order transitions the first derivatives entropy (S) and volmne (V) are 
discontinuous, and there is a latent heat of transition, whilst in second- 
order transitions the thermal expansion (a) and compressibility (X) but 
not S or V are discontinuous, and there is no latent heat (Denbigh, 1961, 
p. 206). Few transitions of higher order have been described, and they 
will be ignored here. In addition to the thermodynamic criteria Landau 
(1937a, b) has laid down symmetry conditions that must be fulfilled if 
a transition is to be considered second order, of which the most impor- 
tant is that the space group of the low-symmetry form must be a sub- 
group of that of the high-symmetry form. Recently, Haas (1965a, b) 
has applied the Landau rules to transitions in spinels and certain ferro- 
electrics. 

Origin of the symmetry-related entropy terms in polymorphism 

I t  will be convenient to consider all entropy terms as configurational 
in origin, i.e. as dependent on the number of permissible microscopic 
complexions of the system, but to distinguish between the vibrational 
entropy (Svib) determined by the distribution of phonons (quantized 
lattice vibrations) over the available vibrational levels, and the con- 
figurational entropy (So) determined in our examples by the distribu- 
tion of atoms over the available positions. Derivations of the equations 
used are given by MacDonald (1963). 

Configurational entropy. The work of Boltzmann and Planck pro- 
vided the bridge between classical mechanics and thermodynamics on 
the one hand, and statistical mechanics on the other: Sc= k.ln ~, where 
~Q is the number of microscopic complexions of the system and ]c is 
Boltzmann's constant. For a system containing Avogadro's number 
(N) of molecules : R = k. N = 1.986 eu, where R is the gas constant in 
calories per degree per mole (eu is entropy units). For a system in which 
n particles are distributed over gn degenerate (equal energy) positions: 

= gn! 1 
n !(gn-- n) !" 

Applying Stirling's approximation for the factorial of a large number, 
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we arrive at  S~ = R in g. Similarly ,the familiar expression for the con- 
figurational entropy of a complex solid solution follows: 

S t = R ~ x i In x i, 2 
i 

where x i is the mole fraction of the ith component. 
Vibrational entropy. The distribution of phonons between the vibra- 

tional energy levels of a system is determined by Bol tzmann 's  relation, 
nJn o = exp ( - - eJRT) ,  in which n~, n o are the phonon populations of the 
levels of energy ei, e o at  a temperature T degrees absolute, with energies 
measured from e 0 = 0. The resultant  internal energy contribution (E) 
from all levels is : E = ~, n i e~g~ where gi is the degeneracy of the ith level. 

i 

I f  we regard the vibrat ional  energy levels as being filled by a mixture 
of p phonons and ( l - -p)  = h holes : 

Svi b = R ~ g~(p~ in p~ + h i In h.~). 3 
i 

The over-all entropy of the substance (ignoring any contribution due 
to atomic disorder) is then S = Svib4-E/T. S~i b and f~ are maximized 
when all n~ are equal, i.e. when all energy levels are degenerate. Pro- 
vided tha t  the mean energy e of a set of levels remains constant, so t h a t  
the variat ion in E~ T is negligible, loss of degeneracy leads to unmixing 
of the phonon-hole distribution, with a resulting decrease in Svi b. For  
the case of a pair  of degenerate levels of energy e split  by  an amount  

= 0.1e to give two levels of energy e+~  and e--8,  the  decrease in 
S~i b is of the order of 30 %. 

I t  will now be shown tha t  a reduction of crystal symmetry  in classes 
having rotat ion axes of order ~ 3 may lead to a drastic decrease in the 
proportion of degenerate vibrations, and hence to a decrease in Svib, 
thus establishing one of the links between entropy and symmetry.  

Vibrations of an isolated molecule 

Methods have long existed for enumerating the normal vibrations of 
an isolated molecule (Jaffe and Orehin, 1965, p. 107), with no theoretical 
l imit  on the number of atoms involved. Similar techniques can be applied 
to the vibrat ions of individual structural  groups in crystals (e.g. SiOa 
groups), but  the results are then approximations,  although often sur- 
prisingly good ones. 

