Clinopyroxene with $Si < Al_{IV}$ in the join CaFeAlSiO₆-CaTiAl₂O₆

KOSUKE ONUMA AND MASAHIDE AKASAKA

Department of Geology and Mineralogy, Hokkaido University, Sapporo, o6o, Japan

SUMMARY. Unusual clinopyroxenes were synthesized in the study of the join CaFeAlSiO₆-CaTiAl₂O₆ in air at 1 atm. Clinopyroxene solid solution, hibonite solid solution, X-phase, perovskite, and corundum are present, and at subsolidus temperatures the clinopyroxene singlephase field extends up to about 19 wt % CaTiAl₂O₆. The CaTiAl₂O₆ component in the clinopyroxene however increases beyond the clinopyroxene solid solutions are extremely poor in SiO₂ and extremely rich in Al₂O₃, Fe₂O₃, and TiO₂, and more than half of tetrahedral sites are occupied by Al₁v, contravening the aluminium avoidance principle.

THE system CaMgSi₂O₆(Di)-CaAl₂SiO₆(CaTs)- $CaFeAlSiO_{6}(FATs)-CaTiAl_{2}O_{6}(Tp)$ is important in evaluating the role of pyroxene in the differentiation of undersaturated alkalic rocks (Onuma and Yagi, 1975). In the course of the study of this system an unusual aluminous clinopyroxene with synthesized near the join $Si < Al_{IV}$ was $CaFeAlSiO_6$ -CaTiAl₂O₆ in the subsystem CaMgSi₂O₆-CaFeAlSiO₆-CaTiAl₂O₆ (Akasaka and Onuma, 1980). The study of the join CaFeAlSiO₆-CaTiAl₂O₆, therefore, is needed to understand the phase relation and the nature of this anomalous clinopyroxene. Onuma and Yagi (1971) made a preliminary study of this join and demonstrated that the clinopyroxene single-phase field extends from CaFeAlSiO₆ to FATs₈₀Tp₂₀ at 1 atm, indicating that the $CaTiAl_2O_6$ component can enter into the CaFeAlSiO₆-pyroxene structure (the compound CaFeAlSiO₆ is stable at 1 atm and has the clinopyroxene structure C_2/c (Hijikata, 1968)): in other words, a clinopyroxene with Si <Al_{IV} possibly exists.

In this paper we describe the results of a reinvestigation of the phase relation in the join $CaFeAlSiO_6$ -CaTiAl₂O₆ in air at I atm and the nature of anomalous clinopyroxene, and discuss the possibility of contravention to the aluminium avoidance principle.

Phase relation. Starting materials were prepared by sintering mixtures of TiO_2 , Fe_2O_3 , Al_2O_3 , SiO_2 ,

and $CaCO_3$ at 1200 °C for 14 days with intermediate crushing. The experiments were performed by the quenching method. The data given in Table I and the phase relations obtained from these data are shown in fig. 1. The duration of runs was 2-3 hours above 1350 °C, 5-6 hours around 1300 °C, and 7-14 days, sometimes 30-90 days, below 1250 °C.

In the CaFeAlSiO₆-rich portion clinopyroxene, perovskite, hibonite, and an X-phase were encountered and a liquidus for hibonite was confirmed. The X-phase occurs as prismatic crystals and shows distinct pleochroism (X' pale yellow, Z') reddish brown), weak birefringence, high relief, and straight extinction. A similar phase was first found by Hijikata and Onuma (1969) in the join CaMgSi₂O₆-CaFeAlSiO₆, and later Akasaka and Onuma (1978) in the join CaMgSi₂O₆- $CaFeAlSiO_6$ -CaTiAl₂O₆, who gave an average composition $Ca_{1.9} Mg_{1.3} Fe_{3.6}^{3+} Al_{3.0} Ti_{0.2} Si_{1.4} O_6$. The X-phase obtained in the join CaFeAlSiO₆- $CaTiAl_2O_6$, however, may be similar to that reported in the join CaSiO₃-Fe₂O₃-Al₂O₃ by Huckenholz et al. (1974) (2CaO \cdot 4(Fe³⁺,Al)₂O₃ \cdot SiO₂), because both joins do not contain magnesium.

The hibonite has also a prismatic form and shows high relief, pleochroism (X' pale brown, Z' reddish brown), and straight extinction. Its *d*spacings shift regularly with changing bulk composition, indicating this phase to be a solid solution. The hibonite obtained from the composition FATs₇₅Tp₂₅ at 1200 °C contains a considerable amount of iron (SiO₂ 0.6, TiO₂ 4.6, Al₂O₃ 52.0, Fe₂O₃ 34.1, CaO 7.5, and total 98.8 wt %). The ideal formula for the hibonite solid solution is therefore CaAl_{12-x}Fe_xO₁₉ with subordinate amount of Ti.

