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The physical basis of mineral optics 
I. Classical theory 
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SUMMARY. The Helmholtz dispersion equations have 
been rewritten in a form that enables the optical constants 
of both transparent and opaque media to be calculated 
from their spectra. Both Helmholtz equations are used to 
describe the optical properties of opaque media, and to 
obtain values of reflectance, refractive index, and absor- 
ption coefficient. The Sellmeier dispersion equation is a 
special case of the dispersive Helmholtz equation applic- 
able to weakly absorbing media (including the great 
majority of minerals studied in thin section): it is used to 
derive the wavelength-, composition-, direction-, and 
volume-dependence of the principal indices in mixed 
crystals of monoclinic or higher symmetry. The treatment 
can be extended to triclinic crystals. 

The birefringence of transparent phases is the ex- 
pression in the visible region of the pleochroism of 
absorption bands in the ultra-violet. The bireflectance 
of opaque phases depends also upon the pleochroism 
of bands in the visible and near infra-red, resulting in 
extreme sensitivity of the optics of opaque materials to 
changes in wavelength, composition, and structure. The 
optical anisotropy of both transparent and opaque 
phase s may be calculated if the dependence of the spectra 
on structure can be established by measurement or by 
calculation from structure data. The quantitative appli- 
cation of Bragg's method is restricted to phases of very 
simple chemistry and structure (e.g. calcite and rutile), but 
it may be applied qualitatively to rationalize the optic 
orientations of phases containing only dosed:shell ions of 
neon or argon configuration, including many pyroxenes, 
amphiboles, micas, and chain aluminosilicates. When 
open-sheU (transition metal) ions enter the structure, the 
general rule is that the anisotropy becomes more closely 
related to the distortion of the coordination polyhedron 
about the metal ion, and for ions of formal charge >/3, 
this source of anisotropy is usually dominant. 

A better understanding of mineral optics will require 
much more work on the ultra-violet spectra of common 
transparent minerals, with particular emphasis on estab- 
lishing the dependence of absorption band wavelengths, 
widths, and absorbances on interatomic distance and 
other structural variables. For opaque minerals, the need 
is for more accurate data spanning a wider range of 
wavelengths, and for improved methods of representing 
the data, such as plots in the et-e2 plane. 

THE aim of this paper is to provide a theoretical 
framework within which the optical properties of  
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chemically and structurally complex media, both 
opaque and non-opaque,  may be discussed quanti- 
tatively. Three points have been kept  in mind. First, 
the theory should have a sound physical basis. 
Secondly, it should enable the optical properties to 
be calculated with an accuracy comparable with 
that of  the experimental data. Thirdly, the mathe- 
matical content should not  be such as to render it 
inaccessible to the working mineralogist, which 
restricts us to phenomenological equations such as 
those of Helmholtz or Lorenz and Lorentz. These 
equations have been slightly modified by Drude's 
electromagnetic theory of dispersion, and by the 
application of quantu in  theory, bu t  their form has 
not  changed. A comprehensive review of  the 
development of physicochemical optics since the 
earliest times (including the development of 
the Helmholtz, Lorenz-Lorentz,  and Drude equa- 
tions) has been given by Part ington (i953), and his 
review together with Jenkins and White (1976) 
is the source of our equations I to 3- 

The variation of index with wavelength is de- 
scribed by dispersion equations, of  which the most 
useful are the purely mechanical equations of 
Helmholtz, and a modification of the Lorenz- 
Lorentz equation that treats the medium as an 
assemblage of polarizable particles. Both contain 
terms depending on the number  of oscillators or 
polarizable particles in unit  volume, and they are 
therefore capable of describing the composition- 
and volume-dependence of indices at constant 
wavelength, and the wavelength-dependence at 
constant  volume and composition. The dependence 
of index on direction and crystal structure (optical 
anisotropy) is also implicit in the dispersion equa- 
tions. The Helmholtz equations relate the index 
to the wavelengths, widths, and absorbances of 
absorption bands in the spectrum of the medium, 
so that optical anisotropy in the visible region may 
be seen as the expression of pleochroism in the 
ultra-violet and infra-red. The Lorenz-Lorentz 
equation relates index to polarizability, and the 
polarizabilities themselves depend on the wave- 
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lengths and absorbances of the absorption 
bands. The difference between the Helmholtz and 
Lorenz-Lorentz equations lies in the treatment of 
the internal field in dielectrics (insulating media). 

The Lorenz-Lorentz equation is in theory the 
more satisfactory, but it is often difficult or impos- 
sible to apply in practice for two reasons. First, the 
polarizability tensor of an ion occupying a general 
position in the unit cell has at least as many 
different non-zero elements (p) as the crystal has 
principal indices and extinction angles. The pq 
elements of the q ionic polarizability tensors 
(which describe the variation of polarizability with 
direction) are uniquely related to the p observable 
principal indices and extinction angles only if the 
number of inequivalent atoms in the unit cell is 
q = I. If q > I, then p(q- I) constraints must be 
applied to force a solution. These constraints may 
be supplied by the presence of some ions in special 
positions of higher symmetry, or by making 
approximations, e.g. that some ions have negligible 
polarizability, but until polarizabilities can be 
calculated from structure data the application of 
the Lorenz-Lorentz equation will be restricted to 
chemically and structurally simple phases with no 
more than two or three ions (e.g. TiOz, CaCO3). A 
second problem is that the equation is applicable 
only to dielectrics in which the interatomic distance 
is large compared with the sum of the atomic radii, 
i.e. those in which overlap is negligible (see Mott 
and Gurney, I964, pp. IO-I9). It cannot form the 
basis of an approach that is intended to treat both 
opaque and non-opaque media of considerable 
chemical and structural complexity. We have there- 
fore reconsidered the applications of the relatively 
neglected Helmholtz equations as modified by 
Drude's electromagnetic theory of dispersion and 
by the application of quantum theory. 