An isolated non-linear molecule of M atoms has 3M degrees of free- 
dora, of which 6 correspond to 3 rotat ions and 3 translations of the 
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molecule as a whole, leaving 3M--6  internal degrees of freedom, or 
normal vibrations, which involve movements of the atoms in the mole- 
cule relative to each other. Provided that  the point-group symmetry of 
the molecule is known, the normal vibrations may be classified into 
symmetry species of known degeneracy with the aid of character tables 
for each point group (Jaffe and Orchin, 1965; Cotton, 1963). 

TABL~ I. Numbers of general equivalent points and proportions of degenerate 
vibrations in selected point groups: for further values see Jaffe and 0rchin (1965, 

Appendix 2) 

Schoenflies O h T a T D4h 6]h C 4 

Hermann-Mauguin m3m 43m 23 4/mmm 4/m 4 

General equivalent positions 48 24 12 16 8 4 
Normal [ A + B  12 6 3 22 l0 4 
vibratbnal M = 1 IET ]2 6 3 10 4 2 
modes 34 8 7 0 0 0 

3T+2E n/12  11/12 n/12 
A + B + 3 T - - 2 E  ~ 21/23 7/8 9/10 10/21 4/9 �89 

Schoenflies C 2 D6h Co~ C 6 C a C 1 

Hermann-Mauguin 2 6/mmm 6/m 6 3 1 

General equivalent positions 2 24 12 6 3 1 
Normal ~ A ~- B - -  22 10 4 1 - -  
vibrational M = I~E - -  22 10 4 1 - -  
mode~ (T  - -  0 0 0 0 

3TW2E /M ~ ~ 0 ~- -~- .~ ~ 0 

M is the number of independent sets of points not lying on any symmetry element. 

In  the most highly symmetrical molecules, a high proportion of the 
normal vibrations are triply (T) or doubly (E) degenerate (table I). As 
symmetry elements are removed, the degenerate species decline in 
relative importance, until  in point groups with no rotation axis of order 

3, only singly degenerate (A, B) species remain. This process is 
illustrated by the data for the [SOd] group in table II. 

Study of the vibrations of the idealized Si4AI~O 6 ring in cordierite, in 
which only the 6(Si, A1) and the bridging oxygens are considered, illus- 
trates the use of these methods. In  high cordierite the ring is assmued 
to possess D6h symmetry, with the silicon and aluminium randomly 
distributed over the six equivalent (Si, A1) positions, whilst in low cot- 
dierite (Gibbs, 1966) the symmetry is reduced to D2h, with the two 
aluminimn atoms settling into one set of equivalent positions, which 
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necessarily lie opposite one another in the ring. Of the 30 normal 
vibrations of this ring, 20 belong to doubly degenerate species in high 
cordierite, whereas all 30 are singly degenerate in low cordierite. Present 
da ta  are not sufficient to calculate the resulting change in Svib, but  the 
indications are tha t  it  could form a significant par t  of the over-all 
entropy change in this reaction. 

TABLE II. Vibrations of the SO 4 group in aqueous solution 
and in CaS04 

Crystal Crystal 
Designation Solution ( av. ) (obs.) 

v 4 ( 3 x )  1106 cm -1 1132 1160, 1128, 1108 
v~ (lx) 983 1018 1018 
v~ (3x) 622 637 674, 628, 609 
v 2 (2x) 454 457 499, 415 

Symmetry T d - -  C2v 

(Data of Bhagavantam and Venkatarayudu (1951), from 'Theory of groups and its 
application to physical problems', Andhra University Press, Waltair.) 

I f  the (Si, A1) positions in the high cordierite ring are numbered 1 to 6, 
the ordering of the A1 atoms can clearly proceed in three different ways, 
i.e. A1 can enter 1+4 ,  2+5 ,  or 3+6 ,  corresponding to three possible 
orientations of low cordierite developing from a single crystal  of the 
high form. The beautiful and complex inversion twinning tha t  Venka- 
tesh (1954, or see Deer, Howie, and Zussman, 1962, vol. 1, p. 238) 
found to be characteristic of cordierites cooled from high temperatures  
can thus be explained. Similar features are, of course, known in many 
other substances. 

