Bahianite, $Sb_3Al_5O_{14}(OH)_2$, a new species

PAUL B. MOORE

Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637, U.S.A.

CARLOS DO PRADO BARBOSA

Praca N.S. da Glorida 135-207, Rio de Janeiro 20000, Brazil

AND

RICHARD V. GAINES

Hoffecker Road, Pottstown, Pennsylvania 19464, U.S.A.

SUMMARY. Bahianite, Sb₃Al₅O₁₄(OH)₂-Sb₃Al₅(Al, Be, Si)_{<2}O₁₆, monoclinic, a 9:406(6), b 11:541(8), c 4:410(3) Å, β 90:94(3)°, Z = 2, space group C2/m, is a new species from the Paramirim region, south central Bahia state, Brazil. It occurs as water-worn pebbles ('favas') with quartz, andalusite, kyanite, diaspore, eskolaite, cassiterite, etc. Colour tan to cream, crystals in vugs colourless, tan or pale violet. Specific gravity ranges from 4:89 to 5:46 (5:26 g cm⁻³ for Sb₃Al₅O₁₄(OH)₂); hardness 9, cleavage {100} perfect, lustre adamantine, biaxial (-), 2V large, $\alpha = 1.81$, $\beta = 1.87$, $\gamma = 1.92$, dispersion r > v.

The crystal structure represents a new type and is based on hexagonal close-packed oxygens. It is related to the structure of simpsonite $Ta_3Al_4O_{13}(OH)$.

BAHIANITE, a new species whose detailed crystal structure was recently reported (Moore and Araki, 1976), has been found only in stream gravel concentrates and not in place in rock. Samples were submitted to the Government Analytical Laboratory in Rio de Janeiro where it was first recognized as a new species by Carlos Barbosa, who first investigated its composition and properties.

It was first observed in cassiterite concentrates by garimpeiros (= prospectors) mining tin ores in the Paramirim region, south central Bahia state, Brazil, near the village of Paramirim das Crioulas, Municipio de (County of) Agua Quente. Subsequently it has been found elsewhere in the region, roughly within a 25-km radius of the Pico das Almas in the Serra das Almas, usually in cassiterite concentrates.

The Serra das Almas is a NW.-SE. trending range lying about 25 km east of the city of Paramirim in the County of Paramirim. The highest points in the range attain an altitude of about 2000 m, and most of it is accessible only on foot or on horseback. Bahianite has been observed in the counties of Agua Quente, Rio das Contas, Livramente do Brumado, and Paramirim, all of which are traversed by the Serra das Almas with the Pico das Almas at the juncture of three of them. Approximate geographic coordinates of the Pico das Almas are $13^{\circ} 33'$ S. $41^{\circ} 57'$ W.

The geology of the region has not been studied in detail, but is believed to be complex, comprised mainly of pre-Cambrian metamorphic units, and sandstones, serpentine, quartzites, and rhyolite or rhyodacite. Gold and cassiterite are recovered from the placers, and there are known to be prospects for copper, zinc, and other metals. It is not possible to assess any genetic connection between cassiterite and bahianite, which quite likely are of different origins. The cassiterite is definitely associated with the extrusive units, and is of the wood-tin variety, which occurs in shallow, high-temperature environments.

Minerals found in the placers with the bahianite include quartz, and alusite of the bright green gem variety (viridine), kyanite, diaspore, zincian staurolite, cassiterite, gold, and eskolaite in small sharp crystals. The bahianite itself is found as abraded and water-worn pebbles, more or less bean-shaped. whence the local term 'favas'. The largest piece seen was 17 grams, but a garimpeiro in the region reported having seen pieces well over 100 grams in weight. The larger pieces are seldom pure, but commonly contain inclusions of quartz. They are polycrystalline and often show radial-fibrous structure. The pebbles are often vuggy, the vugs being lined with crystals of bahianite which, although lustrous, present curved facets unsuitable for goniometric measurement.