At subsolidus temperatures in the CaFeAlSiO₆rich portion, fields of clinopyroxene single-phase and clinopyroxene + perovskite + hibonite are present. At 1275°C the clinopyroxene single-phase field attains FATs₈₁Tp₁₉ and this field diminishes

K. ONUMA AND M. AKASAKA

Composition (wt %)		Dulana	T in the					
FATs	Тр	Primary phase	Liquidus temp. (°C)	Data at low temperatures (°C)				
95	5	x	not. detd.	X + gl > 1300 > Cpx + X + gl > 1287 > Cpx only				
90	10	Hib	1370	Hib + gl > 1327 > Hib + X + gl > 1323 > X + gl > 1303 > X + Cpx + gl > 1287 > Cpx only				
87	13	Hib	not detd.	Hib + gl > 1315 > X + gl > 1299 > X + Cpx + gl > 1293 Cpx only				
85	15	Hib	1380	Hib + gl > 1304 > Hib + Cpx + gl > 1288 > Cpx only				
82	18	Hib	not detd.	Cpx only at 1250 & 1200				
80	20	Hib	1388	Hib + gl > 1325 > Hib + X + gl > 1304 > Hib + Cpx + gl > 1275 > Hib + Cpx + Pv + gl > 1268 > Cpx + Pv + (Hib)				
75	25	Hib	1395	$ \begin{array}{l} Hib + gl > 1304 > Hib + X + gl > 1300 > Hib + Cpx + gl > 1278 \\ > Hib + Cpx + Pv + gl > 1258 > Cpx + Pv + Hib \ (no \ gl) \end{array} $				
72	28	Hib	not detd.	$Cpx + Hib + gl > 128_3 > Cpx + Hib + Pv + gl, Cpx + Hib + Pv + (An) (no gl) at 1200$				
70	30	Hib	1403	Hib + gl > 1294 > Hib + Cpx + gl > 1287 > Cpx + Hib + Pv + An? + gl,Cpx + Hib + Pv + An? (no gl) at 1200				
68	32	Hib	not detd.	$Hib + gl \ 1288 \ Hib + Cpx + Pv + gl$				
60	40	Hib	"	Hib + gl > 1394 > Hib + Pv + gl > 1287 > Hib + Pv + Cpx + gl, Hib + Cpx + Pv + (An) (no gl) at 1250				
50	50	Hib	**	Hib + gl > 1369 > Hib + $Pv + gl > 1287 >$ Hib + $Pv + Cpx + gl$, Cpx + Hib + $Pv + An$ (no gl) at 1200 °C				
40	60	not detd.	"	Hib + Pv + gl > 1285 > Hib + Pv + Cpx + (An) + gl > 1250 > $Cpx + Hib + Pv + An (no gl)$				
30	70	"	"	$\begin{aligned} & \text{Hib} + Pv + Gl > 1264 > \text{Hib} + Pv + Cpx + (An) + gl > 1250 \\ & \text{Hib} + Pv + Cpx + An (no gl) \end{aligned}$				
20	80	"	,,	$Hib + Pv + (An) + gl > r_{275} > Hib + Pv + An (no gl)$				
10	90	»» »	>> >>	Hib + Pv + (An) + gl > 1215 $Hib + Pv + Cd + An + gl > 1290> Hib + Pv + Cd + An (no gl)$				

TABLE I. Results of quenching experiments

above this temperature. This fact indicates that the CaFeAlSiO₆-pyroxene incorporates the CaTiAl₂O₆ component at least up to 19 wt %. This clinopyroxene solid solution melts incongruently to X-phase+liquid or hibonite+liquid (fig. 1). In the central portion of the phase diagram, large fields of hibonite+liquid at high temperature and clinopyroxene+hibonite+perovskite at subsolidus temperatures are present, and between these fields the assemblage clinopyroxene+ hibonite+perovskite+liquid was confirmed.