The Helmholtz equations 

The Helmholtz equations were originally based 
on a mechanical analogy for the interaction be- 
tween the alternating electric field associated with 
the light wave and the bound electrons of the 
medium. The analogy is that of the driven damped 
one-dimensional oscillator. A simple example is 
that of an oscillator comprising a mass m on a 
spring of force constant k, having a natural fre- 
quency ~o = (k/m)~, and driven by moving the hand. 
The damping is provided by the hysteresis of the 
spring. If the forcing frequency is low compared 
with ~o, the motion of the mass follows that of the 
hand with a small phase lag: if it is high, there is 
little movement of the mass. Both cases involve 
only slight absorption of energy by the oscillator, 
and correspond to values of the refractive index 
near I, accompanied by small dispersion and 
absorption. Only when the forcing frequency 
approaches the resonant frequency ~o is energy 
strongly absorbed, resulting in rapid variation of 
index, dispersion, and absorption with frequency, 
and also rapid changes in the phase relation 
between excitation and response. The frequency 
range over which resonance occurs (which deter- 
mines the rate of change of index, dispersion, 
absorption, and phase angle) increases with damp- 
ing. For more detailed discussions of the subject see 
Jenkins and White 0976). The mechanical analogy 
proved very successful and led to the development 
of the Sellmeier and Helmholtz dispersion equa- 
tions, besides demonstrating in an easily under- 
standable way the intimate relations between 
absorption, dispersion, and refraction, and the 
dependence of these quantities on the frequency, 
width, and absorbance of bands in the spectra of 
the medium considered. 

Symbols used in equations (numbers are those of equations in which symbol first appears). 

A constant in Helmholtz and Sellmeier equations (0 a~ 
I integrated absorbance (3) a, 
L 22/(22 -22) (follows 6b) a, 
M molar refractivity (I2) C i 
N number of oscillators in volume V (2) c 
R specular reflectance at normal incidence (Io) e 
V molar volume (2) .f 
ct polarizability (where context implies) (I I) 1 
s complex dielectric constant (0 k 
q~ extinction angle on (oio) (8) m 
0 a phase angle (8) n 
2 wavelength of observation (I) 
2 i wavelength of absorption band maximum (I) r 
# refractive index of immersion medium (Io) w i 
t/ specific refractivity (I 3) x 
N complex refractive index (io) 

linear absorption coefficient at band maximum (4) 
constants in equation (7) 
constants in equation (8) 
form factor of absorption band (4) 
velocity of light in vacuum (2) 
electronic charge (2) 
oscillator strength of absorption band (2) 
J ( -  i) 
dimensionless absorption coefficient (I) 
mass of electron (2) 
principal refractive index (mean h, general direction 
n') (I) 
an interatomic distance (I I) 
full width of absorption band at half height (I) 
compositional variable, o ~< x ~< I (7) 



THE PHYSICAL BASIS 

The Helmholtz dispersion equations relate the 
real (el) and imaginary (e2) parts of the complex 
dielectric function (e = el +ie2) to the wavelength 
of observation (2), and the wavelengths (2i), widths 
(wi), and absorbances (A,) of bands in the absorp- 
tion spectrum of the medium considered: 

E 1 = n 2 _ k  2 

A i 2  2 

= I +~,22 _22 + w222/(22 _42) (Ia) 
F. 2 = 2 n k  

A i w i 2  3 

= ~ (22 _ 42)2 + w222 (lb) 

Here, n is the refractive index for the polarization 
considered, and k = a2/4~ is the dimensionless 
absorption coefficient, a being the linear absorption 
coefficient to base e. Drude's dispersion theory, 
modified to allow for oscillator strengths (f) less 
than unity (which are permitted by quantum 
theory), assigns to A~ the value: 

N e 2 

Ai = V ~m~-c 2fi (2) 

where N is the number of oscillators in the volume 
V. The oscillator strength o ~<f ~< i is related to 
the integrated absorbance of the band by: 

V m c  2 

f = ~ - e 2  Ii (3) 

(Robbins and Strens, 1972) where I i is conveniently 
stated in the form: 

Ii = qaiwi- (4) 

Here, a, is the linear absorption coefficient at band 
maximum, w i is the full width at half height 
(expressed as A2 and not in wave numbers), and c i 
is the form factor, which is (~/2)~ for a Gaussian 
band, and n/2 for a Lorentzian. The Helmholtz 
equation assumes a Lorentzian band shape, and 
in the interests of mathematical consistency we 
take c, = ~/2, although many absorption bands 
in and near the visible region are more nearly 
Gaussian. Substituting (2), (3), and (4) into (i a) and 
(Ib), we have: 
E 1 ~ n 2 _ k 2 

I a i w i  22  

= I +~-~(22_22)+w222/ (22_22  ) (5a) 
e 2 = 2 n k  

- -  I ,~, a i w 2 2 3  

~ ( 2 2  _ ~ ; - w ~ 2 2  �9 (sb) 

These equations provide the required link between 
the absorption spectra and the optical properties of 
both opaque and transparent media. 

Optics of transparent media 

Transparent media are those in which there are 
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no strong absorption bands near the visible region, 
i.e. (2-2i)/w i is large, and k-~ o. The second 
Helmholtz equation (5b) may be ignored because 
2nk -~ o. The first Helmholtz equation (5 a) simpli- 
fies considerably, for with w i small compared with 
2i, and 2 i small compared with 2, the k 2 and 
W222/(22- 22) terms may be neglected, yielding the 
Sellmeier dispersion equation: 

n 2 ~ A i  22  
= I +2., 2Y2~_22 �9 (6a) 

In a region far from any absorption band, the 
precise shape and width of the band has little 
influence on the optical properties, and the equa- 
tion may be written in terms of(A, 2i, Ii) rather than 
(2, 2i, ciaiwi): 

I ~ / i  22 
n 2 = I + ~ 2 , ~ _ _ 2 ~  �9 (6b) 

Sellmeier's A is then given by A~ = Ii/x 2, and if we 
write L = 22/(22-22), the equation has the very 
simple form n 2 = I + I L / ~  2. This equation may be 
applied to obtain I i and 2~ i f the refractive index is 
known at two wavelengths, and if the dispersion is 
dominated by a single band (or several bands 
spaced closely compared with 2 -  2i). The resulting 
2~ give an indication of the optically significant 
transition energies, and the dependence of these 
energies on composition, structure, and volume. In 
compounds of the common closed-shell ions (0  2- , 
F - ,  Na +, Mg 2+ , AI 3+, Si4 +), 2 i < I25 n m account- 
ing for their transparency and low dispersion and 
index. Oxides and silicates containing open-shell 
(transition metal) ions have 2i > 125 nm, and their 
compounds are often coloured, displaying high 
dispersion and index. The optical properties of 
materials containing both closed- and open-shell 
ions are often determined by the latter, as a 
comparison of (say) jadeite with acmite or clino- 
zoisite with epidote will show. 