Owing to the lack of material found in situ, it is

Iobs	$I_{\rm calc}$	$d_{ m obs}$	$d_{ m calc}$	hkl	I	obs	$I_{\rm calc}$	$d_{\rm obs}$	$d_{\rm calc}$	hkl
	29	_	7.291	110			5		1.396	203
	15	—	5.771	020	2	0	3	1.392	1.396	442
70	90	4.712	4.702	200	7	0	29	1.373	1.377	640
40	46	4.425	4.409	001	2	0	5	1.353	1.356	133
20	23	3.794	3.794	ĪII	I	0	I	1.328	1.332	532
20	19	3.765	3.752	111	_	_	8	_	1.318	281
10	8	3.648	3.645	220	3	ob	8	1.313	1.314	281
30	32	3.564	3.261	130	5	_	15	-	1.309	043
30	23	3.508	3.204	021	5	ob	5	1.305	1.306	172
100	100	3.541	3.243	2 01	1		3	1.285	1.287	602
100	100	3.194	3.191	201	_		4	- 5	1.268	730
	2	_	3.025	310		ob	3	1.264	1.268	602
30	24	2.885	2.885	040	3		7	1.253	1.257	243
20	15	2.825	2.827	221	J.		4	1.238	1.240	570
	13	_ 0_5	2.792	221	I		5	1.226	1.230	480
50b	35	2.772	2.779	ī31	10		4	1.219	1.230	372
~	30	- 11-	2.762	131	I			1.219	1.213	372
20	10	2.209	2.513	311	10		4	1.206	I 213 I 207	082
	10	2 309	2.476	311	I		3		•	571
70	53	2.457	2.470	240	I		4	1·194 1·187	1·197 1·190	571
	55 16	2 45/	2 439 2·430				5	,	1.190	5/1 481
70	58	2.411		330	I		4	1.179		
	50 21		2.414	041	_		5		1.176	642 800
40		2.349	2.321	400	40		5	1.173	1.175	800
20 80	10	2.206	2.205	002	I		3	1.165	1.167	282
	55	2.156	2.156	241 	20		5	1.128	1.161	642
 7.0	17		2.140	331	49		7	1.149	1.121	4 43
10	10	2.121	2.117	331	4		7	1.132	1.132	<u>4</u> 43
50	24	2.060	2.061	401	20		3	1.115	1.112	533
10	6	2.008	2.009	2 02	44		II	I·100	I·102	004
30	14	1.982	1.984	202	20		6	1.000	1.001	ī73
20	7	1.877	1.880	ī32	20		5	1.087	1.088	173
30	13	1.823	1.823	440	20	D C	6	1.084	1.080	<u>5</u> 72
30	10	1.754	1.752	042	I	C	7	1.079	1.081	603
50	24	1.693	1.692	 41	-		14		1.028	 482
50	24	1.672	1.672	44 I	_	-	4		1.022	204
70	35	1.648	1.649	2 42	40	c	7	1.076	1.076	572
70	38	1.632	1.635	242	30	C	12	1.069	1.070	482
_	11	_	1.642	170	20	C	8	1.062	1.063	603
70	23	1.624	1.622	 402	40	c	10	1.060	1.001	841
30	18	1.589	1.595	402	20		10	1.022	1.023	841
10	8	1.280	1.586	531	30		8	1.043	1.044	802
_	8		1.570	531	20		6	1.041	1.043	1.11.
20	5	1.263	1.567	600	20		8	1.038	1.039	373
_	10	_	1.525	171	10		7	1.033	1.032	681
30b	10	1.518	1.522	171			8		1.032	373
20	7	1.479	1.485	Ğ01	_		9	-	1.030	802
20	6	1.464	1409	601	_		2	_	1.020	083
10	5	1.424	1.459	370		ob	6	1.028	I 029 I∙029	681
30	13	1 437 1·436	1.439	080			11	1020	1.029	771
	13 7	- 430	1'442 1'414	442				1.013	1.010	7/1 1.11.1
30b		I·407			30		13	1.008	-	
300	7	1.401	1.409	2 03	50	נ	15	1.009	1.009	2 44

TABLE I. Bahianite. X-ray powder data*

* 114.6 mm camera diameter, Fe- K_{α} radiation. The sample was a spherical powdered aggregate, and the film was corrected for shrinkage. The observed spacings were corrected for absorption effects and are here reported after the correction was made. The calculated data obtain from the structure study of Moore and Araki (1976).

not possible to ascertain the paragenetic setting for bahianite. We speculate that it is a metamorphic product, formed at moderate temperatures, of preexisting weathered and oxidized antimony ores that are recrystallized in a locally peraluminous environment. The chemical content of bahianite pebbles is quite variable and they commonly contain subsidiary amounts of W, Ti, Fe, Be, and Si, again suggesting the existence of local concentrations of pre-existing weathered and subsequently agglomerated ores and siliceous matter.

Physical properties. Bahianite is most commonly tan to cream in colour. Crystals in vugs may be colourless, tan, or pale violet. Other colours noted in the pebbles are orange-brown to brown. The colour variation seems to be associated with variation in composition, with the orange varieties corresponding to a content of several per cent Ti. Specific gravities, based on pure grains from selected pebbles, are: 4.89, 4.98, 5.05, 5.16, 5.23, 5.29 (Berman torsion balance); and 5.08, 5.17 (pyknometer). The clear crystal, a portion of which was used towards the structure analysis, gave 5.46 (Berman microbalance). The computed density for $Sb_3Al_5O_{14}(OH)_2$ is 5.26 g cm⁻³ but we provide evidence further on that the structure tolerates additional and variable amounts of other cations.

Crystals, although too rough for goniometric measurements, are commonly striated; cleavage

 $\{100\}$ perfect; lustre adamantine; hardness 9. The mineral is highly resistant to attack by acids or bases and wet chemical analysis required fusion in Na₂CO₃.

