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ABSTRACT. A set of pyribole structures can be derived 
from a model /-beam containing two distinct silicate 
chains in which the tetrahedra are rotated by different 
amounts. The model allows some tetrahedral distortion 
and is not bound by the parity rule (Thompson, 1970). 
A subset of pyribole structures which includes all the 
commonly occurring types can be defined using a new 
rule: that the structure may contain two types of tetra- 
hedral layer, but no tetrahedral layer may contain two 
types of tetrahedral chain. This rule is more fundamental 
than the parity rule and has its origin in the optimization 
of the edge-to-edge packing of the tetrahedral chains into 
layers. Pnm21 (amphibole) and Pbc21 (pyroxene) emerge 
as space groups for 'low protopyriboles'. The approach 
used here leads naturally to the -- and x -chains notation 
of Thompson used by Veblen and Burnham (1978). 

In  1970, J. B. Thompson drew attention to the 
relationships among the crystal structures of the 
pyroxenes, the amphiboles and the micas (including 
talc) and revived the term 'biopyribole '  to describe 
this 'polysomatic series' (Thompson, 1978). Pos- 
sible geometrical arrangements for the structures 
of pyroxenes and amphiboles (the 'pyriboles') were 
also considered by Thompson (1970) and the 
applicability of his ideas to the real structures of 
amphiboles (Papike and Ross, 1970) and pyroxenes 
(Papike et al., 1973) was soon explored. 

The pyribole structures are all composed of 
building units usually called ' / -beams'  (Papike and 
Ross, 1970) which consist of a strip of cation octa- 
hedra II c sandwiched between two chains of SiO4 
tetrahedra (fig. 1). The combinat ion of the octa- 
hedral strip and two silicate double chains in the 
amph ibo le / -beam has a mirror plane J- b which 
appears in the space group. The two single silicate 
chains in the pyroxene / -beam combined with the 
narrower octahedral strip give a c-glide .L b in 
that case, as do the triple silicate chains and wider 
octahedral strip in j imthompsonite  (Veblen and 
Burnham, 1978). The amphibole structure is used 
here to illustrate the derivation of possible structure 
types but  similar arguments apply to the pyroxenes 
and jimthompsonite.  

The packing of the/ -beams in pyribole structures 
is shown schematically for amphibole in fig. 2. The 
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chains of tetrahedra are packed edge to edge in 
layers ][ (100), with the apices of tetrahedra in 
alternate double chains in amphiboles, alternate 
single chains in pyroxenes, pointing in opposite 
directions along the normal to (100) (i.e. a or a sin fl). 

An idealized version of the double chain of SiO4 
tetrahedra in the amphibole structure is shown in 
fig. 3(a). In  the 'fully extended chain', the six- 
membered rings of tetrahedra are perfectly hex- 
agonal. In  real amphibole structures, tetrahedra 
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FIGs. 1 and 2. FIG. 1 (above). The '/-beam' building units 
of the amphibole (left) and pyroxene (right) structures are 
made up of a strip of M 0  6 octahedra (labelled Oct) 
sandwiched between chains of SiO4 tetrahedra (Tet). F1G. 
2 (below). The/-beams pack together to form the amphi- 
bole structure in such a way that the tetrahedra lie in 
layers I (100) (marked Tet) with tetrahedra in alternate 

chains pointing along + a sin fl and - a sin ~. 
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FIGS. 3 and 4. FIG. 3 (above). (a) Idealized fully extended 
double chain in amphibole in which the rings of six tetra- 
hedra are perfectly hexagonal. Rotation of the tetrahedra 
about a sin fl in the directions shown by the arrows in 
(b) leads to the partially rotated chain (c) in which the 
symmetry of the six-membered rings of tetrahedra is 
reduced to trigonal. FIG. 4 (below). Rotation of the tetra- 
hedra in the chains can occur in two senses relative to 
the adjacent octahedral strip: O-rotation when the tri- 
angular bases of the tetrahedra point in the Opposite 
direction along c to the nearest triangular faces of the 
octahedral strip; S-rotation when the basal triangles of 
the tetrahedra and the nearest octahedron faces point in 
the Same direction along c. O- and S-rotations are shown 
for completely rotated tetrahedra when the six-membered 
rings of tetrahedra form triangles. Partial rotations may 

occur in either of the senses O or S. 

are rotated about the normal to (100) as in fig. 3(b), 
and the symmetry of the six-membered ring is 
reduced to trigonal (fig. 3(c)). Distortions of a 
similar kind occur in the single tetrahedral chains 
of the pyroxene structure. 

Thompson (1970) proposed a model for the 
pyribole structure types which took into account 
the possibility of tetrahedral rotation. If the rota- 
tions are completed so that the six-membered ring 
of tetrahedra forms a triangle (fig. 4), it becomes 
clear that the rotation of the tetrahedra may occur 
in two senses relative to the adjacent octahedral 

strip. The triangular tetrahedron faces normal to 
a sin fl may be in the same orientation as the nearest 
triangular faces of the octahedral strip (S-rotation, 
fig. 4) or oppositely orientated, i.e. with their 
corners 'pointing' in opposite directions (O- 
rotation, fig. 4). Partial rotations of the tetrahedra 
may occur in either of these two senses. 

The direction of the octahedral strip must also 
be defined. Following Papike and Ross (1970), it 
is taken to be positive (+)  if the lower triangular 
faces of the octahedra viewed towards - a *  have 
one corner pointing in the +c  direction. If the 
lower faces have one corner pointing in the - c  
direction, the strip direction is said to be negative 
( - ) .  As Law and Whittaker (1980) have pointed 
out, the octahedral strip direction has no absolute 
meaning as its definition depends on the choice 
of the +c crystallographic axis. However, the 
relative directions of the octahedral strips need to 
be considered in deriving possible/-beam arrange- 
ments, in which the octahedral strip directions may 
differ. 

Thompson (1970) shows that the edge-to-edge 
packing of chains of rotated tetrahedra into layers 
II (100) should in principle limit the possible com- 
binations of partial O- and S-rotations and octa- 
hedral strip directions. The constraint imposed is 
expressed in the 'parity rule': where the tetrahedral 
layer lies between similarly directed octahedral 
strips, the tetrahedra in the two chains must be 
rotated in the same sense. A tetrahedral layer 
between oppositely directed octahedral strips must 
have alternate chains rotated in opposite senses. 
The set of model pyribole structures derived by 
Thompson (1970) is based on this 'parity rule'. 
Following this rule, two types of tetrahedral chain 
have been defined: .-chains, lying in layers be- 
tween similarly directed octahedral strips, and 
x-chains, lying in layers between oppositely 

directed octahedral strips (Veblen and Burnham, 
1978). 