Vibrat ions  o f  a macroscopic crystal 

I t  might be expected tha t  the proportions of vibrations belonging to 
the various symmetry  species would not  change greatly as a molecule 
evolves into a crystal, i.e. as M --~ 0% and calculations by Knox (1966) 
confirm this. Using Knox ' s  notation, the relative number of normal 

n /g, modes of point symmetry  type 1~ is where na is the dimension of 
Pa and g is the order of the symmetry  group. The order is equal to the 
number of operations in the group, e.g., for C4~ : 

g = 1 . I + 2 . C 4 + C ~ + 2 % + 2  % - 8, 

and the order is also given by  the sum of the squares of the degeneracies 
of the vibrational  symmetry  types:  

g = I~AI+ 12A2+ 12B1+ l~B2+22E = 8. 
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The removal of degeneracies as symmetry is reduced proceeds in the 
same way as for a molecule, with reduction in entropy (table I). 

The configurational entropy contributions 

This paper is not concerned with entropy contributions arising from 
the ordering of electron spins, which produces symmetry changes un- 
detectable by conventional optical or X-ray methods, or with transitions 
involving the rotation of anionic groups, which (if rotation is unhindered) 
should increase the entropy by R/2 for each rotational degree of freedom. 
With these excluded, two important mechanisms remain, both involving 
the loss of 'positional degeneracy', i.e. a reduction in the number of 

Svib 
AS~ol 
AS x 
ASs 

Sc 
S 
E 

TABnE III. Nomenclature of entropy terms 

configurational entropy of the phonon-hole distribution 
entropy change attributable to a change in volume 
entropy change attributable to unmixing of a solid solution 
entropy change on unmixing of atoms and vacant sites 
a configurational entropy 
entropy = E/T+Sc+Svi b 
internal energy : ~ n i e i gi 

i 

general equivalent positions as symmetry elements are removed. This 
reduction in symmetry may involve a change in space group, or simply 
an increase in unit-cell volume, which decreases the number of symmetry 
elements per unit volume, and thus reduces the density of equivalent 
positions. One mechanism operates only in solid solutions, whilst the 
other may be important whenever there are more equivalent positions 
than atoms to fill them. 

Removal of positional degeneracy in solid solutions. In table I, selected 
point groups have been ranked according to the number of general 
equivalent positions. I t  will be seen that  the removal of symmetry 
elements during a polymorphic transition will cause a set of equipoints 
in the high-symmetry form to split up into 2, 4, 8 . . . .  or 3, 6, 12 . . . .  
sets of equipoints in the low-symmetry form, and these sets, being no 
longer symmetry-related will now have different structural and energetic 
characteristics. In the general case, this implies that  in a solid solution 
A - B ,  the original A : B ratio will not be preserved in the several sets of 
positions, but  that  unmixing will occur, leading to enrichment of some 
positions in A, of others in B. The unmixing of a solid solution when 
positional degeneracy is lifted is directly analogous to the unmixing of 
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the phonon-hole distribution when the degeneracy of the vibrational 
levels is removed, and produces a similar decrease in entropy. I f  site 
occupancies are known, the entropy change can be calculated from (2). 
This mechanism operates in all classes but C 1 by removal of symmetry 
elements, and can proceed even within C 1 by changing the unit cell 
volume. The most important mineral examples are the high-low albite, 
sanidine-mierocline and high-low cordierite transitions. 