Wavelength-dependence (dispersion) of indices. 
Having related the refractive index to the absorp- 
tion spectrum, it is instructive to consider an ex- 
ample. Because of the experimental difficulties, few 
reliable spectra have been published of minerals 
having strong absorption in the near ultra-violet, 
and we therefore use data for dilute aqueous solu- 
tions of Fe 3 +. Fig. I shows that this ion has three 
strong absorption bands between 2oo and 4oo nm, 
and there will be further absorptions in the 
vacuum ultra-violet (2 < 185 nm). We use a four- 
band model to represent the properties of a hypo- 
thetical material containing Fe 3 + coordinated by 
oxygen. The first three bands have the properties 
(2i, I~) of the three bands in fig. I and the fourth 
band takes the place of the absorptions in the 
vacuum ultra-violet. Values of I~ have been scaled 
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FIG. I. The near-ultra-violet absorption spectrum of Fe a + 
in aqueous solution. Curve resolution reveals three bands 
at 3o7'7, about 250, and 2237 nm. Cell thickness I cm 

[Fe 3+] = 2x IO-'*M in IM H280r 

region are determined mainly by the wavelengths 
and integrated absorbances of  bands in the near 
ultra-violet, many of  Which involve l igand-metal  
charge-transfer processes, e.g. (Fe 2 +, 0 2-) L~ (Fe +, 
O- ) ,  (Fe a+, O 2-) L~ (FEZ§ O-) .  These bands typi- 
cally move towards the visible (thus increasing 
index and dispersion) with increasing formal charge 
on the metal ion, with increasing covalency, and 
with decreasing metal-oxygen distance. They are 
always polarized along the oxygen-metal  vector 
(Smith and Strens, I976), and their wavelengths 
vary with direction in distorted coordination poly- 
hedra, thus contributing to the optical anisotropy 
of  such phases as acmite, epidote, and viridine. 

Composition dependence o f  indices and extinction 
angles. The composit ion dependence of  optical 
properties results f rom the appearance of  new 
absorption bands and the disappearance of  bands 
previously present as the composition changes. The 
simplest case is that of  an isotropic binary solid 
solution obeying Beer's and Vegard's laws, in which 
the index at some chosen wavelength is given by: 

to a concentration of  ~ Fe 3+ in zoo ~3, assuming 
Beer's law holds. Inspection of  Table I will show the 
following interesting features. The refractive index 
and dispersion are comparable with those of  Fe 3 +- 
rich minerals such as andradite, acmite, goethite, 
and epidote. About  three-fifths of  the dispersion is 
caused by the three near-ultra-violet bands, with 
the largest single contribution coming from the 
relatively weak band at 3o7'7 nm, for which the 
large variation in L more than compensates for the 
low value of  I. One-eighth of  the contribution to 
( h -  I) comes from the three near-ultra-violet 
bands. This model illustrates the way in which the 
optical properties of  an ionic material in the visible 

n2(2) = I + x a + ( I - x ) b  (7) 

where 0 ~< x ~< I is the compositional variable, and 
a, b, are the values of  n 2 - I = IL/Tr 2 at x = 0 and 
x = I respectively. In anisotropic crystals, (7) 
applies to the unique (b) direction of  a monoclinic 
crystal, and to each o f  the two (or three) principal 
indices of  uniaxial and or thorhombic biaxial crys- 
tals. For  the (010) plane of  monoclinic crystals, a 
more complex equation is required to allow for 
the continuous change in the absorption spec- 
trum that occurs as the indicatrix rotates about 
b with changing composit ion or wavelength. The 
simplest equation appears to be of  the form: 

TABLE I. Properties o f  a hypothetical isotropic Fe 3 + compound having the spectrum shown in fig. [ 

2 i (nm) /'i L F L D L c IL z IL o IL c Dispersion 
F-C 

I 307"7 0"5835 1.6686 1.3748 
2 250.0 0.6052 1.3596 I'2195 
3 223"7 1"3o16 1"2687 1'1684 
4 IOO.O I6"4ooo I'o442 I'O297 

index with bands I-4 
index with band 4 only 
effect of bands I-3 

1.28I 7 0.9736 0 . 8 0 2 2  0 " 7 4 7 9  02257 
1"1697 0.8228 0.7380 0"7079 oII49 
1"1315 I"6513 I'52o7 1"4737 o1776 
1"o238 I 7 . 1 2 4 7  16 .8863 16-7898 0-3349 

E IL 20 .5725  19-9472 19.7193 O"8531 
n I"7563 1"7381 I"7315 0"0248 
n 1"6538 1"6465 1"1435 o"olo3 

An o'1o24 o - o 9 1 6  o'o879 o'o145 

The integrated intensities (It) are normalized to a concentration of I Fe a + ion in I00/~3 (similar to that in acmite) 
assuming a Gaussian form-factor. Band 4 represents the effects of all absorption bands in the vacuum ultra-violet 
(below 185 nm), and its wavelength and integrated intensity are assumed to remain constant as iron enters the structure. 
If Fe 3 § replaces A1, then both E1 i and )-i will increase because of the larger number of electrons and the lower ionization 
potential of Fe 3 § (note that Zfi = Z, the number of electrons in the system). This will make the effect of Fe 3 + larger than 
that calculated above. 
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n 2' = I + ( I  - x)((al cos2go ' + a2 sin2go ') + 
+x(ba cos2(go ' - 0 ) + b 2  sin2(go ' - 0 ) ) .  (8) 

Here, al ,  a2 and bl, b2 are vectors, being the values 
o f  (n 2 -  I) = 1L/n 2 for the two principal indices in 
the (oIo) section at x = 0 and x = I; 0 is the angle 
(or, where appropriate, its complement) through 
which the indicatrix rotates between x = 0 and 
x = I, and go' is the angle between al and the 
vibration direction being considered. Primed quan- 
tities (n', go') refer to general directions, others (n, go) 
to the principal indices; thus  go is an extinction 
angle, go' is not. The (n, go) may be determined by 
finding the maximum and minimum values of  n 2'. 
In addition to the assumptions implicit in (7), it is 
assumed that the transition moments of  the oscil- 
lators (which determine I) remain fixed in orienta- 
t ion as the composit ion changes. The angular 
dependence arises because the projections of  the 
transition moments on the indicatrix axes vary as 
cos go or sin go, and the I i are proport ional  to the 
squares of  the transition moments. Fig. 2 compares 
observed and calculated variations of  index and 
extinction angle in the monoclinic A1-Fe epidote 
solid solution series in which a large (95 ~ rotation 
o f  the indicatrix occurs. Considering the number 
and nature of  the assumptions used, the agreement 
is satisfactory. 