The complete O- and S-rotations shown in fig. 
4 bring the oxygen atoms into cubic and hexagonal 
dose-packed arrays (Thompson, 1970; Papike et 
al., 1973). Law and Whittaker (1980) have derived 
a set of model pyribole structures from the possible 
sequences of close-packed oxygen planes. Using 
this approach, the 'parity rule' emerges as an 
inevitable consequence of the stacking of close- 
packed planes. The limitations of a close-packed 
model and the atomic arrangements predicted by 
it are discussed by Law and Whittaker. 

A further model for the pyroxene structures has 
been proposed by Pannhorst (1979), which uses a 
different notation allowing for both extended and 
rotated chains. 

The model structures so far derived have shed 
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much useful light on the tetrahedral chain distor- 
tions and the cation coordination in real pyriboles. 
However, the models have two major drawbacks: 
they predict many possible structural arrange- 
ments which are not found in nature, and at the 
same time fail to include arrangements (notably 
ortho- and proto-pyribole) which do exist. 

These difficulties arise essentially because chains 
of fully or partially rotated tetrahedra do not satis- 
factorily represent the real pyribole structural units, 
in which the distortion of the tetrahedra themselves 
can play an important role. 

As pointed out by Law and Whittaker (1980), 
the models all assume that the structure type is 
controlled by the stacking of layers along a or 
a sin ft. The key factor controlling the structure type 
is actually the lateral linking of the/ -beams along 
the b axis via the M4 (amphibole) or M2 (pyroxene) 
cations (Whittaker, 1960a, b). 

This paper presents a structural model for the 
pyriboles which is closer to the real structures. The 
model allows for some distortion of the tetrahedra 
and the constraints imposed by layer stacking 
along a or a sin fl are removed. The set of polytypes 
predicted is directly related to those which actually 
occur. The derivation also helps to clarify the 
factors controlling the atomic packing and shed 
some light on the phase transformations between 
the pyribole structure types. 

Structural model for an I-beam. As in previous 
models, the / -beams  (fig. 1) are assumed to have 
along their centre line an idealized strip of octa- 
hedra sharing edges and containing the M 1 cations 
in pyroxene and the M3, M1, and M2 cations in 
amphibole. For the M2 sites in pyroxene and 
the M4 in amphibole, no assumptions are made, 
though of course these cations must have a reason- 
able coordination polyhedron if a structure is to 
be capable of existence. The model thus permits 
some change in the polyhedra at the edges of the 
/-beam. 

The direction of the octahedral strip is defined 
in the same way as in previous work (see above). 

The tetrahedra in each of the two chains in the 
/-beam are assumed to be partially O- or S-rotated; 
the actual sense of rotation in each chain is 
unspecified. The two chains are assumed to have 
different partial rotations and the letters P and Q 
are introduced to denote these in order to em- 
phasize that the sense of the rotations is unspeci- 
fied and that the rotations are partial (Law and 
Whittaker (1980) use O and S for complete rota- 
tions). The P and Q notation should not be con- 
fused with Thompson's (1978) use of P and M for 
pyroxene and mica slabs, nor with the use of P 
and N by Sueno et al. (1976) to describe differences 
in M2 coordination in pyroxene. 

A n / - b e a m  can be denoted P + Q but can take 
up other orientations P - Q ,  Q + P, Q -  P, accord- 
ing to the direction of the octahedral strip and the 
sequence of the two types of tetrahedral chain along 
a sin fl (fig. 5). 

The effect of symmetry operations on an / -beam 
with partially rotated tetrahedral chains can be 
derived in the same way as for fully rotated chains 
(Law and Whittaker, 1980). No symmetry opera- 
tion will alter the sense (O- or S-) or the magnitude 
of the tetrahedral rotations P and Q. Such an 
operation may, however, alter the sequence of the 
two kinds of tetrahedral chain P and Q along.the 
direction a sin fl and/or reverse the octahedral strip 
direction. Thus starting from P+Q, 180 ~ rotation 
about a sin fl reverses the octahedral strip direction 
but does not affect the sequence oftetrahedral strips 
and gives P - Q  (Table I). Reflection in a plane 
perpendicular to a sin fl reverses both the sequence 
of tetrahedral chains and the octahedral strip 
direction, giving Q - P .  Table I gives the effect of 
symmetry operations on all the orientations of an 
/-beam; the information in the table matches Table 
A1 of Law and Whittaker (1980) in which the letters 
O and S (complete rotations) correspond to P and 
Q (different partial rotations). 

The effect of symmetry operations on the I- 
beams can be used to derive the space groups of 
possible arrangements as illustrated for complete 
rotations in Table A2 of Law and Whittaker (1980). 
Selected arrangements of / -beams derived here are 
shown with their full space group symmetry (Tables 
II, III). 

For the purpose of deriving space groups, P and 
Q represent distinct tetrahedral chains such that an 
/-beam containing P and Q chains is affected by 
symmetry operations in the ways shown in Table 
I. If the requirements of this table are met, some 
distortion of the tetrahedra in the P and Q chains 
and of the octahedra is permitted by the model, 
and it is in this respect that the model differs 
fundamentally from that of Thompson (1970). 
Some kind of distortion of the tetrahedra and the 
outermost regular M cation octahedra (M1 in 
pyroxene, M2 in amphibole) is associated with the 
adjustment of the structure where the 'parity rule' 
is violated (Papike and Ross, 1970; Sueno et al., 
1976). In principle, therefore, the present model has 
a mechanism by which parity violations can be 
accommodated. 

Derivation of possible stacking arrangements. The 
possible stacking arrangements are described for 
the amphibole structure in which the/-beams have 
a mirror plane perpendicular to the b axis. The 
space groups for the corresponding arrangements 
in pyroxene can be derived by substituting a c-glide 
plane perpendicular to b. 
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TABLE I .  Effect of s~nmetry operations On I-b~m~ 

Operation: 180 ~ rotat ion about Reflection perpendicular to 

asinB b c asinB b c 

P+Q becomes P-Q Q+P Q-P Q-P P+Q P-Q 

P-Q becomes P+Q Q-P Q+P Q+P P-Q P+Q 

Q+P becomes Q-P P+Q P-Q P-Q Q+P Q-P 

Q-P becomes Q+P P-Q P+Q P~<~ Q-P Q+P 

P+P becomes P-P P+P P-P P-P P+P P-P 

P-P becomes P+P P-P P+P P+P P-P P~'P 

TABLE I f .  Model ( i )  Packing of l-beoms with a single-layer a repeat 

Model (1): Al l  I-beams in a stack along a or asinB iden t i ca l l y  
orientated�9 

Model (1) with a l l  tetrahedra] s t r ips equivalent (P=Q) 

(~)(i) Adjacent stacks s im i la r l y  orientated 

�9 P + Q . P + Q . P + Q . Om (amphibole) 

+ Q . P § Q . p + Q . p + ce (pyroxene) 

(1)(ii) Adjacent stacks with oppositely directed octahedral 
s t r ips 

�9 p + Q �9 p + Q �9 p + Q . p21~m~ (amphibole) 

- Q . P - Q . p - Q . P - P21on (pyroxene) 

( 1 ) ( i i i )  Adjacent stacks with order of tetrahedral str ips 
reversed 

. P + Q . P + Q . P + Q .  

