
XIV.—On Crystallized Olivine from Slag. By Dr. Charles O. Trechmann.

I HAVE recently measured one of the crystals of the slag described by by Mr. A. E. Arnold, in vol. III, p. 114 of the Magazine.

Observed forms:

Brooke and Miller. Mineralogy, 1852.	Naumann. Elemente de Min.		
a=100	$T = \infty P \check{\omega}$		
n = 120	$n=\infty P$		
k = 101	$k=2P\ \check{\infty}$		

Angles (normals)	Measured Trechmann,	Fayalite Miller.	Olivir	16
a:n	 658 9'	65° 12′	 65°	1
n:n'	 49° 42′	49° 36′	 49°	58′
k : k'	 98° 32′	98° 22'	 990	7'

The angles are therefore almost identical with those derived by Miller (Trans. Phil. Soc., Cambridge, III; Brooke and Miller, Mineralogy, 1852, p. 319) from crystals found in refinery cinder, and the slags of copper furnaces, &c,—having the composition of Fayalite, viz.—2 FeO, SiO₂.

Making allowance for imperfection of the particular crystal measured, they seem to be intermediate between those of olivine and fayalite