In both high-albite and sanidine the (Si, A1) distribution appears to 
be completely disordered, with 4• (Si75A125) in the tetrahedral sites 
(Ferguson et al., 1958: Cole et al., 1949), whilst in low-albite the alu- 
minium contents of the tetrahedra (normalised to 1) are 0.71, 0, 0.20, 
and 0-09, and in microeline 0.26, 0"59, 0"07, and 0"08 (Ferguson et al., 
1958 ; Bailey and Taylor, 1955). The entropy changes on exsolution are 
then 2.67 eu and 1.74 eu respectively for these samples, but the figure 
inevitably depends on the degree of disorder, and would reach 4.47 eu 
were all aluminium to be concentrated in one site. 

The cordierite transition involves not only (Si, A1) ordering in the 
ring, but also (Si, A1) ordering in the chains that link the rings, and 
possibly ordering of the Mg also (Gibbs, 1966), for which full data are 
not yet available. However, the contribution from ordering of the ring 
is approximately: AS S = 6R(~- in ~@~2 1 In �89 = 7-7 eu. 

Removal of positional degeneracy other than in solid solution. Many 
crystals exist in which a given atom has a choice between a number (g) 
of symmetry-related positions. Removal of a symmetry element then 
produces n sets of g/n equivalent positions, reducing or eliminating the 
choice, and causing a decrease in S that may in principle be found from 
(1). This behaviour is essentially the same as that observed in solid 
solutions if we think of a solid solution of atoms and holes, rather than 
one involving two types of atom. 

The analogy with the behaviour of the phonon-hole distribution is 
also close. Again, this mechanism will operate in all point groups down 
to C 1 by removal of symmetry elements, and within C 1 by a change in 
the unit cell volume. Most transitions of this type are fast and dis- 
placive, including high-low-quartz, a-fi-tridymite, a-fi-eristobalite, and 
many ferroelectrics (Kanzig, 1957), and probably high-low-vlasovite 
(Fleet and Cann, 1967) and albite-monalbite. 

Classical and quantized double oscillators 

Displacive transitions are frequently treated in terms of the double 
minimum potential, in which two symmetry-related potential energy 
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minima, A and B, are separated by a barrier of height P. Classically, 
the particle under consideration vibrates over the top of the barrier so 
long as its thermal energy exceeds P, settling out into A or B on cooling : 
a transition always occurs at T > 0~ if P is finite. In the quantum 
mechanical formulation of the problem (Powell and Crasemann, 1961), 
the energy of the particle is restricted to certain well defined values, the 
lowest of which lies by/2 above the energy zero, so that  the particle 
retains this ' zero-point energy'  even at absolute zero : we now find that  
no transition occurs unless P ~ by~2. The zero-point energy ranges 
from a few calories to about 5 Kcal/mole, with a value of about 1.5 Kcal/ 
mole for the Si-0 stretching vibrations. 

In  quartz, the diad relating the two minima in the high form is lost 
on cooling, and inversion twinning develops due to the simultaneous 
growth of nuclei in which the A and B minima are occupied (cf. cordier- 
ite). The transition is cooperativ ein that  occupation of one A(B) 
position reduces the energy of adjacent `4(B) positions, making their 
occupation more probable. If  it is assumed that  the Si-0-Si  bending 
mode which appears in the room-temperature infrared spectrum of 
quartz at 790 cm -1 is primarily responsible for the transition, P may 
be calculated : 

P - R.  T~+hv/2 = (590+790/2) cm -1 = 985 cm -1 : 2"8 Kcal/mole. 

This value should be treated as an order of magnitude estimate only, 
but it is easy to understand the rapidity of the transition. 

Quantum mechanical tunnelling. The quantum mechanical treatment 
of the double oscillator implies that there is a finite probability, not 
considered in the classical model, that  the particle will be found within 
the potential energy barrier. This quantum mechanical ' tunnel effect' 
has been shown to be important in reactions involving electrons (Mott 
and Gurney, 1948) and protons (Brickmann and Zimmermann, 1966), 
the wave function (~F) being given by:  T = A exp(--2s/h)~/2m(P-E), x, 
where A is the (vibrational) frequency of the particle, m its mass, 
(P-E)  the difference between the energy of the particle and the height 
of the barrier, and x the penetration of the barrier. The probability 
that  the particle will penetrate the barrier is given by W e . Substitution 
of appropriate values of `4, m, (P-E),  and x shows that  tunnelling will 
be important only in processes involving electrons (x up to 50 _~) or, 
if both x and (P-E)  are small, protons. A calculation for the Si-A1 
distribution in feldspars using .4 = ]013 s e c  - 1 ,  ~ : 28 ainu, P - E  = 
74 Kcal/mole (MeKie and McConnell, 1963), and x - 3 A gives for the 
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tunnelling frequency: ~-2= 10-a4• ~ sec-1. The persistence of dis- 
ordered Si-A1 distributions in feldspars for periods of the order of l09 
years (3 • l016 seconds) is not therefore surprising. 