+p  -,.Q-+-p-.. Q +P . Q + - -  

, . P �9 Q . p ~. Q . p + Q . p21/m (amphibole) 

+ P ~-'Q~-~.P-.i Q + P . Q + - -  P21/c (pyroxene) 

. P + Q . P + Q . P + Q .  

4 4 
( / ) ( i v )  Adjacent stacks with both order of tetrahedral str ips 

and octahedral s t r ip  direct ion reversed 

. P + Q  . P + Q  . P + Q  . 
_ p : . . . ~ . - . ~ . . .  Q - p . Q - . .  

. P ~ ~ .  ~ + Q p + Q Pnm2/ (amphibole) 

- P ~--Q..---P.-" Q P Q ~ Pbe21 (pyroxene) 

. P + Q  . P + Q  . P + Q  . 
I I 

i ; 

(~)(v) 

(1)(vi) 

~ 

. p + p  P + P . P + P  , 

+ P :-.p--+..p..~ p + P . P + 

- -  . p S p  P ~ P . P + P . - -  

+ P ~--P-.+--P..i P + P . P + 

. P + P . P + P . P + P .  

. P + P  P + P . P + P .  

- -  - p : - -p - . - . p . . :  p - p . P - 

 ip. p+p- 
_ _  - p " . .p - - - . .p . . {  p - p . P - 

.P+P  P + P . P + P .  

! i 
I I 

C2/m (amphibole) 

C21o (wroxene) 

P ~  (amphibole) 

" ~ ' p b c n  (pyroxene) 

a 

The symmetry operators of the amphibole space group are marked on selected stacking diagrams. 
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TABLE Ill. Model8 (2)-(4) ~oking of I-beo~ with a two-~yer a repeat 

Model (2): Alternate I-beams in  a stack have the l r  octahedral 
str ips oppositely directed. 

(2 ) ( i )  Adjacent stacks s imi la r ly  orientated 

'P+Q'P'Q'P+Q' C 
(~ !,,p,-+,-Q�9 p § �9 

- -  �9 P i Q �9 P - Q . P • Q . ~ P21~*~ (amphibole) 

- -  " Q ~"P"+'~'m:'mP"-"Q"I P + ~ P21ea (pyroxene) 

�9 P + Q . P - Q . P + Q . 2h+k=4n for  h/<O reflections 

( 2 ) ( i i )  Adjacent stacks with oppositely directed octahedral str ips 

�9 P + Q . P - Q �9 P + Q . Equivalent to (2 ) ( i )  

+ Q . P - Q . P + Q . p -  

( 2 ) ( i i i )  Adjacent stacks with order of tetrahedral str ips reversed 
i I 

i i 

. P + Q . P - Q . P §  
- P :"Q"§ Q + "- "~ 

P + Q �9 P " Q . P .& Q . �9 z>nn~ (amphibole) 

- -  P i"q"+"~.. : . .Q..-- t~.. i  Q + ~. Pboa (pyroxene) 

. P + Q . P - Q . P + Q .  

(z)(iv) Adjacent stacks with both order of tetrahedraI str ips and 
octahedral s t r ip  direction reversed 

�9 P + Q . P - Q . P + Q . Equivalent to ( 2 ) ( i i i )  

+ P . Q - p . Q + P . Q - 

Model (4): Alternate I-beams in a stack have both the order of the 
tetrahedral str ips reversed and the octanedral str ips 
oppositely directed 

(4)(i) Adjacent stacks similarly orientated 

�9 P + Q �9 Q - P . P + Q . z~n2~ (amphibole) 

" P " P + Q ' Q - P - P + Pbe21 (pyrexene) 

2h+k=4n for  /d<O reflections 

( 4 ) ( i i )  Adjacent stacks with oppositely directed octahedral str ips 

�9 P + Q - Q ~ P �9 P + Q - P21/m {amphibole) 

+ P . P - Q . Q + P . P - P21/e  (pyroxene) 

B = go ~ 

2h+k=4n for h]<O reflections 

Adjacent stacks with order of tetrahedral str ips reversed 

�9 P + Q - Q - P . P + Q . Equivalent to ( 4 ) ( i i )  

- Q . Q + P . P - Q . Q + 

Adjacent stacks with both order of tetrahedral str ips and 
octahedral s t r ip  direction reversed 

�9 P + Q �9 Q - P . P + Q . Equivalent to (4 ) ( i )  

+ Q m Q " p l P + Q . Q -- 

( 4 ) ( i i i )  

(4 ) ( iv )  

Model (3): Alternate I-beams in a stack have the order of the 
tetrabedral str ips reversed. 

(3) ( I )  Adjacent stacks s imi lar ly  orientated 

�9 P + Q . q + P . P + Q . P21/m (amphibole) 

+ P . P + Q . Q + P . P + P21/e (pyroxene) 

2h+k=4n for hkO reflectlons 

( 3 ) ( i i )  Adjacent stacks with oppositely directed octahedral str ips 

�9 P + Q . Q + P . P + Q . Pn~21 (amphibole) 

- P . P - Q . Q - P . P - Pbe21 (pyroxene) 

2h+k=4n for  hkO reflections 

( 3 ) ( i i i )  Adjacent stacks with order of tetrahedral str ips reversed 

�9 P + Q . Q + P . P + Q . Equivalent to (3 ) ( i )  

+ Q . Q + P . P + Q . Q +  

(3) ( iv )  Adjacent stacks with both order of tetrahedral str ips and 
octahedral s t r ip  direction reversed 

�9 P + Q . Q + P . P + 0 . Equivalent to ( 3 ) ( i i )  

- Q . Q - P . P - Q . Q -  

Models (2) and (4) with a l l  tetrahedral str ips equivalent (P-Q) 

I i 
i i [-~ 

(2)(v) . P + p . p - p . p + p . 

- -  _ p :..p--+--p--:--p..---p-.~ p + "~ 

. p + p  . ' ~ -  p . * ~ . p  , 
: ,J , a :  

- -  - P b.p. .+-#.-~- .p--- . -P--~ P + 

. P + p . p - p . p + P .  

b J ' I '  

)_ 

a 

~ (amphibole) 

Pboa (pyroxene) 

2h+k=4n for  hkO reflections 

The symmetry operators of the amphibole space group are marked on selected stacking diagrams. 
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FIG. 5. Different orientations of an/-beam represented 
as P+ Q, P - Q ,  Q+P, and Q - P  in the notation adopted 
here. P and Q denote differing tetrahedral rotations in 
the two chains, and + and - the directions of the 
octahedral strip. The different orientations of the/-beam 
result from reversing the sequences along a sin fl of the 
two kinds of tetrahedral chain (P and Q) and (or) reversing 

the direction of the octahedral strip. 