Volume dependence of  the mean index. The depen- 
dence of  the mean index h = (co2E) ~ or ~ = (~fiT) 1 on 
volume may also b~ deduced from the Helmholtz  
or Sellmeier equations if  it is assumed that I is 
proport ional  to N/V,  i.e. that Beer's law is obeyed. 
At constant (N, 2, 2t), (6b) then leads to the 
Newton-Laplace  relation V(n 2 -  I) = constant. 
This is important,  because it enables changes in 
index caused by the same substitution occurring in 
different minerals to be corrected for differences in 
dilution, placing them on a comparable basis. For  
example, fayalite contains 8 Fe z + ions in a unit cell 
of  volume 3o7 /~3, whereas the iron cordierite 
sekaninaite has the same number in a volume of  
I507 /~3. The increase in mean index caused by 
complete replacement of  Mg by Fe z + differs by a 
factor of  five, being 0-04I in cordierite and o'2o9 in 
olivine. When allowance is made for the difference 
in volume, the changes in refractivity are identical 
within experimental error, as would be expected 
from the similar (Mg, Fe) site geometries. 

Discussion. The modified Sellmeier equation (6b) 
may be  used to derive the wavelength-, volume-, 
and composition-dependence of  the refractive in- 
dices and extinction angles of  transparent mi~- 
crystals. It is clearly possible to generalize (8) to 
triclinic crystals and solid solutions with many 
components, and to allow for deviations from 
Vegard's and Beer's laws. To the extent that the 
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FIG. 2. Comparison of observed ~ and 7 indices (O) and 
extinction angles (11) of (A1, Fe) epidotes with those 
calculated using equation (8), taking values of al = 
I'8744, a2 = I'8934, bl = 2'I854, b2 = 1"9887, 0 = 5 ~ 
appropriate to F e  3 + entering the M(3) position. Data are 
from Myer (I966) and Deer, Howie, and Zussman (I962, 
1, table 33). The calculations show iron-poor epidotes 
becoming uniaxial three times within a narrow range of 
compositions. At [Fe 3+ ] -~ 0.06 and o.I3, c lies in the 
(oIo) plane, and at [Fe 3+] ~- o.Io, E is normal to (oIo). 
This behaviour accounts for the anomalous interference 
colours, rapid variation of 2V and extinction angle in 
zoned crystals, occasional crossed dispersion, and very 
rapid changes in q~ and 2V with wavelength seen in many 
clinozoisites (Johnston, I949; Deer, Howie, and Zussman, 
I96z, 1, figs. 48 and 49). The extinction angle is undefined 
at [Fe 3+ ] ~ o.I, where dq~/dx ~ 0% but this composition 
will vary with wavelength, minor element content, and 
conditions of formation. The squares of the principal 
indices vary linearly with composition, despite the 95 ~ 
rotation of the indicatrix. As An/n < 1, the individual 
indices also approximate linear variation with compo- 
sition. With increasing iron content, the indices show 
increasing positive deviations from the trend for iron 
entering the M(3 ) position, as more iron enters M(1), for 

which position bl and b 2 a r e  substantially higher. 

spectra may be related to the structure, the 
structure-dependence of  properties may also be 
found. 

Thus far, the substituents have been assumed not 
to interact, i.e. the ~ ,  2i) do not vary with compo- 
sition or volume. In general this will not  be true, 
although interactions appear to be negligible for 
most closed-shell ions, for open-shell (transition 
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metal) ions of formal charge ~< 2 in linked poly- 
hedra, and for open-shell ions of higher formal 
charge in isolated polyhedra. 

Strongly coloured materials 

Strong colours may be caused by absorption in 
the visible region by the long wavelength tails of  
bands in the near ultra-violet (e.g. hematite), by  the 
short wavelength heads of bands in the near infra- 
red (e.g. the 725 nm band responsible for the 
pleochroism of chlorite), or by bands in the visible 
region itself, e.g. that at 55o nm in the y spectrum 
of piemontite, which makes the mineral nearly 
opaque in thin section (Burns and Strens, I967). 
How does this strong absorption affect the optical 
properties? 

For  media with a strong band  in the visible 
region, the index is most easily calculated using 
a combination of Sellmeier (for bands with 
( 2 -  '~i) wi >~ I )  and Helmholtz equations: 

n 2 =  I + k 2 + S W H  (9) 

where S = IL/n z, and H is the contribution of the 
strong band in the visible, evaluated using equation 
(5a). Fig. 3 shows that the dispersion curve of 
piemontite should have a marked anomaly near 
55o nm, with changes in index of +_ o-ooz extending 
well beyond the visible region. In a crystal with 
small birefringences, extreme dispersion of both 2V 

1.85 - ~  

' \  
1.80~ \~ 

400 500 6 O0 700 
~.(nm) 

FIG. 3. Dispersion o f  N/{EI(y)} ~ ~ of a piemontite with 
one Mn 3+ ion per formula unit in the M(3 ) position 
calculated using the Sellmeier equation (6b) with I i = 2o, 
2 i = I7o nm (solid line), and using equation (9) with 
)~i = 550 nm, wi = IIO nm, a~ = 3"IoSm -1 (dashed line). 
The strong band at 55o nm in the y spectrum (Burns 
and Strens, r967) significantly affects the index through- 
out the visible region, the anomaly approaching +o.oo 7 

at 575 nm, and-o.oo6 at 525 nm. 

and extinction angle may occur near bands with 
ai > ioSm - 1. 

If  the medium is coloured by a band outside the 
visible region, the dispersion may be high (as in 
hematite), but  it will not  appear anomalous, and the 
Sellmeier equation remains a good approximation 
up to values of the linear absorption coefficient at 
which k 2 and ~2 are no longer negligible compared 
w i t h  n 2 and el. For  piemontite, a i "-~ 3.toSm -x, 
2i = 55o nm, k = o'oi3, and if n = 1.8, k2/n 2 = 
5"1o 5 which is negligible, but  ~2/~1 = o'oi4, 
which is becoming significant. In practice, the 
Sellmeier equation may be applied to media that 
transmit sufficient light to be studied in normal 
(3o /~m) thin sections, but  the Helmholtz equa- 
tions should be applied to those that are best ex- 
amined using polished surfaces and reflected light. 