X-ray crystallography. Bahianite is monoclinic, pseudo-orthorhombic, space group C_2/m , a =9.406(6) Å, b = 11.541(8) Å, c = 4.410(3) Å, $\beta =$ $90.94(3)^{\circ}$, Z = 2 for Sb₃Al₅O₁₄(OH)₂. Crystal cell parameters were obtained by least-squares refinement of the powder data in Table I. The crystal structure, known in detail (R = 0.046 for)1044 independent F_0 , is allied to simpsonite $Ta_3Al_4O_{13}(OH)$ in that both compounds are based on hexagonal close-packed oxygens parallel to {001}. In bahianite the structure is based on layers of [Al₅O₁₄(OH)₂] edge-sharing sheets cornerlinked at adjacent layers to linear [Sb₃O₁₄]¹³⁻ trimers, representing a unique structure type (Moore and Araki, 1976). Since the b-axis is parallel to the chain component in the edge-sharing sheets, $\sqrt{3b/2} \sim a$.

Optical properties. Biaxial (-), $2V_{\alpha}$ large, $\alpha = 1.81$, $\beta = 1.87$, $\gamma = 1.92$ all ± 0.01 ; dispersion r > v. Utilizing the ideal formula and the Gladstone-Dale relationship, $\langle n \rangle = 1.90$.

Chemical composition. Like simpsonite, bahianite is variable in composition and this results from both substitution over the four non-equivalent octahedral (M) sites in the structure and the

	I	2	3	4	5	6	7
Sb ₂ O ₅	(55.35)	56.70	57.86	n.d.	(63.6)	57.28	5.61
Al_2O_3	(41.10)	35.23	35.21	(33.3)	(38.9)	35.37	10.98
Fe_2O_3	(0.94)	I·24	0.90	1.0	(< 0.1)	1.04	0.21
WO ₃	n.d.	1.34	1.05	n.d.	(< 0.1)	I·20	0.08
BeO	(1.08)	n.d.	0.55	0.95	n.d.	0.75	0.42
SiO ₂	1.03	n.d.	n.d.	n.d.	(< 0.1)	1.03	0.27
CaO	(1.00)	n.d.	n.d.	n.d.	(< 0·I)	_	-
H_2O^+	n.d.	n.d.	n.d.	2.77	n.d.	2.77	(4.87)
Total	(100.5)	94.21	95.87	(38.02)	(102.6)	99 [.] 44	17.62

TABLE II. Bahianite analyses*

* Results in parentheses are semi-quantitative and were not used in the final average. Water was determined by the Penfield tube technique, the sample fused in anhydrous Na_2CO_3 .

n.d. = not determined.

1. Barbosa, by wet chemical means.

2. A. M. Clark, British Museum (Natural History), electron probe analysis.

3. N. Schuhwerk, Kawecki Berylco Industries.

4. J. Ito, by wet-chemical techniques. Pale-yellow grains.

5. A. J. Irving, by electron microprobe, using Sb metal and corundum standards. The analysis is semi-quantitative.

6. Average of 1-4, with the exception of results in parentheses.

7. Cations per cell based on (6), specific gravity = 5.46 and V = 487.66 Å³. H was not included in the sum.

possibility of partial tetrahedral (T) occupancy. Moore and Araki (1976) have demonstrated that in both simpsonite and bahianite, tetrahedrally coordinated cations can exist without violating electrostatic principles and that the upper compositional limit for bahianite is $2M_8T_2O_{16}$, where all electrostatically favoured tetrahedral sites are occupied. It was further proposed that Si and Be, and excess Al reported in some of the analyses, may indeed partially occupy these available sites.

Partial chemical analyses are presented in Table II and the averaged results were used to calculate cell contents. Neglecting the presence of water the cation cell contents nearly balance the anhydrous oxide fraction, that is, $Al_{10.98}Sb_{5.61}Fe_{0.21}^{3.2}W_{0.08}$ Be_{0.47}Si_{0.27}O_{32.06}, or partitioning over octahedral and tetrahedral sites, $\Sigma M = Al_{10.10}Sb_{5.61}Fe_{0.21}^{3.2}W_{0.08}$ (= 16.00) and $\Sigma T = Al_{0.88}Be_{0.47}$ Si_{0.27} (= 1.62). This yields a calculated density of 5.31 g cm⁻³ and an average of 3.1 electrons per tetrahedral site.

Thus, bahianite's formula can be written as a series $Sb_3Al_5O_{14}(OH)_2-Sb_3Al_5(Al, Be, Si)_{<2}O_{16}$. The crystal structure analysis, indeed, supports the presence of disordered hydroxyl groups, although electron density was not definitely established over the tetrahedral sites, doubtless owing to a low residual density over these sites distributed in a matrix of rather high mean atomic number.

Name and disposition of the type specimen. The name bahianite refers to the State of Bahia from within which state the specimens were found. The sample that formed the basis of the structure analysis, the powder pattern, and the semi-quantitative electron probe analysis is designated as the type and is deposited in the U.S. National Museum of Natural History (Smithsonian Institution), Washington, D.C., U.S.A.

Acknowledgements. We thank Mr. N. Schuhwerk of Kawecki Berylco Industries, Dr. A. M. Clark of the British Museum (Natural History), Dr. J. Ito, and Dr. A. J. Irving for the chemical analytical results; and Dr. T. Araki for preparation of the calculated powder data.

REFERENCE

Moore (P. B.) and Araki (T.), 1976. Neues Jb. Mineral., Abh. 126, 113.

[Manuscript received 20 July 1977]