We shall restrict ourselves throughout to model 
structures containing only one kind of/-beam. The 
identical/-beams may, however, take up different 
orientations (fig. 5) when they are packed together. 

Because we are now considering a model with 
chains of partially rotated tetrahedra, the constraint 
on the stacking sequence imposed by the require- 
ment of close-packed oxygen planes is no longer 
applicable�9 In Thompson's (1970) terms, the 'parity 
rule' may be violated; it is known that such parity 
violations can be accommodated in real structures 
(Papike and Ross, 1970; Papike et al., 1973) and 
are accompanied by distortion of the tetrahedra 
in the chains (Veblen and Burnham, 1978), and of 
the cation polyhedra at the edges of the /-beam 
(Sueno et al., 1976). Since the present model permits 
such distortion there is no reason a priori to adhere 
to the parity rule, and it is therefore disregarded 
in the discussion which follows�9 

Consider first a model (1) in which all the 
/-beams in a stack along the a axis are identically 
orientated, i . e . .P  + Q. P + Q�9 P + Q. The adjacent 
stack may be (i) similarly orientated, (ii) have the 
octahedral strip oppositely directed, (iii) have the 
order of the tetrahedral chains reversed, or (iv) have 
both the octahedral strip direction and the order 
of the tetrahedral chains reversed�9 These four 
arrangements and their space groups are shown in 
Table II together with the two special cases, (v) 
and (vi), which arise when the tetrahedra in the 
two chains of t he / -beam are identically rotated. 
Models (i) (i)-(vi) all have one / -beam per repeat 
unit in the a direction, i.e. a ~ 9 A. 

The structures derived in Table II already include 

three of the four known amphibole structure types�9 
In order to account for orthoamphibole, we must 
extend the model to include arrangements with two 
/-beams per repeat unit in the a direction i.e. 
a ~ 18 A. This can be done by allowing the stacks 
in the a direction to have alternating sequences of 
/-beams in different orientations, for which there 
are three possibilities: 

(2) Alternate /-beams have their octahedral 
strips oppositely directed, i.e. 

.P+Q.P-Q.P+Q. 
(3) Alternate I-beams have the order of the tetra- 

hedral strips reversed, i.e. 
. P + Q . Q + P . P + Q .  

(4) Alternate I-beams have both the order of the 
tetrahedral strips reversed and the octa- 
hedral strips oppositely directed, i.e. 

. P + Q . Q - P . P + Q .  

In each case, the second stack may be related 
to the first in the four ways (i)-(iv) described for 
model (1), giving in principle 12 possibilities for 
models (2)-(4), which are detailed in Table III. 

Equivalences reduce the number of topologically 
distinct possibilities to six. The way in which these 
equivalences arise can be seen, for example, in 
model (2), in which the first stack has the sequence 
�9 P + Q. P -  Q. P + Q. Reversing the octahedral strip 
direction in the second stack [model (2) (ii)] gives 
�9 P -  Q. P + Q. P -  Q., which is equivalent to leav- 
ing the orientation unchanged [model (2) (i)]. In 
the same way, in model (3), the first stack has 
�9 P + Q. Q + P.  P + Q. and reversing the order of 
the tetrahedral chains [model (3) (iii)] gives 
�9 Q + P.  P + Q�9 Q + P. ,  which is also equivalent to 
leaving the orientation unchanged [model (3) (i)]. 

A number of the possibilities in Table III  have 
non-space group symmetry�9 For  example, in (2) (i), 
if we consider the projection down the c-axis, we 
find the point �88189 has exactly the same environment 
as the origin 0,0. This extra symmetry gives rise to 
an additional reflection condition 2h + k = 4n for 
the hkO reflections�9 

Successive tetrahedral chains in the a direction 
are displaced relative to each other by an amount 
which depends principally on the size of the M4 
cation and the 0 5 - 0 6  interchain contacts (Whit- 
taker, 1960a, b). The direction of this displacement 
is controlled by the direction of the octahedral 
strip�9 The postulated structures with orthorhombic 
symmetry in Tables II and III all contain equal 
numbers of + and - octahedral strips in the a 
repeat as they must if fl is to be 90 ~ Monoclinic 
structures such as (3) (i) (Table III) have all their 
octahedral strips similarly directed so that f l r  90 ~ 
Structure (4) (ii) (Table III) is exceptional in having 
monoclinic symmetry with fl = 90 ~ as the repeat 
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unit contains equal numbers of + and - octa- 
hedral chains. 

When we consider the special case in which the 
tetrahedral chains are all similarly rotated, i.e. 
P=Q, model (3) reduces to model (1) with one 
/-beam in the a repeat; (3) (i) becomes the same as 
(1) (v), (3) (ii) the same as (1) (vi). Similarly, model 
(4) becomes the same as model (2) and (2) (iii) the 
same as (2) (i). It  thus turns out that there is only 
one possible arrangement with two/-beams in the 
a repeat, for a structure with only one kind of tetra- 
hedral chain, and this is shown as (2) (v) in Table 
III. This arrangement has the same space group, 
Pnma, as orthoamphibole ((2) (iii) in Table III) but 
has the additional non-space group symmetry 
giving the reflection condition 2h + k = 4n for hkO 
reflections. 

Comparison with other sets of structural models. 
The structural possibilities described by Law and 
Whittaker (1980) are derived for close-packed 
oxygen planes, i.e. for fully rotated tetrahedral 
chains, Thompson's (1970) treatment emphasizes 
the sense of the chain rotations but his 'parity rule' 
amounts to the assumption that oxygen packing 
controls the possible structure types. 

The structural models described in Tables II and 
III can be related to those of Thompson (1970) 
and Law and Whittaker (1980) if the letters P and 
Q are taken to represent O and S rotations. 

The following structures obey the 'parity rule' 
and match structure types listed by Thompson 
(1970) and by Law and Whittaker (1980): (1) (ii) 
P21mn, (1) (iii) P2x/m , (1) (v) C2/m and (4) (ii) P21/m 
(fl = 90 ~ (Tables II and III). Structure (1) (v) with 
space group C2/m corresponds to two possibilities 
listed by Thompson (1970) and by Law and Whit- 
taker (1980), one with all O and one with all S 
rotations�9 The possible structure with P2/m sym- 
metry and one / -beam in the a repeat (Thompson, 
1970; Law and Whittaker, 1980) does not arise in 
the approach adopted here as it contains two 
different kinds of / -beam, O + O and S -  S. 

All the other postulated structure types in Tables 
II and III violate the 'parity rule' and therefore lie 
outside the schemes of Thompson (1970) and Law 
and Whittaker (1980). 