In the CaFeAlSiO₆-poor portion, the assemblages clinopyroxene + perovskite + hibonite + anorthite (in the composition $FATs_{30}Tp_{50}$, $FATs_{40}Tp_{60}$, and $FATs_{30}Tp_{70}$), perovskite + hibonite + anorthite (in the composition of $FATs_{20}Tp_{80}$), and perovskite + hibonite + corundum + anorthite (in the composition of $FATs_{10}Tp_{90}$) were encountered at subsolidus temperatures. The anorthite is formed by the reaction:

 $2CaFeAlSiO_6 + 5CaTiAl_2O_6 =$

$$\begin{array}{c} \text{CaAl}_2\text{Sl}_2\text{O}_8 + 5\text{CaTiO}_3 + \text{CaAl}_{10}\text{Fe}_2\text{O}_{19}.\\ \text{anorthite} \qquad \text{perovskite} \qquad \text{hibonite} \end{array}$$

The assemblages including anorthite above the solidus (except perovskite + hibonite + corundum + liquid) were estimated from those of neighbouring fields, because the anorthite is sometimes difficult to identify with the microscope or by X-ray diffraction. In such a case the anorthite is shown in parenthesis in the phase diagram (fig. 1).

Since at low temperature the join CaFeAlSiO₆-CaTiAl₂O₆ is regarded as a part of the fivecomponent system CaO-Fe₂O₃-Al₂O₃-TiO₂-SiO₂, the assemblages clinopyroxene + hibonite + perovskite + anorthite + liquid and hibonite + perovskite + corundum + anorthite + liquid are univariant, and as indicated by the subsolidus assemblages, crystallization ceases on the univariant line or on the divariant surface, because clinopyroxene and hibonite form solid solutions.

Clinopyroxene solid solutions. The X-ray diffraction patterns of the clinopyroxene solid solutions synthesized in this study at 1200 °C for 30 days, were compared with those of CaFeAlSiO₆pyroxene indexed in the space group C2/c (the powder pattern data were published elsewhere

FIG. 1. Phase diagram of the join CaFeAlSiO₆-CaTiAl₂O₆. Cpx, clinopyroxene solid solution; Hib, hibonite solid solution; X, X-phase; Pv, perovskite; Cd, corundum; An, anorthite.

(Onuma and Akasaka, 1979)). The unit-cell parameters of CaFeAlSiO₆-pyroxene were recalculated on the basis of the X-ray powder diffraction data obtained by Hijikata (1968) with the following results: a 9.785, b 8.783, c 5.364 Å, β 105.84°, V 443.5 Å³.

The cell parameters change linearly with an increase of the CaTiAl₂O₆ component up to 25 wt %; a(0.018 Å/10% Tp), c(0.009 Å/10% Tp), and $V(1.6 \text{ Å}^3/10\% \text{ Tp})$ increase and b(-0.001 Å/10% Tp) decreases slightly (Table II, fig. 2). There are, however, discontinuities in the curves between FATs₇₅Tp₂₅ and FATs₇₂Tp₂₈, and all the cell-parameters decrease with the bulk composition of the join, indicating that the nature of solid solution changes.

The compositions of these clinopyroxene solid solutions were analysed with the microprobe (Table III). The clinopyroxenes crystallized from the starting materials of $FATs_{85}Tp_{15}$ and $FATs_{82}Tp_{18}$ have the same compositions as those of the starting materials (Table III) within experimental error, supporting the result of quenching experiment which show only clinopyroxene solid solution as the stable phase in this field. The CaTiAl₂O₆ component in the clinopyroxene increases beyond the single-phase field and attains 23 wt% (Table III).

It is noted that the clinopyroxene solid solutions are extremely poor in SiO₂ and extremely rich in Al₂O₃, Fe₂O₃, and TiO₂, and when the atomic ratios are calculated on the basis of O = 6, Si in the tetrahedral sites is < I per formula unit (Table III).

In the experimental study of the $3MnO \cdot Al_2O_3 \cdot 3SiO_2-3Y_2O_3 \cdot 5Al_2O_3$ system, Yoder and Keith (1951) showed that the complete substitution of aluminium for silicon in an orthosilicate. Forman (1951) reported a xanthophyllite which has more aluminium than silicon in the tetrahedral sites (Al/Si = 2.8/1.2). However, clinopyroxene with Si < Al has never been found in natural rocks or in synthetic systems.