The tunnelling frequency has been found to decrease markedly when 
the potential field becomes unsymmetrical (Brickmann and Zimmer- 
mann, 1966). 

Entropy-volume relationships 

In first-order polymorphic transitions, the high-temperature high- 
entropy form commonly has the larger molar volume, and a similar 
effect characterizes those second-order transitions in which measurable, 
but continuous, volume changes occur across a transition zone. 

The permitted angular frequencies oJ of a one-dimensional mon- 
atomic line of length L made up of particles of mass M spaced a apart, 
with a force constant fl between particles are given (Kittel, 1956) by: 
(o ~- 4-~/4fl/M. sin ka/2, where k is the wave vector, possessing values 
n~/L, where n ~ 1. The force constant fi decreases rapidly with increas- 
ing a in real (anharmonic) systems, causing a corresponding reduction in 
w and hence in the Debye temperature (0i)) and the entropy. Analogous 
relationships hold for three-dimensional polyatomic structures, and 
imply a general dependence of entropy on molar volume if we take 
Vc~: a ~. 

Wilsdorf (1965), considering melting as a first-order transition between 
substances having similar structures, and Fyfe, Turner, and Verhoogen 
(1958), dealing with solid-solid transitions in general, have discussed 
the relationship between entropy and volume changes. Wilsdorf used 
an approach based on the Gruneisen equation: Av/v o = --TAV/Vo,  
where 7 is the Gruneisen constant, given by: ~ = aV/xC~. Develop- 
ment of these equations leads ultimately to the relationship used by 
Fyfe, Turner, and Verhoogen: (~S/~V)~ = oL/X. With a, X, and AV in 
their usual units, the correct numerical value of AS~o 1 is given by: 

AS~o I = AV~/42X, 4 

where the factor of 42 converts cm a bars to calories. 
This equation should provide a reasonably accurate estimate of the 

volume-dependent part of the entropy change in second-order transitions 
of the A-point type, in which there is a marked but continuous volume 
change across the transition zone, but only a qualitative estimate of the 
entropy change can be expected for first-order transitions invoNing 
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marked structural changes, or for solid-solid and solid-liquid transitions 
in general. Recent compilations of thermal expansion and compres- 
sibility data (Skinner and Birch in Clark, 1966) show that  the ratio a/X 
varies by a factor of 4 between close-packed oxides and framework 
silicates, and values appropriate to the particular problem must there- 
fore be used. 

The application of (4) may be illustrated by the glaucophane I - I I  
transition, which Ernst (1963) considered to be second order with 
AV = 6 cma/mole across a transition zone some 2 Kbar wide. From the 
P - T  slope of the transition zone, AS = 4.3 eu, and by analogy with 
hornblende and tremolite ~ = 23 • 10 -6 and X = 1.2 • 10 -6, whence the 
volume-dependent part  of the entropy change, ASvo 1 = 2-8 eu, suggest- 
ing that  there is considerably less order-disorder character than pre- 
viously supposed. 