Optics of opaque media 
The optical properties of an opaque medium are 

completely specified by any one of the quantities n, 
k, el, e2 given over the whole spectrum (o < 2 < oo). 
In practice, two such quantities (usually n and k, or 
e~ and e2) are specified at one or more wavelengths. 
As these properties can seldom be measured 
directly, they are usually obtained indirectly from 
reflectance measurements. The specular reflectance 
(R) at normal incidence is given by Fresnel's 
equation, written in the form: 

( N - # )  2 ( n - # ) 2  + k  2 
R - ( N  + ~ ) 2  - (n+~)2+k 2 (lO) 

where N = n - ik' is the complex refractive index of 
the opaque material in contact with a transparent 
isotropic medium (air or immersion oil) of  index #, 
and k ' =  k/n. Note that N 2 =  (n-ik')(n+ik'). In 
air, p ~- ~, and if k = o, (Io) becomes the fami- 
liar expression for the reflectance of a dielectric: 
R = ( n -  I)2/(n + I) 2. The complex refractive index 
is defined in terms of the complex dielectric func- 
tion e by: 

N 2 = g = e l + i e 2 ,  el = n 2 - k  2, e. 2 =2nk.  

As el and e2 are the solutions of the Helmholtz 
equations (5a, 5b), it is possible to relate the optical 
properties of opaque media to their spectra using 
methods analogous to those already applied to 
transparent and coloured media. For  this purpose, 
it is convenient to represent the properties in the el, 
e2 plane, rather than to plot R, n, k, el, e2 against 
wavelength. The Helmholtz equations may then be 
used to find how the observed properties (R, n, k) 
will be affected by changes in the position, width, or 
absorbance of bands in the spectrum. Conversion 
of(el, e2) to (R, n, k) is conveniently achieved using 
charts contoured in R or n and k, such as those in 
figs. 4b and 5 b. 
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FIG. 4a and 4 b. The optical properties of synthetic forsterite determined by Nitsan and Shanklaud (I976) for photon 
energies between about 4 and 14 eV. To an observer with eyes sensitive over this range, forsterite would appear 
transparent in thin (3 ~ ~tm) section well into the ultra-violet, becoming strongly coloured at about 30o nm, and opaque 
at shorter wavelengths. Similarly, materials that are opaque in the visible region usually transmit light in the infra-red, 
e.g. Wood's 097 I) work shows that stibnite (8b2S3) is transparent at photon energies below about I'3 eV (950 nm). 
a (left). Observed specular reflectance (R) of synthetic forsterite measured using unpolarized light falling at near- 
normal (82 ~ incidence on a polished (oIo) surface, together with values of n, k, and e2 obtained by Kramers-Kronig 
analysis of the reflectance data. The true reflectance is about I. 13 times the observed value, due to the effects of surface 
imperfections (with k = o'7, ). = I4O nm, a = 6 x io 7 m-  1, most of the incident light is absorbed or reflected within 2/Io 
of the surface: the measurements are therefore very sensitive to surface quality). Note the well-defined exciton band at 
8.72 eV in the s2 spectrum. The band gap is (8.72 +E)  eV, where E is the binding energy of the exciton, estimated by 
Nitsan and Shankland ([976) as about o-i eV. The band width (w) is twice the difference between the energies of the 
maxima in the n (8. I6 eV) and e2 (8"72 eV) spectra, or about I. [ eV. The maximum in the reflectance spectrum (8.58 eV) 
does not coincide with the centre of the exciton band, which is defined by the maximum in e2- The fine structure of the R, 
k, and e2 (but not n) spectra is qualitatively similar if these small energy differences are ignored, and reflectance spectra 
thus provide a good indication of the positions and relative intensities of the absorption bands, b (right). The optical 
properties of forsterite represented in the e 1-s2 plane, with reflectance contours superimposed. The markers ( � 9  are at 
intervals of I eV from I to 13 eV, and their spacing is a measure of dispersion. Note the transparent region (e2 = o) at low 
photon energies, and the increasing dispersion as the exciton band is approached. The Helmholtz equations may be used 
to calculate the displacement of any point on the curve (and, using the reflectance contours, the changes in reflectance) 

that would be caused by a given change in band energy, width, or absorbance. 

Figs. 4 and  5 show the optical propert ies  o f  
forsterite (Mg2SiOr and  covelline (CuS) p lo t ted  
convent ional ly  and  in the (e 1, e2) plane. Forster i te  is 
t ransparen t  in the  visible region, but  in c o m m o n  
with all o ther  materials  it is opaque  at energies 
above  the b a n d  gap, which marks  the first s t rong 
t rans i t ion between the valence and  conduct ion  
bands  (Kittel, I966 ). The  b a n d  gap in covelline lies 

in the infra-red, and  this mineral  is opaque  in the 
visible region. 

Inspect ion o f  the Helmhol tz  equat ions  (5 a, 5b) 
and  of  figs. 4 and  5 will show tha t  the  proximity  of  
absorp t ion  bands  makes  the optical propert ies  of  
opaque  media  much  more  sensitive to small  varia-  
t ions in b a n d  parameters  (ai, 21, w~) t han  those of  
t r ansparen t  media,  and  tha t  quite mino r  changes in 
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FIG. 5a and 5b. The optical properties of a natural covelline (CuS) determined by Gehlen and Piller (1965) by 
measurement of reflectance at perpendicular incidence in air and in oil. Diffuse reflectance spectra measured by Wood 
(197 I) suggest a band gap of about 1.2 eV, implying that covelline should be transparent at infra-red wavelengths longer 
than about I gm. a (left), values of n and k for the co and �9 vibration directions computed from reflectance data by Gehlen 
and Piller (1965). The upper part of the figure shows the dispersion of �9  (46o-66o nm) and co (42o-7oo nm) indices, and 
the lower part the dispersion of k, which has a minimum in both polarizations between 5oo and 6oo nm, indicating the 
presence of strong absorption bands in both the near ultra-violet and the near infra-red. The marked anisotropy of n 
and k leads to strong bireflection, and the dispersion of n in particular causes reflectances in air to be higher for blue 
light, giving the mineral its characteristic colour, b (right), the optical properties of covelline represented in the el-s2 
plane, with contours ofn and k superimposed. For the �9 spectrum the markers (0 )  are at intervals of4o nm from 46o to 
66o nm. For the co spectrum, the markers are at 4o nm intervals from 42o to 7oo nm (where el is about to become 
negative). The strong anisotropy of covelline is demonstrated by the complete separation of the co and �9 curves. The 
Helmholtz equations may be used to calculate the displacement of any point on the curves (and, using the n and k 
contours, the changes in those quantities) that would be caused by given changes in band energies, widths, or 

absorbances. Changes in reflectance may also be found (see fig. 4b). 

composi t ion  or crystal s t ructure  may cause major  
var ia t ions  in (R, n, k). 