If the present model were to encompass all the 
possibilities listed by Law and Whittaker (1980) 
plus those violating the 'parity rule', it would need 
to be extended still further�9 The constraint that the 
structure must contain only one type o f / - b e a m  
would have to be relaxed. If we took two kinds of 
tetrahedral strip present in equal numbers, this 
would allow structures like 

�9 P + P .  P + P .  . P + P .  Q + Q . P + P .  
o r  

+ Q . Q + Q . Q +  + P . P + Q . Q + P . P +  

which contain two or three different kinds of 
/-beam. To get the ful! range of possibilities, we 
should also have to take into account models such 
a s  

�9 P+P. Q I - Q . p + p .  
+ P . P T P .  P + P . P +  

which contain two type~ of tetrahedral strip in the 
ratio 3:1. 

Comparison with rea! pyribole structure types. 
We have derived possibl e structure types with one- 
and two-layer a repeatg for pyriboles containing 
only one kind of /-beam. There are ten such 
possibilities if the /-beam contains two different 
tetrahedral chains (P and Q) and three for an 
/-beam with equivaler~t tetrahedral chains (i.e. 
P = Q). These thirteen models encompass the four 
well-established structure types for the pyriboles. 

It is instructive to look for features which the 
known structure types have in common�9 The 
tetrahedral chains form layers parallel to (100) and, 
in all the four known structure types, these layers 
contain only one kind of tetrahedral chain. In clino- 
and proto-pyribole, this is because only one kind 
of tetrahedral chain is present. But in low clino- 
and ortho-pyribole, the structure has two kinds 
of tetrahedral layer, each containing only one kind 
of tetrahedral chain. In contrast, structures such 
as (1) (i) (Table II), which have only one kind of 
tetrahedral layer made up of two kinds of tetra- 
hedral chain, are not found in nature. (Chesterite is 
exceptional in having both double and triple chains 
in its tetrahedral layer. According to Veblen and 
Burnham (1978), the tetrahedra at the edges of the 
multiple chains are rotated and distorted to a 
similar extent in each layer). 

If, in deriving possible/-beam stacking arrange- 
ments, we impose the further restriction that tetra- 
hedral layers may not contain two kinds of tetra- 
hedral chain, we reduce the total number of possi- 
bilities from thirteen to the six shown in Table IV, 
without losing any of the known structure types. 

Model (2) (v) is the result obtained when the 
tetrahedral chains of orthopyribole [model (2) (iii)] 
become identical. The space group is unaltered but 
the additional non-space group symmetry gives the 
reflection condition 2h + k = 4n for hkO reflections. 
This additional reflection condition has been re- 
ported for the orthorhombic amphibole, holm- 
quistite (Whittaker, 1969), and more recently for 
the triple-chain pyribole, jimthompsonite (Veblen 
and Burnham, 1978). It is tempting but erroneous 
to infer from this that these structures are examples 
of model (2) (v) with identical tetrahedral chains. 
The intensities of the hkO reflections with 2h + 
k r 4n are entirely determined by differences be- 
tween the x and y coordinates of the tetrahedral 
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chains. However, information on the differences 
between the tetrahedral chains is also contained 
in the general hkl reflections and full three- 
dimensional structure refinements show that the 
chains do differ from each other. The differences 
in x and y coordinates are so small that the intensi- 
ties of hkO reflections with 2h + k r 4n are below 
the limit of detection (Irusteta and Whittaker, 1975; 
Veblen and Burnham, 1978). Model (2) (v) is thus 
approached but not actually realized. With increas- 
ing temperature, the silicate chains in orthopyro- 
xene become more alike (Smyth, 1973; Sueno et al., 
1976) and this too suggests an approach towards 
model (2) (v). 

Model (1) (iv) can be derived from the protopyri- 
bole structure [model (1) (vi)] by allowing it to 
have two kinds of tetrahedral layer. There are 
no reports of protopyriboles showing reflections 
violating the reflection condition for an n-glide 
perpendicular to the c axis. If the differences 
between the tetrahedral layers were sufficiently 
small, model (1) (iv) might escape detection. It is 
in fact excluded in a more comprehensive deriva- 
tion of the structure types (in preparation). 

TABLE IV. Model structures from Tables II and 
III  which do not have tetrahedral layers containing 

two different kinds of tetrahedral chain 

Space group 

Model Amphibole Pyroxene 

(1) (iii) P21/m P21/c low clinopyribole 
(1) (v) C2/m C2/c clinopyribole 
(1) (vi) Pnmn Pbcn protopyribole 
(2) (iii) Pnma Pbca orthopyribole 
(2) (v) Pnma Pbca 'high 

2h + k = 4n for orthopyribole' 
hkO reflections 

(1) (iv) Pnm21 Pbc21 'low 
protopyribole' 

The four known pyribole structure types are listed first. 
Models (1) and (2) have one and two/-beams respectively 
in the a repeat unit. 

The possibilities listed in Table IV seem to 
represent a reasonable set of potential pyribole 
structure types. These six model pyriboles can be 
subdivided into two groups of three: those with 
two kinds of tetrahedral chain or layer and those 
with only one. Those with two kinds of tetrahedral 
chain or layer are considered to be low-temperature 
structures; those with only one kind of tetrahedral 
chain, high-temperature forms. 

Several pyroxenes have been described with 
space groups not found in Table IV. The 'low 
orthopyroxene' with space group P21ca reported 

by Smyth (1974) and Harlow et al. (1979) corre- 
sponds to model (2) (i)(Table III) but lacks the 
non-space group symmetry. The structure should 
therefore contain two kinds o f / - b e a m  and four 
kinds of tetrahedral chain but a full structure 
determination has not yet been performed to 
confirm this. 

Smyth (1971) described a protoenstatite with 
space group P21cn which corresponds to model (1) 
(ii) (Table II) and should contain two distinct 
silicate chains in the tetrahedral layer. But refine- 
ment of the structure did not reveal any departure 
from Pbcn symmetry, and all other refinements of 
protoenstatite (Smith, 1969; Sadanaga et al., 1969) 
converged satisfactorily in space group Pbcn. 

Lindemann (1961) gave details of MgSiO 3 with 
space group P21/n. This allows only one type of 
tetrahedral chain but this has two different SiO4 
tetrahedra. A subsequent paper (Lindemann and 
W6gerbauer, 1974) gives the space group of similar 
material as Pc or P2/c. 

C2 has been reported as the space group of a 
spodumene (Graham, 1975) though structure refine- 
ment revealed no departure from C2/c symmetry. 
Only one type of tetrahedral chain is permitted by 
C2 but again with two distinct tetrahedra. 