Discussion. As described above, the clinopyroxene in the join CaFeAlSiO₆-CaTiAl₂O₆ are extremely poor in SiO₂ and rich in Al₂O₃, and Si in tetrahedral sites is < 1 per formula unit. If the deficiency of Si is compensated by Al, more than half of the tetrahedral sites are occupied by Al. This assumption contravenes the aluminium avoidance principle. To avoid this contravention, the distribution of Ti in tetrahedral sites must be assumed to make Si + Ti = 1 per formula unit. Hartman (1969), however, claimed that the relative preference of Al, Fe³⁺, and Ti for the tetrahedral sites in silicate is demonstrated to be in the order

K. ONUMA AND M. AKASAKA

Composition (wt %)							
FATs	Тр	<i>a</i> (Å)	b(Å)	<i>c</i> (Å)	β(°)	$V(A^3)$	
100	0	9.785(2)	8.783(1)	5.364(2)	105.84(3)	443.5(2)	
85	15	9.812(4)	8.776(1)	5.377(2)	105.78(4)	445.6(3)	
82	18	9.819(5)	8.777(I)	5.381(2)	105.74(4)	446.3(3)	
80	20	9.821(2)	8.781(1)	5.383(1)	105.69(3)	446.9(2)	
75	25	9.828(1)	8.780(1)	5.386(1)	105.71(2)	447. 4 (1)	
72	28	9.816(2)	8.767(1)	5.320(1)	105.73(2)	445.6(2)	
, 70	30	9.805(3)	8.766(1)	5.376(1)	105.78(4)	444.7(2)	
60	40	9.803(5)	8.769(1)	5.377(2)	105.88(4)	444.6(2)	
50	50	9.803(4)	8.767(1)	5.374(2)	105.92(4)	444.1(2)	

TABLE II. Unit-cell parameters of the clinopyroxenes crystallized at 1	210 °C for 30 days in the system
$CaFeAlSiO_6$ - $CaTiAl_2O_6$	

 $FATs = CaFeAlSiO_6$. $Tp = CaTiAl_2O_6$.

Bulk comp. (wt %)	FATs 85 Tp 15 Cpx		FATs 82 Tp 18 Cpx		FATs 80 Tp 20 Cpx + Pv + (Hib?)		FATs 75 Tp 25 Cpx + Pv + Hib		FATs 70 Tp 30 Cpx + Pv + Hib	
phase assemb.	S.M.	Срх	S.M.	Срх	S.M.	Срх	S.M.	Срх	S.M.	Срх
SiO ₂	20.68	20.50	19.95	20.00	19.46	19.84	18.25	19.17	17.03	19.18
TiO ₂	5.04	5.23	6.04	5.94	6.72	6.60	8.39	7.58	10.07	7.68
Al_2O_2	23.97	23.44	24.64	24.50	25.08	24.87	26.19	25.72	27.30	26.79
Fe_2O_3	27.49	26.44	26.51	26.35	25.86	25.58	24.25	23.98	22.62	22.96
CaO	22.83	22.46	22.86	22.91	22.88	22.45	22.92	22.77	22.77	22.88
Total		98.07		99.70		99.34		99.22		99.49
Cations per 6 or	ygens									
Si		0.85		0.82		0.81		0.78		0.78
Al ^{IV}		1.15		1.18		1.19		1.22		1.22
		2.00		2.00		2.00		2.00		2.00
Al ^{VI}		0.00		0.00		0.01		0.02		0.06
Ti		0.16		0.18		0.20		0.23		0.2
Fe ³⁺		0.83		0.81		0.79		0.74		0.70
Ca		I.00		1.01		0.99		1.00		1.00
		1.99		2.00		1.99		1.99		1.99
End-member co	mponents									
FATs		83.7		81.8		79.7		74.8		71.4
Тр		15.7		17.7		19.8	•	22.8		23.0
CaTs		-0.3		0.2		0.3		1.6		5.0
Total		99.3		99.7		99.8		99.2	•	99.4

TABLE III. Compositions of the clinopyroxenes crystallized at 1200 °C for 30 days in the join $CaFeAlSiO_6$ -CaTi Al_2O_6

Al \ge Fe³⁺ > Ti. Later this suggestion was supported by Huggins *et al.* (1977) in their study of synthetic titanium garnet, and if this holds for clinopyroxene the Si-deficiency should be compensated by Al and Fe³⁺ rather than by Ti.

The clinopyroxene crystals obtained in this study, however, are too small in size to carry out a structural analysis. Therefore, cell parameters were used to estimate the type of substitution. The c parameter is affected by both cation distribution in tetrahedral sites and M1/M2 sites (Peacor, 1967), but the former is more sensitive to change (Sakata, 1957; Clark et al., 1962). Sakata gave the change in c parameter for each 0.1 Al per formula unit +0.008 Å. Onuma et al. (1968) demonstrated that the change in c parameter by Si \rightleftharpoons Ti substitution in the CaMgSi₂O₆-CaMgTi₂O₆ is 0.0039 Å/I wt % $CaMgTi_2O_6$, which corresponds to 0.033 Å for each 0.1 Ti per formula unit. The change in c parameter of the clinopyroxene obtained in this study is 0.009 for each 0.1 Al and Ti per formula unit.