The  wavelength (2i) at  which absorp t ion  occurs 
depends mainly upon  in tera tomic  distance, and  it 
will therefore be affected by pressure, temperature,  
composi t ion,  and  crystal structure. The absorbance  
(ai) depends mainly on concent ra t ion  (N i /V ) .  The 
b a n d  width  (wi) increases with the absolute  
t empera ture  and  with the concent ra t ion  of  the 
chromophore ,  and  it may be expected to vary 
inversely as some power  of  the in tera tomic dis- 
tance:  the width  is commonly  one- ten th  to one- 
th i rd  of  the t rans i t ion energy. The b a n d  shape is 
also impor tan t :  it is approximately  Gauss ian  for 
mos t  d-d bands  (which are thermally  broadened),  

but  the  s t ronger  in te rband  t ransi t ions  such as 
the O ~ Fe 3§ charge-transfer  b a n d  at 223"7 nm 
in fig. I, and the exciton band  at 8.8 eV in fig. 4a, 
approach  Lorentz ian  shape. 

The optical propert ies of  opaque  media should 
thus show marked  dependence on structure, 
composit ion,  temperature,  and  pressure, but  de- 
tailed correlat ions can only be made  when optical 
da ta  are available for all bands  tha t  contr ibute  
significantly to the propert ies at  the wavelength 
considered, i.e. measurements  mus t  extend over a 
range large compared  with the widths  of  the near- 
by absorp t ion  bands.  Reliable optical da ta  for 
opaque  minerals  are seldom available beyond the 
visible region, and  they are often confined to a 
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few discrete wavelengths in the visible. Excellent 
spectra are available for many semiconductors of 
technological importance but these are usually very 
simple in chemistry and crystal structure. 

Wood and Strens (197o) and Wood (I97I) have 
determined the diffuse reflectance spectra of  many 
important opaque oxide and chalcogenide 
minerals over the range o'5 to 6.0 eV, and these 
spectra provide some indication of the positions 
of the band gaps and of the main absorption 
bands, but values of (R, n, k) cannot be extracted 
from diffuse reflectance spectra, and information 
on the anisotropy is lost. 

Optical anisotropy 
Birefringence in weak absorbers and bireflec- 

tance in opaque phases are both caused by the 
direction-dependence of absorption, i.e. by pleo- 
chroism. The birefringence of  weak absorbers in 
the visible region depends mainly on pleochroism 
in the ultra-violet, but the bireflectanee of opaque 
phases depends also on the pleochroism of bands in 
the visible and near infra-red. The structural origins 
of pleochroism and of optical anisotropy are thus 
linked, and use of the modified Helmholtz (5 a, 5b) 
and Sellmeier (6b) equations provides an alterna- 
tive to Bragg's 0924) approach to the calculation of 
optical anisotropy from structure data when the 
structure-dependence of the spectra is known. The 
necessary spectral data are slowly becoming avail- 
able for the important transparent and strongly 
coloured phases, but for opaque phases they are 
still inadequate both in quality and quantity. 

We distinguish three cases: first, Bragg's 
methods as developed by Fawcett (r963a) may be 
applied quantitatively to many weakly absorbing 
phases of simple chemistry and structure, e.g. 
calcite (CaCO3) and rutile (TiO2). The calculation 
involves lattice sums, and requires a computer. The 
Sellmeier equation may also be used if the neces- 
sary spectroscopic data are available, and this 
requires only a four-function calculator. Secondly, 
for weakly absorbing phases of more complex 
chemistry and structure (including most minerals 
studied in thin section), the Bragg method can 
provide only qualitative results, and the Sellmeier 
or Helmholtz equations are used. Finally, for 
opaque phases, the problem is approached using 
the modified Helmholtz equations (5a, 5b), the 
calculations being within the capacity of a simple 
programmable calculator. 

Simple transparent phases. When isotropic ions 
aggregate, they distort (polarize) the electron shells 
of their neighbours and are themselves polarized by 
those neighbours. If  the crystal is of less than cubic 
symmetry, then optical anisotropy will develop. 
The strength of this anisotropy depends mainly 
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upon the geometry of the structure, the polariz- 
abilities of the ions, and the interionic distances. 
For the simple case of two ions of equal and 
initially isotropic polarizability ~ separated by a 
distance r long compared with the sum of their 
radii, and with the electric vector first parallel and 
then perpendicular to the interionic vector, the 
polarizabilities become: 

0~ O~ 
~[i - -  I - - ~ '  r162 - -  I - '}-(~/r  3) (I I )  

so that even a simple diatomic molecule is optically 
anisotropic. 

The extreme birefringence of many carbonates 
and nitrates, discussed by Bragg (1924) and by 
Hartshorne and Stuart (I96o), arises because tri- 
angular CO3 and NO3 complex anions have small 
polarizabilities along their triad axes, and large 
polarizabilities in the plane containing the three 
short O-O vectors. When such strongly aniso- 
tropic complex anions are stacked with their triad 
axes parallel, the crystal is strongly birefringent, e.g. 
in calcite co = 1.6583, ~=  1.4863, ((D--~)/(E--I) 
= o'35. When the same complex anions are dis- 
posed with cubic symmetry, as in Pb(NO3)2, the 
crystal remains isotropic. 

The link between polarizability and refractive 
index is provided by the Lorenz-Lorentz equation, 
which may be written: 

v(n2-- I'~ 4 n 
M = 

where M is the molar refractivity, and the N j, % are 
the number and polarizability ofthejth type o f  ion, 
atom, or molecule. If  M/V = t/, then the mean 
index may be recovered by: 

?1 = [ (  I + 2~])/( I - -  r])]  �89 ( I 3) 

When only one type of atom or molecule is present 
(q = I), the polarizability is related to the (li, 2) by: 

- -  I V _  Ij)L 2 
% 4 n2 Nj ~ ~-~22 (I4) 

Substitution of (14) into (Iz) then gives 05), which 
may be compared with (6b): 

/./2 - -  I I 1i,~2 ( I 5 )  
n2+2 3n ~ 22-22  

When q/> 2, it is in general no longer possible to 
calculate polarizabilities from the spectra. For 
example, in a medium containing Fe 3+ and O 2-, 
the O - Fe 3 + charge-transfer bands (fig. I) contri- 
bute strongly to 05), but their effect cannot be 
assigned to any one atom or be divided between 
atoms in any but an arbitrary way. This means 
that equations 02) and (I5) cannot be used as the 
basis of a calculation of anisotropy when q/> 2. 
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No such restriction applies to the Sellmeier and 
Helmholtz equations, which do not require the 
assumption that a particular absorption band 
belongs to a particular atom, ion, or molecule. 