P2/n must now be accepted as the space group 
of the omphacites since Matsumoto et al. (1975) 
have shown that multiple diffraction caused the 
weak reflections which led to the adoption of space 
group P2 initially. Lowering the symmetry from 
C2/c permits a greater degree of ordering of the 
octahedral cations; two different SiO 4 tetrahedra 
occur in the one type of chain permitted in space 
group P2/n. 

Doubts have been expressed over the existence 
of P21ca low orthopyroxene (Sueno et al., 1976; 
Veblen and Burnham, 1978), P21cn protoenstatite 
(Smyth and Ito, 1977), P21/n MgSiO 3 (Smith, 1969), 
and C2 spodumene (Graham, 1975) but none of 
these has been conclusively discredited. There is 
no doubt that omphacite has lower symmetry than 
C2/c. It is a limitation of the model for pyribole 
structure types described here that structures such 
as these lie outside its scope. A paper is in prepara- 
tion which presents a more comprehensive deriva- 
tion which includes the low symmetry pyroxenes. 

Structural control of the I-beam packing. The six 
model biopyribole structures in Table IV have been 
derived using two rules: (a) that the structures may 
not contain more than one kind of / -beam,  and 
(b) that a tetrahedral layer may not contain more 
than one kind of tetrahedral chain. The rules 
proposed here must have their origin in the nature 
of the crystal structure itself. 

The second rule, that a tetrahedral layer must 
contain only one kind of tetrahedral chain, must 
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arise from the edgewise packing of the /-beams, 
since this is how the tetrahedral chains form layers 
parallel to (100). This packing is likely to be 
controlled either by the coordination of the outer- 
most M cation (M2 in pyroxene, M4 in amphibole, 
M5 in jimthompsonite) which is linked to O atoms 
in four tetrahedral chains (three different I-beams), 
or by the edge-to-edge packing of the tetrahedral 
chains themselves. 

The outermost M cation is linked to oxygen 
atoms in four tetrahedral chains, which must adjust 
their oxygen packing in some way to fit the 
awkward coordination polyhedron of the outer M 
site. In models (3) and (4), the outermost M cation 
is linked to three tetrahedral chains of one kind 
and one of the other, i.e. 

(A) P P or (B) Q P b 

Q P Q Q as inf l~  F- 
> 

It seems likely that in these cases the tetrahedral 
chains will be less able to take up departures from 
ideal oxygen packing than in models (1) and (2) in 
which the outermost M cation is linked to two 
tetrahedral chains of each kind, i.e. 

(C) P Q or (D) P P b 

Q P Q Q a s i n f l ~  > 

This could explain why models (3) and (4) do not 
occur in nature but would not fully explain rule 
(b). A priori there is no reason why (C) and (D) 
should not be equally preferable, though only (D) 
is found. 

The key to the origin of rule (b) must lie in the 
edge-to-edge packing of the tetrahedral chains into 
layers. If the tetrahedral layers were unconstrained 
by the linkage to the octahedral strips, they would 
adopt some ideal configuration in which the Si-O 
and O - O  distances had optimum values. The 
linkage of the oxygen atoms to the M cations of 
the octahedral strips causes a departure from the 
idealized tetrahedral layer configuration. This de- 
parture from ideality may consist of (i) tetrahedral 
chain rotation, (ii) distortion of the tetrahedral 
chain by atomic displacements. In general, both 
will occur but one will predominate. We shall 
consider each in turn. 

(i) For  chains of rotated tetrahedra, the packing 
of oxygen atoms in the tetrahedral layer will be 
optimized if the rotations are equal in magnitude 
and in the senses indicated in fig. 6 for fully rotated 
tetrahedra. For  this to be so, the tetrahedral chains 
must be related by 21 axes parallel to b. Since the 
amount of the rotation is determined by the sizes 
of the octahedra in the attached strips, these strips 
too must be related by the 21 axes and must there- 
fore be similarly directed. This then makes adjacent 

tetrahedral chains either both O- or both S-rotated. 
This is the result predicted by the first part of 
Thompson's 'parity rule', i.e. that if the tetrahedra 
are rotated in the same sense, the octahedral strips 
above and below the tetrahedral layer must be 
similarly directed. The need for the octahedral 
strips to be related by the 21 axes, because they 
control the tetrahedral rotation, explains why there 
is no instance of the second part of Thompson's 
'parity rule', i.e. of oppositely directed octahedral 
strips with tetrahedral chains rotated in opposite 
senses. 

(ii) For  tetrahedral chains distorted by atomic 
displacements, the symmetry requirement is con- 
trolled by the atomic displacements in the c direc- 
tion. The oxygen packing will be optimized if the 
changes in z coordinate are equal and in the same 
sense relative to the crystallographic axes in adja- 
cent chains (fig. 7). This requires adjacent chains 
to be related by a glide plane parallel to (i00) (b 
glide in pyroxene, n glide in amphibole). 

b 

FIG. 6. Edge-to-edge packing of fully rotated tetrahedral 
chains in amphibole, showing that adjacent chains must 

be related by 2 x axes for optimum atomic packing. 

Atomic displacements in the b direction must 
take the outer atoms of the chain towards or away 
from its centre if the chain is to retain its symmetry 
(mirror plane in amphibole, c glide plane in pyro- 
xene). These displacements in the b direction must 
be equal in adjacent chains otherwise the electro- 
static interactions will tend to make them so. Such 
displacements are consistent with either 21 axes or 
a glide plane in the tetrahedral layer. 

Atomic displacements in the a direction are the 
major contribution to the bending or warping of 
the chains. If we assume that departures of the 
oxygen atoms from some nearly close-packed (100) 
plane are to be minimized, adjacent chains must 
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asinp ] 
b 

i i  

FIGS. 7 and 8. FIG. 7 (above). Fully extended tetrahedral 
chains in amphibole. An atomic displacement along c 
(arrow) at the edge of the chain will distort the tetrahedra, 
shortening some oxygen-oxygen distances to the adjacent 
chain and lengthening others. To counteract this, the 
atomic displacements in the adjacent chain must be in 
the same direction and the chains are then related by an 
n-glide plane. FIG. 8 (below). Warping or bending of 
tetrahedral chains in amphibole. Adjacent chains must 
be equally bent in opposite senses if the departures of 
the oxygen atoms from a nearly close-packed (100) plane 

(dashed line) is to be minimized. 

be bent equally but in opposite senses (fig. 8) and 
this would fit either 21 axes or a glide plane in the 
tetrahedral layer�9 

The atomic displacements are controlled mainly 
by the sharing of edges between the outer tetra- 
hedra and the outer M octahedra and can have a 
substantial component in the c direction (Veblen 
and Burnham, 1978). If the atomic displacements 
in adjacent chains are to be equal, a glide plane is 
required in the tetrahedral layer and the octahedral 
strips must be related by this and therefore be 
oppositely directed. This corresponds to the parity 
violation in which tetrahedral chains with similar 
rotations are linked to oppositely directed octa- 
hedral strips�9 This type of parity violation occurs 
in ortho- and proto-pyribole whereas there is no 
example of the other type of violation, i.e. similarly 
directed octahedral strips on either side of a 
tetrahedral layer with alternate chains rotated in 
opposite senses�9 

It should be noted that the 21 axes and the glide 
plane in the two cases (i) and (ii) are incompatible 
except for fully extended, undistorted tetrahedral 
chains�9 In real structures, the oxygen packing must 

therefore be optimized either for tetrahedral rotation 
at the expense of atomic displacements (giving 21 
axes) or for atomic displacements at the expense 
of tetrahedral rotations (giving a glide plane). 