Comparing the data in this study with those of Sakata (1957) and Onuma *et al.* (1968), the value 0.009 is too small to assume the Si \rightleftharpoons Ti substitution in tetrahedral sites and is very similar to the value 0.008 given by Sakata (1957) for MgSi \rightleftharpoons AlAl substitution. If the cation distribution in tetrahedral sites is more effective to the change of c parameter than that in MI sites, the coupled substitution Fe³⁺Si \rightleftharpoons TiAl is the more probable cause of the Si deficiency in tetrahedral sites than the Si \rightleftharpoons Ti substitution.

In our previous study on the join CaMgSi₂O₆-CaFeAlSiO₆-CaTiAl₂O₆ (Akasaka and Onuma, 1980), we also showed that the Si deficiency in the tetrahedral sites is compensated by Al, resulting in formation of clinopyroxene with Si < 1 per formula unit.

In the clinopyroxene obtained in this study, since sufficient Al is present to compensate for Si deficiency in the tetrahedral sites, Ti^{4+} and Fe^{3+} are indicated as being placed in octahedral sites. Some workers pointed out that the CaFeAlSiO₆pyroxene, because ferric iron occupies tetrahedral sites, should be expressed as Ca($Fe_{1-x}^{3+}Al_x$)^{IV}(Al_{1-x} Fe³⁺)^{IV}SiO₆ (Ohashi and Hariya, 1973; Huckenholz *et al.*, 1974). The results of the structural analysis of the CaFeAlSiO₆-pyroxene (Ghose *et al.*, 1975) or Al-pyroxene from Oka (Peacor, 1967), however, indicate that essentially all the tetrahedral sites are occupied by Si and Al with negligible amount of Fe³⁺ and Ti⁴⁺.

The clinopyroxenes obtained in this study could be completely indexed in the space group C_2/c as shown before. Indexing the aluminous pyroxene as C_2/c requires complete Al-Si disorder on tetrahedral site (Peacor, 1967; Okamura *et al.*, 1974; Wood and Henderson, 1978) and hence contravenes the aluminium avoidance principle.

Okamura *et al.* (1974) stated: there are domains with short-range Al-Si order in $CaAl_2SiO_6$ clinopyroxene, and random distribution of Al and Si among tetrahedral sites does not necessarily mean that the aluminium avoidance rule is violated. Wood (1976) on the basis of thermodynamical analysis suggested that Al-Si order is implied in the tetrahedral sites of CaMgSi₂O₆-CaAl₂SiO₆ clinopyroxene series. Newton *et al.* (1977) also suggested that there is some Al-Si order at the CaAl₂SiO₆ end of the CaMgSi₂O₆-CaAl₂SiO₆ series.

The clinopyroxenes in this study, however, have excess Al in tetrahedral sites, and therefore despite the above suggestion, the result in this study indicates that the aluminium avoidance principle is violated in the clinopyroxene with $Si < Al_{IV}$.

Recently a notable study in this line was carried out by Ohashi *et al.* (1979), which strongly supports our conclusion. They made a structural analysis of a clinopyroxene having the composition of Ca_{1.00} Sc_{0.84}Ti_{0.27}Al_{1.16}Si_{0.73}O₆, and demonstrated that this clinopyroxene belongs to the space group C2/cand the tetrahedral sites are occupied by 36.5 atomic % Si, 58 % Al, and only 5.5 % Ti which are distributed in a completely disordered state. They concluded on the basis of this fact that the Al-O-Al bond exists in this pyroxene and the aluminium avoidance principle is violated.

Thus in the single-phase field of clinopyroxene solid solution, all the CaTiAl₂O₆ component enters into the CaFeAlSiO₆-pyroxene structure with the Fe³⁺Si \rightleftharpoons TiAl substitution and the cell parameters change linearly. In the clinopyroxene + perov-skite + hibonite field, perovskite, hibonite, and CaAl₂SiO₆ component are formed by the following reaction and the CaAl₂SiO₆ component enters into the clinopyroxene structure in addition to the CaTiAl₂O₆ component:

$$2CaFeAlSiO_{6} + 4CaTiAl_{2}O_{6} = 2CaAl_{2}SiO_{6} + 3CaTiO_{3} + (CaO + 3Al_{2}O_{3} + 2Fe_{2}O_{3} + TiO_{2})$$

The amounts, however, are too small to produce an effect on the variation trends of the cell parameters.