Bragg's method relies on the use of the 
Lorenz-Lorentz equation, and in its original form 
suffered from two serious defects. It involved a 
slowly converging lattice sum that was difficult to 
evaluate before the arrival of computers, and it 
assumed initially isotropic polarizabilities for Ca 2 + 
and 0 2- (carbon was assumed to have negligible 
polarizability). These problems were tackled by 
Fawcett (I963a , b) and by Bolton, Fawcett, and 
Gurney (I962), who applied similar methods to 
rutile, anatase, and brookite. These authors im- 
proved the convergence of the lattice sum by 
summing over  an element having the shape of the 
unit  cell, and they also allowed for the anisotropic 
polarizability of the oxygen ions, assuming Ti 4 + to 
have a small isotropic polarizability ofo.2/~3. Each 
oxygen ion in rutile is bonded to three coplanar 
t i tanium ions, so that the electron cloud of the 
polarizable oxygens is drawn out in the (I IO) plane, 
resulting in a polarizability of I'73 A 3 for E l (I Io) 
and 2"58 A 3 for E in (xIO). This is a substantial 
advance on Bragg's method and assumptions, but 
the method is still limited to chemically and 
structurally simple phases by the need to apply 
p ( q - I )  constraints to force a solution, where p 
is the number  of non-zero elements in the polariz- 
ability tensor of the crystal, and q is the number  
of inequivalent atoms in the unit cell. 

Complex transparent phases. In compounds con- 
taining only closed-shell ions of neon or argon 
configuration ( 0  2-, F - ,  Na +, Mg 2+, A13+, Si 4+, 
K +, Ca2+), the anion polarizabilities are large 
compared with those of the cations, and this, 
combined with the effect of the o~/r 3 terms of 
equation (I I) causes the optical anisotropy of these 
compounds to be dominated by a few short anion- 
anion vectors. The optical orientations of many 
chain and sheet silicates may be rationalized if it is 
assumed that there is a concentration of O - O  
vectors near the chain axis or in the plane of the 
sheet. Thus, y often lies near the chain axis (c) in 
pyroxenes and amphiboles, and a is nearly normal 
to the sheet in most sheet silicates, with fl ~_ y in the 
plane of the sheet. In aluminosilicates, the shortest 
O - O  vectors are often those of  the shared edges of 
[A106] octahedra forming the chain. These shared 
edges are normal to the chain axis, and andalusite, 
sillimanite, zoisite, and iron-poor clinozoisite all 
have y normal to the chain. Although these applica- 
tions of the ideas advanced by Bragg (i924) , 
Wooster (I93i), and Hartshorne and Stuart (I96o) 
are qualitative, they are none the less useful. 

When open-shell (transition metal) ions, especi- 

ally those of formal charge >/3, enter the structure, 
the optics become much more confused. The 
general rule is that the anisotropy becomes more 
closely related to the distortions of the coordina- 
tion polyhedra about the transition metal ion 
(Strens, I967). Examples include the andalusite- 
viridine, jadeite-acmite, and clinozoisite- 
epidote solid-solution series. The explana- 
t ion is that the near-ultra-violet O-- .  M charge- 
transfer bands (fig. I) are polarized along the 
metal-oxygen vectors, and their 2 i increase with 
decreasing metal-oxygen distance: their contri- 
butions to the index are therefore greatest for 
vibration directions near the short M - O  bonds, 

I I OOl ] 

I0oll 

FIG. 6a and 6b: 6a (left). Structure dependence of the 
principal indices in the optic axial plane (oio) of 
A1-Fe-Mn epidotes (fig. 2 and Strens, I967). The hour- 
glass shape represents the change in index as a func- 
tion of direction caused by complete replacement of AI 
in the M(3) position by Mn 3 +. The effect of Fe 3 + is very 
similar. The increase in index is greatest for the vibra- 
tion direction near the short 0(4) Mn3+-O(8) bonds 
(I'9o, 1.86 h), and least for directions near the long 
O(I)-Mn3+-O(2) bonds (2.27, 2.03 /~). As a result, the 
indicatrix rotates very rapidly about [o IO] = ~ (see fig. 2) 
and the birefringence increases from about o.0o6 to o'048 
as Mn 3 + or Fe 3 + fills the M(3) position. This behaviour is 
to be expected if the O ~ Mn 3 + charge-transfer bands in 
the near ultra-violet move towards the visible region with 
decreasing metal-oxygen distance in the manner shown 
by the first near-ultra-violet band in synthetic piemontite 
(Langer et al., r976). Since the absorption by A1 lies in the 
vacuum ultra-violet (below ioo nm), its removal has little 
effect on either mean index or anisotropy. 6b (right). 
Structure dependence of the principal indices in the optic 
axial plane (oIo) of minerals in the jadeite-acmite solid 
solution series. The centrosymmetric oval represents the 
change in index as a function of direction caused by 
complete replacement of A1 in the M(I) position by Fe 3 + 
(Freer, I973). The increase in index is least for vibration 
directions near the long (2.I1 A) Fe3+-O(I) bonds, and 
greatest for directions near the short (I.94, 2"o3 A) bonds. 
The result is that birefringence increases with iron content 
from about o.oi2 in jadeite to 0.060 in acmite, and the 
indicatrix rotates about b=/~  from 7:[ooi]_~38~ 