But both cases (i) and (ii) require that only one 
kind of tetrahedral chain should be present in a 
tetrahedral layer. Rule (b) therefore results from 
the fundamental need to optimize the atomic 
packing in the tetrahedral layer. 

The rule (b) that a tetrahedral layer may not 
contain two different kinds of tetrahedral chain is 
in fact more fundamental than the 'parity rule'. 
Rule (b) covers both the case of the 'parity rule' 
which is known to occur and the type of parity 
violation which is found in pyribole structures. It 
excludes the case of the parity rule of which no 
example is known, and it also excludes the type of 
parity violation which does not occur. 

So powerful is rule (b) that it almost eclipses the 
requirement of rule (a) that the structure shall 
contain only one kind of/-beam�9 If we began by 
deriving the structural possibilities conforming to 
rule (b), we should obtain directly all the possibili- 
ties in Table IV without invoking rule (a) at all. 
However, we should then also obtain model struc- 
tures with a two-layer a-repeat, which contain four 
kinds of tetrahedral layer. Rule (a) is needed to 
eliminate these but can be restated in the form: the 
structure may contain only two different kinds of 
tetrahedral layer. 

Can we explain why there should be only two 
kinds of tetrahedral layer? What in the pyribole 
structure might give rise to two kinds of tetrahedral 
layer? The distortion of the tetrahedral layers (the 
combined effect of chain rotation and atomic 
displacements) results from the links to the octa- 
hedral strips on either side. If the tetrahedral chains 
lie between similarly directed octahedral strips 
�9 - c h a i n s ) ,  the distortion is principally chain rotation 
as shown by fig. 141 of Veblen and Burnham (1978), 
and the tetrahedral layer should contain 21 axes 
but no glide plane, a For tetrahedral chains between 
oppositely directed octahedral strips (x-chains), 
the distortion includes appreciable atomic displace- 
ments (fig. 12 of Veblen and Burnham, 1978) of the 
kind shown in fig. 13 of Veblen and Burnham 
(1978), and the tetrahedral layer has a glide plane 
but no 21 axes�9 

Could it be that the two kinds of tetrahedral 
layer are defined by the relative direction of the 
octahedral strips on either side of them? The 
structure types would then have .-chains between 
octahedral strips similarly directed and x-chains 

x Note that figs. 12 and 14 of Veblen and Burnham are 
transposed; the fig. 12 caption on p. 1068 refers to the 
figure on p. 1069 above the fig. 14 caption and vice versa. 
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between oppositely directed strips. If the type of 
chain were determined by octahedral strip direc- 
tions in this way, 'low protopyribole'  would be 
eliminated since it would consist o f  all x-chains 
which would have to be identical as in protopyri- 
bole. 'High orthopyribole' would also be eliminated 
since it has both . -  and x-chains which must differ. 
Unfortunately this assumption would also elimi- 
nate low clinopyribole as containing .-chains only 
which would have to be identical. There are too 
many examples of this structure type (particularly 
of pigeonites) for its exclusion to be reasonable. 
The model has clearly been pressed a little too far. 
None the less, it emphasizes Thompson's (1970) 
point that the main structure types contain a . . . .  
chain sequence only (r a x x x x 
sequence only (proto-) or an alternating sequence 
�9 x .  x (ortho-). 

We have been led here into the apparently 
circular argument that the octahedral sequence 
controls the distortion of the tetrahedral layer, 
which controls the octahedral sequence. However, 
what is really being described is the way in which 
the regular stacking sequence is communicated 
through the structure. 

The possible structure types result from the 
symmetry requirements for optimum packing of 
the tetrahedral chains into layers. The coordination 
of the octahedral cations, particularly of the outer- 
most cation in the strip, determines which structure 
type will be obtained for a given composition. 

Phase transitions in the pyriboles. The relative 
stability of the main structure types will be a 
function of the strains in the atomic arrangement 
of each. We may conjecture that there are two main 
sources of strain in the pyribole structure. The 
silicate chains distorted by atomic displacements 
(x-chains) are likely to be highly strained and the 
number of such chains in the structure increases 
in the sequence 

clino- < ortho- < proto-. 

There will also be strain associated with the 
outermost M cation polyhedra depending on the 
cation radius. The sizes of the M4 polyhedra in 
amphibole and M2 in pyroxene increase in the 
sequence 

proto- < ortho- < elino-. 

The calcic and sodic pyriboles have large cations 
(Ca, Na) in the outermost M sites and should adopt 
the clino-structure type as that of least strain on 
both counts. 

The ferromagnesian pyriboles have smaller ca- 
tions (Fe 2 +, Mg) in the outermost M sites and the 
strain assoeiated with these should increase in the 
sequence 

proto- < ortho- < elino-. 

The strain associated with the x-chains, however, 
increases in the opposite sequence, i.e. 

clino- < ortho- < proto-. 

It seems reasonable to suppose that orthopyribole 
is the most likely low-temperature phase, being a 
compromise between these opposing trends. The 
high-temperature phase will depend on which of 
the strains is larger. For  small cations, the strain 
at the outer M site is likely to predominate 
and the high-temperature phase should be proto-. 
Clino- would be the expected high-temperature 
phase for larger outer M cations, when the strain 
from the x-chains should predominate. 

On the MgSiOa-CaMgSi206 phase diagram, 
one would therefore expect orthopyroxene as the 
low temperature structure for MgSiO3, with proto- 
pyroxene as the high-temperature structure. For  
CaMgSi206 the clinopyroxene structure should 
be stable up to the liquidus. Between enstatite 
(MgSi03) and diopside (CaMgSi206) there is a 
Mg-rich orthopyroxene-Ca-rich clinopyroxene sol- 
vus because of the disparity in the sizes of the M2 
cations. 

As already suggested (Papike et al., 1973), low 
clinopyroxene may provide a means of relieving 
strain at the M2 site in clinopyroxene without its 
undergoing the difficult reconstructive transforma- 
tion to orthopyroxene. With increasing tempera- 
ture and increasing M2 cation size (increasing Ca 
content), this relief of strain apparently lowers the 
free energy sufficiently to give the low clinopyro- 
xene structure a stability field as pigeonite. This 
could coexist with either a clinopyroxene richer 
in Ca (diopside) or an orthopyroxene richer in Mg, 
as is shown on the phase diagram of Longhi and 
Boudreau (1980). 