The clinopyroxene in the composition $FATs_{70}Tp_{30}$, which crystallized as clinopyroxene + hibonite + perovskite at 1200 °C, has the CaAl₂SiO₆ component (Table III), and the Al_{IV}/Si ratios in the tetrahedral sites of the clinopyroxenes crystallized from the compositions of $FATs_{75}Tp_{25}$ and $FATs_{70}Tp_{30}$ are the same, suggesting that the Fe^{3} +Si \rightleftharpoons TiAl substitution reaches a maximum at

FIG. 2. Unit-cell parameters of the clinopyroxene solidsolution in the join CaFeAlSiO₆-CaTiAl₂O₆ crystallized at 1210 °C for 30 days.

the composition of FATs₇₅Tp₂₅, and in the region richer in the CaTiAl₂O₆ component than this composition only the Fe³⁺ \rightleftharpoons Al substitution in *M*I sites occurs and this may be a cause of the decrease of cell parameters (fig. 2). Huckenholz *et al.* (1974) showed that the entrance of the CaAl₂ SiO₆ component into the CaFeAlSiO₆-pyroxene decreases the cell parameters considerably. In the clinopyroxene+hibonite+perovskite+anorthite assemblage, the CaAl₂SiO₆ component is also expected from the following reaction:

$$\begin{array}{l} 4CaFeAlSiO_{6} + 4CaTiAl_{2}O_{6} = CaAl_{2}SiO_{6} + \\ 4CaTiO_{3} + CaAl_{8}Fe_{4}O_{19} + CaAl_{2}Si_{2}O_{8} \\ & \text{perovskite} \end{array}$$

Acknowledgements. The authors gratefully acknowledge the encouragement received from Professor K. Yagi during the present study and his critical reading of the manuscript. Mr S. Terada helped us in the laboratory and in the preparation of the figures. Mr H. Kuwahata also helped us in microprobe analyses. Part of the cost of this study was defrayed by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- Akasaka (M.) and Onuma (K.), 1978. J. Fac. Sci., Hokkaido Univ. ser. 4, 18, 409-32.
- Clark (S. P., Schairer (J. F.), and de Neufville (J.), 1962. Carnegie Inst. Wash. Yearbook, 61, 59-68.
- Forman (S. A.), 1951. Am. Mineral. 36, 450-7.
- Ghose (S.), Wan (C.), Okamura (F. P.), Ohashi (H.), and Weidner (J. R.), 1975. Acta Crystallogr. Sect. A 31, 76.
- Hartman (P.), 1969. Mineral. Mag. 37, 366-9.
- Hijikata (K.), 1968. J. Fac. Sci., Hokkaido Univ. ser. 4, 14, 149-57.
- —— and Onuma (K.), 1969. J. Japan. Assoc. Mineral. Petrol. Econ. Geol. **62**, 209–17.
- Huckenholz (H. G.), Lindhuber (W.), and Springer (J.), 1974. Neues Jahrb. Mineral. Abh. 121, 160-207.
- Huggins (F. E.), Virgo (D.), and Huckenholz (H. G.), 1977. Am. Mineral. 62, 475-90.
- Newton (R. C.), Charlu (T. V.), and Kleppa (O. J.), 1977. Geochim. Cosmochim. Acta 41, 369-77.
- Ohashi (H.), Fujita (T.), and Ii (N.), 1979. J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 74, 280-6.
- Okamura (E. P.), Ghose (S.), and Ohashi (H.), 1974. Am. Mineral. 59, 549-57.
- Onuma (K.) and Akasaka (M.), 1979. J. Fac. Sci., Hokkaido Univ. ser. 4, 19, 29-35.
- Hijikata (K.) and Yagi (K.), 1968. J. Fac. Sci., Hokkaido Univ. ser. 4, 14, 111-21.
- and Yagi (K.), 1971. Abstract of 18th Symp. Artf. Min. Japan.
- Peacor (D. R.), 1967. Am. Mineral. 52, 31-41.
- Sakata (Y.), 1957. Japan. J. Geol. Geogr. 28, 161-8.
- Wood (B. J.), 1976. Am. Mineral. 61, 599-602.
- Yoder (H. S.) and Keith (M. L.), 1951. Am. Mineral. 36, 519-33.

[Manuscript received 28 January 1980;

revised 7 March 1980]