(jadeite) to 7: [ooI] = 99 ~ (acmite). 
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TABLE I I .  Parameters of  the near-ultra-violet 
O ~ M n  3+ charge-transfer bands in synthetic 
piemontite. Sample thickness assumed to be I2 l~m. I 
is the integrated absorbance normalized to I'0 Mn 3 + 
per formula unit. L is 22/(22 -22). w i is the full width 
at half maximum absorbance, h i is not the wavelength 
of  maximum absorbance, but that found by taking 
moments. Source of  spectra is Langer et al. (I976) 

fig. 1 

2i(nm) wi(nm) L Ioai Io3IL 

ct'[ooi] 283"7- 53"I I'3OI7 56"2 73"2 
fl[oIo] 26I. 4 63"5 I'254o 7o'2 87"4 
?' 27o. 3 82.8 I'2664 97"6 I23"6 

and least for directions near the long bonds (fig. 6a, 
b). There is other good evidence for dependence of 
the 2 i on M-O distance, a particularly interesting 
example being the spectrum of synthetic piemontite 
described by Langer et al. (I976). This shows the 
first strong O ~ Mn 3§ charge-transfer band at 26I 
to 284 nm in all three polarizations. The bands are 
strongly pleochroic, with 2 i = 284, 261, and 270 nm 
and IOOOI i = 56, 7o, and 98 in ~, fl, and 7 spectra 
respectively (Table II). Their contributions to the 
IL  term of equation (6b) are strongly anisotropic, 
but they explain only a small proportion of the 
observed changes in index (Table III), bands 
beyond 2oo nm presumably accounting for the 
rest. Substitution of Fe 3§ into the epidote M(3) 
position has a similar effect on the optics to that 
of Mn 3 § and pleochroism of the near-ultra-violet 
O ~ Fe 3§ charge-transfer bands is predicted to 
occur in the AI-Fe epidotes. The corresponding 
charge-transfer bands in minerals containing bi- 
valent ions (Fe 2 § Mn 2 +, etc.) lie further into the 
ultra-violet, and the correlation between site dis- 
tortion and optics is much less marked. 

A particularly striking example of the structure- 
dependence of optics is provided by sphene 
(CaTiSiOs), in which the ? index coincides with the 
axis of a chain formed by corner-sharing [TiO6] 
octahedra. The average Ti-O distances parallel 
and normal to the chain axis are 1'87 and 2.0o A 
respectively. 

Opaque phases. The problem of relating optical 
anisotropy (bireflectance) in opaque phases to the 
structure is essentially that of determining how the 
energies, and to a smaller extent the intensities and 
widths, of absorption bands depend on interatomic 
distance and other structural variables. More and 
better spectroscopic data are urgently needed, but 
some useful work can be done using published k 
values to estimate the magnitude of the % and 
diffuse reflectance spectra (Wood, 197 I) to establish 
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TABLE I I I .  Effect on the optical properties of  
clinozoisite at 589"3 nm of bands having the proper- 
ties given in Table I I  calculated using equation (6b) 

Ct'[OOI] fl[OlO] ~' 

(/'tD 2 - -  I )  c l i n o z o i s i t e  I'8934 1"88o5 I'8744 
IL from Table II(a)* o'o073 o'oo87 o"o124 
calc. change in nD* 0.0022 0 " 0 0 2 5  0"0037 
obs. change in no* 0"0322 0 'o543 o.o86o 

* For complete replacement of A1 in M(3) by Mn 3+ 
(Freer, I973). 

approximate band widths, positions, and relative 
intensities. Use of equations (5a, 5b) and charts 
relating el, e2 to (R, n, k) then allows one to 
investigate the likely causes of anisotropy. 

Discussion and conclusions 

The mineralogical literature contains abundant 
descriptions of optical properties, but remarkably 
few discussions of the reasons why particular 
minerals display particular properties. The origins 
of  the optical properties of the commonest non- 
opaque minerals are seldom understood even 
qualitatively, and few quantitative studies have 
been attempted. There can be few fields of scientific 
endeavour in which so little progress has been 
made in the last century, or in which so many 
workers make and use observations of properties 
without knowledge or understanding of their ori- 
gin. With the increasing availability of spectral and 
structure data, and the development of  methods of 
calculating the effect of changes in structure on 
spectra (e.g. Wood and Strens, 1972; Tossell et al., 
I974), a quantitative rather than a descriptive 
approach to mineral optics has become possible. 

One of the simplest tools used by the minera- 
logist is the optical variation diagram, which ex- 
presses the relationship between composition and 
indicatrix orientation (extinction angle) and shape 
(principal indices). Many assumptions are implicit 
in the use of such diagrams, which do not in general 
provide a satisfactory representation of the optical 
properties of structurally and chemically complex 
crystals. For  example, many diagrams show scatter 
or curvature because differences in cation distribu- 
tion lead to different optical properties for crystals 
of identical bulk composition (see Deer, Howie, 
and Zussman, 2, 257 , 296 , 298; 4, I3O and I31). 
Only when compositional variables are properly 
defined (using site populations rather than bulk 
compositions when necessary), and variations in 
concentration per unit volume are considered, does 
it become possible to determine the true depen- 
dence of refractivity on composition, to detect 
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deviations from linearity caused by the interaction 
of  substituents, and to test the equations of crystal 
optics against the experimental data. 

The wavelength-dependence (dispersion) and 
volume-dependence of optical properties are rather 
more easily described, at least for transparent 
minerals in the visible region, and for small varia- 
tions in volume. However, there are no less than 
three equations that may be used to calculate the 
volume-dependence of indices (Lorenz-Lorentz, 
Newton--Laplace, and Gladstone-Dale),  and these 
will be compared in a later paper. 

The quantitative treatment of  optical anisotropy 
still presents problems, but  as our knowledge and 
understanding of mineral spectra expands, the 
origins of anisotropy will become increasingly 
clear. The urgent need is for measurements of the 
ultra-violet spectra of transparent minerals, with 
particular emphasis on establishing the dependence 
of  absorption band parameters (ai,)~i, Wi) upon 
interatomic distance and other structural variables. 
Among the opaque minerals, the need is for more 
accurate data spanning a wider range of wave- 
lengths (say from 20o to zooo nm) rather than 
measurements restricted to the visible region (4oo 
to 7o0 nm). Because of the proximity of strong 
absorption bands, the optics of opaque minerals 
will show extreme sensitivity to changes in wave- 
length and composition, and it may ultimately 
prove easier to account for the anisotropy of 
opaque than of transparent phases. 

It is often useful to represent the optical proper- 
ties of opaque materials in the el-e2 plane rather 
than as plots of n, k, R against wavelength or 
photon energy. Apart from the ease with which 
el and e 2 may be calculated from the spectra 
using the Helmholtz equations, values of (R, n, k) 
may be found (figs. 4 b, 5b). 

The second and third papers in this series will 
apply the cl~/ssical theory to the optical properties 
of  common transparent and opaque minerals. 
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