Recognition of further examples of polytypism in minerals 

Consideration of a nmnbcr of polymorphic transitions for which 
adequate data are available indicates that  most can be understood in 
terms of one or more of the mechanisms outlined above, but that  three 
mineralogically important transitions are anomalous, namely zoisite- 
clinozoisite, enstatite clinoenstatite, and anthophyllite-cummingtonite. 
In  all cases volume changes are negligible, there is no obvious positional 
degeneracy, and changes in vibrational entropy should be very small. 
These transitions have two important features in common: first, to a 
high degree of approximation the high-symmetry form can be regarded 
as a modification of the low-symmetry form twinned on the unit-cell 
scale (Ito, 1950), i.e. as a sequence of layers ... A B A B  ... comparable 
to a two-layer mica ; the ' twin planes' are {100} in zoisite, cnstatite, and 
anthophyllite, and (001} in mica. Second, the stability fields of the 
various forms show very strong compositional control, but relatively 
little apparent dependence on temperature or pressure. I t  is suggested 
that  the orthorhombic varieties are best regarded as two-layer poly- 
typic modifications of their one-layer monoclinic forms, comparable 
with 2M and 1M micas. 

I t  has been contended (Buerger, 1945) that  the free energy of an AB 
in terrace (twin boundary) is necessarily positive relative to that  of AA or 
BB boundaries. Although general structural considerations imply that  
this will frequently be the case, there does not appear to be any a priori 
reason why negative values should not be encountered occasionally. 
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Indeed, the observation that such two-layer structures as 2M mica 
are stable implies that the free-energy change AGA~ for the reaction: 
�89 AB is negative. The relative numbers of AA, AB, and 
BB interfaces will then be defined by the Boltzmann relation, and con- 
tinuous gradation of properties from a perfectly ordered two-layer struc- 
ture through two-layer structures with frequent stacking faults and 
one-layer structures with frequent twin planes to a perfect one-layer 
structure is to be expected as AGAB varies from --oo to + ~ .  Similar 
conclusions were reached by Schneer (1955) in his derivation of the most 
convincing theory of polytypism in silicon carbide yet to be advanced. 

Factors favouring a small or negative value of AGAB would include 
the absence of solid solution (which renders adjacent structural units 
unequal in size), and the presence of either real or false symmetry ele- 
ments normal to the twin plane. With a single mirror-plane normal to 
the twin plane, the number of layers in the repeat unit will normally be 
limited to two (... A B A B  ...), as in most micas, anthophyllite, enstat- 
ire, and zoisite. 

However, an axis or pseudo-axis of order 3 or 6 permits the formation 
of much more complex stacking sequences, e.g., ... ABCBA ... as 
in silicon carbide (Krishna and Verma, 1966), eadium iodide, some 
micas, and a number of close-packed metals and oxides. Increasing 
solid solution would be predicted to favour the one-layer form, as appears 
to be the case in micas, and in clinozoisite, clinoenstatite, and cumming- 
tonite, although the frequent twinning observed in the last three 
minerals indicates that AG~ B remains relatively small, of the order of 
10kT. Much lower values, in the region of kT, are suggested by the 
formation of antiphase boundaries in a plagioclase feldspar (An51) at 
intervals of 30 A (MeConnell and Fleet, 1963). 

There is now considerable evidence for the view that the formation of 
long-range stacking order in metals represents an attempt to minimize 
the energy of the conduction electrons (Sato, Toth, and Honjo, 1966) 
and a sinfilar explanation could well hold for covalent substances such 
as silicon carbide, in which the band gap shows a systematic dependence 
on the number of layers in the repeat unit (Krishna and Verma, 1966). 
This is to be expected from the formula for the energy of an electron in 
a one-dimensional box, if the length of the box is identified with the 
length of the repeat unit: E~ = (n2h2/Sma 2) (n = 0, 1, 2...). On this 
hypothesis, the presence of impurities, by influencing the number of 
conduction electrons, should have a marked effect on the stability of 
individual polytypes. 
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Discussion 

The link between symmetry and entropy is essentially a simple one: 
increasing the symmetry increases the vibrational and positional degen- 
eracy, and hence ~, Svi b and S,. Changes in molar volume have little 
effect on S,, but alter the non-configurational entropy through the E/T 
term. Multiplication of the unit cell reduces the density of equivalent 
positions, and through this decreases ~ and S,. 
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