At temperatures where protoenstatite is the 
stable phase of MgSiO 3, the insertion of a little 
Ca stabilizes the orthopyroxene structure with its 
slightly larger M2 sites. The narrow protoenstatite- 
orthoenstatite solvus so produced does not overlap 
the orthoenstatite-pigeonite solvus with the result 
that pigeonite cannot coexist with protoenstatite. 

Of the phases listed in Table IV, only 'low proto- 
pyroxene' and 'high orthopyroxene' do not appear 
on the phase diagram of Longhi and Boudreau 
(1980). 'High orthopyribole' almost certainly cannot 
exist. The orthorhombic structure has alternate 
tetrahedral layers with 21 axes and with glide 
planes, which must be identical in the high- 
temperature form. But these two symmetry oper- 
ators are only compatible with each other for fully 
extended undistorted tetrahedral chains, which are 
unlikely to be reached at a temperature below the 
transformation to proto- or clino-. 'High ortho- 
pyribole' can only be imagined as an extrapolation 
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of the changes in the orthorhombic structure with 
increasing temperature described for orthoenstatite 
by Smyth (1973), and for orthoferrosilite by Sueno 
et al., (1976). 

Conclusion. The rule that a pyrihole structure 
may contain two types of tetrahedral layer but 
no tetrahedral layer may contain two types of 
tetrabedral chain, leads to a reasonable set of 
model pyribole structures, including all the well- 
established types. This rule is more fundamental  
than the 'parity'  rule and has its origin in the 
optimization of the edge-to-edge packing of the 
tetrahedral chains into layers. The model structures 
derived are consistent with the crystal chemistry 
and phase relations of the pyriboles. 

The treatment adopted here leads naturally to 
the .- and x-chains notat ion used by Veblen and 
Burnham (1978), following J. B. Thompson's  un- 
published work. It is reassuring that such similar 
conclusions may be reached by quite different 
approaches. 

Acknowledgement. The author is grateful to Mr P. G. 
Embrey and Dr D. R. Veblen for their carefully considered 
criticism and comments. 

R E F E R E N C E S  

Graham, J. (1975). Some notes on ~t-spodumene. Am. 
Mineral. 60, 919-23 [MA 76-1919]. 

Harlow, G. E., Nehru, C. E., Prinz, M., Taylor, C. J., and 
Keil, K. (1979). Pyroxenes in Serra de Mag6: cooling 
history in comparison with Moama and Moore County. 
Earth Planet. Sci. Lett. 43, 173-81. 

Irusteta, M. C., and Whittaker, E. J. W. (1975). A three- 
dimensional refinement of the structure of holmquist- 
ite. Acta Crystallogr. I331, 145-50 [MA 76-201]. 

Law, A. D., and Whittaker, E. J. W. (1980). Rotated and 
extended model structures in amphiboles and pyro- 
xenes. Mineral. Mag. 43, 565-74 [MA 80-1289]. 

Lindemann, W. (1961). Gitterkonstanten, Raumgruppe 
und Parameter des 7-MgSiO 3. Naturwiss. 48, 428-9. 

- - a n d  W6gerbauer, R. (1974). Gitterkonstanten und 
Raumgruppe f/it Protoenstatit (MgSiO3). Ibid. 61, 500. 

Longhi, J., and Boudreau, A. E. (1980). The orthoenstatite 
liquidus field in the system forsterite-diopside-silica at 
one atmosphere. Am. Mineral. 65, 563-73. 

Matsumoto, T., Tokonami, M., and Morimoto, N. (1975). 
The crystal structure of omphacite. Ibid. 60, 634-41 
[MA 76-198]. 

Pannhorst, W. (1979). Structural relationships between 
pyroxenes. Neues Jahrb. Mineral. Abh. 135, 1 17 [MA 
79-3367]. 

Papike, J. J., Prewitt, C. T., Sueno, S., and Cameron, M. 
(1973). Pyroxenes: comparisons of real and ideal struc- 
tural topologies. Z. Kristallogr. 138, 254-73 [MA 74- 
902]. 

- - a n d  Ross, M. (1970). Gedrites: crystal structures and 
intracrystalline cation distributions. Am. Mineral. 55, 
1945-72 [MA 71-1754]. 

Sadanaga, R., Okamura, F. P., and Takeda, H. (1969). 
X-ray study of the phase transformations of enstatite. 
Mineral. J. 6, 110-30 [MA 72-1806]. 

Smith, J. V. (1969). Crystal structure and stability of the 
MgSiO3 polymorphs: physical properties and phase 
relations of Mg, Fe pyroxenes. Mineral. Soc. Am. Spec. 
Pap. 2, 3-29 [MA 70-2098]. 

Smyth, J. R. (1971). Protoenstatite: a crystal-structure 
refinement at 1100 ~ Z. Kristallogr. 134, 262-74 [MA 
72-2753]. 

(1973). An orthopyroxene structure up to 850~ 
Am. Mineral. 58, 636-48 [MA 74-154]. 

- - ( 1 9 7 4 ) .  Low orthopyroxene from a lunar deep crustal 
rock: a new pyroxene polymorph of space group P21 ca. 
Geophys. Res. Lett. 1, 27-9 [MA 75-2343]. 

and Ito, J. (1977). The synthesis and crystal struc- 
ture of a magnesium-lithium-scandium protopyro- 
xcne. Am. Mineral. 62, 1252-7 [MA 78-2704]. 

Sueno, S., Cameron, M., and Prewitt, C. T. (1976). Ortho- 
ferrosilite: high-temperature crystal chemistry. Ibid. 
61, 38-53. 

Thompson, J. B. (1970). Geometrical possibilities for am- 
phibole structures: model biopyriboles (abstract). Ibid. 
55, 292-3. 

- - ( 1 9 7 8 ) .  Biopyriboles and polysomatic series. Ibid. 63, 
239-49 [MA 78-4032]. 

Veblen, D. R., and Burnham, C. W. (1978). New bio- 
pyriboles from Chester, Vermont: II. The crystal chem- 
istry of jimthompsonite, clinojimthompsonite, and 
chesterite, and the amphibole-mica reaction. Ibid. 
1053-73 [MA 79-2107]. 

Whittaker, E. J. W. (1960a). The crystal chemistry of the 
amphiboles. Acta Crystallogr. 13, 291-8 [MA 15-96]. 

- - (1960b) .  Relationships between the crystal chem- 
istry of pyroxenes and amphiboles. Ibid. 13, 741-2 
[MA 15 96]. 

(1969). The structure of the orthorhombic amphi- 
bole holmquistite. Ibid. 1325, 394 7 [MA 71-1756]. 

[Manuscript received 3 June 1980; 
revised 17 October 1980] 


