The plagioclase, forsterite, diopside, liquid equilibrium in the system CaO-Na₂O-MgO-Al₂O₃-SiO₂

G. M. BIGGAR AND D. J. HUMPHRIES

Department of Geology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW

ABSTRACT. Liquids in the system CaO-Na₂O-MgO-Al₂O₃-SiO₂ which crystallize plagioclase and forsterite, often with diopside and sometimes with spinel, were studied. The movement of the plagioclase-forsterite saturation surface to higher plagioclase contents as albite replaces anorthite, and the concurrent expansion of the forsterite and diopside primary fields, are documented. The maximum temperature of the liquid in equilibrium with plagioclase, diopside, and forsterite decreases as the anorthite to albite ratio decreases and as enstatite is added, and was experimentally determined over part of its range from 1278 to 1130 °C. The decrease was not linear, being generally small even when 67 mole % albite was present, and thereafter, it must decrease rapidly to reach the values reported for the system albite-diopsideforsterite.

PLAGIOCLASE, olivine, and augite are common phenocrysts in basalts but require at least the six component system CaO-Na₂O-MgO-FeO- Al_2O_3 -SiO₂ for representation. The simpler sodaand iron-free system anorthite-diopside-forsteritesilica has been extensively studied and its application to basalt petrogenesis discussed (e.g. Cox et al., 1979, pp. 210 et seq.). With soda present the join albite-diopside-forsterite is known (Schairer and Morimoto, 1959) but data at intermediate Ca:Na ratios and for the addition of enstatite are few (see fig. 5). The present paper documents some of the changes in the plagioclase-olivine crystallization surface as An: Ab changes, and as the bulk composition changes from zero to 25% enstatite in the norm.

The anorthite-forsterite crystallization surface is shown in fig. 1B. It is bounded by the four-phase equilibria; Fo-An-Di-Lq represented by the curve a_1-p_1 to which most of the data in this paper refer; Fo-An-Sp-Lq represented by the curve b_1-c_1 , for which a few data are presented; and Fo-An-En-Lq, the curve d_1-p_1 , which was not encountered. The crystallization surface also extends beyond the tetrahedron shown in fig. 1B into other regions of CaO-MgO-Al₂O₃-SiO₂ space.

© Copyright the Mineralogical Society

Experimental methods and results. Compositions were synthesized by the 'gel' technique (Biggar and O'Hara, 1969a) and equilibrated in batches of twelve in platinum capsules (Biggar and O'Hara, 1969b) for periods of at least 168 hours and up to 336 hours in some experiments. Temperatures were referenced to a scale based on melting-points of gold (1064.5 °C), lithium metasilicate (1208 °C), and diopside (1395 °C) (Biggar, 1972). The products were identified by optical microscopy. The experimental details were reported by Humphries (1975), and the compositions and results are shown in Tables I-III.

The compositions lay on joins from diopside to the points K, L and M as shown in fig. 1, the legend of which gives the molar compositions. Each of these joins was studied at four different molar feldspar compositions, $An:An_2Ab_1$; $AnAb:An_1Ab_2$. The soda-bearing compositions were recalculated for projections and diagrams according to a scheme used by O'Hara (1976) which ensures that albite plots as its molar equivalent of anorthite (see also Cox *et al.*, 1979, p. 245).

The experimental data were used to construct fig. 2 for the joins K, L, and M, respectively, at the several anorthite to albite ratios as noted. These show the temperature of appearance of the second crystalline phase (after primary forsterite). Data for the plagioclase, forsterite, diopside, liquid locus are sufficient to fix its position in the diagrams but the plagioclase, forsterite, spinel, liquid locus is less well fixed, particularly in figs. 2A and B, since most of the data lie in Fo-Plag-Lq and few data lie in Fo-Sp-Lq.

A second series of diagrams (figs. 3A to F) shows the same data used to deduce the nature of the forsterite projection on to the plane $CaSiO_3$ -MgSiO₃-Al₂O₃. These forsterite projections show clearly the Fo-Plag-Lq surface, contoured for the temperature of appearance of plagioclase. This surface decreases in size and moves to more

FIG. 1. Fig. A is a distorted version of the CaO-MgO-Al₂O₃-SiO₂ tetrahedron to show the sub-tetrahedron FO-AN-DI-S of fig. B. The compositions studied lie on three joins; diopside to MgAl₂SiO₆ (magnesian tschermaks molecule) shown as MAS and this join intersects anorthite-forsterite at the point labelled K; diopside to MgsAl₆S₅O₂₄ shown as M₅A₃S₅, which intersects An-Fo-SiO₂ at point L; and diopside to Mg₇Al₆S₇O₃₀ which intersects An-Fo-SiO₂ at point M. The plane enstatite-wollastonite-alumina (MS-CS-A) fig. A, contains all the compositions studied.

Fig. B shows the anorthite-diopside-forsterite-silica tetrahedron (similar labels to Presnall et al., 1978) with the anorthite-forsterite crystallization surface shown as a stippled area. The compositions studied experimentally lie on the joins Di-K, Di-L, Di-M, but to avoid confusion the actual compositions are only schematically represented as filled circles on one of these joins, Di-L. For completeness, note that K has the molar composition AnFo which is CAM_2S_3 ; L is $AnFoEn_{0.66}$ which is $C_3A_3M_8S_{11}$; M is AnFoEn_{1.33} which is $C_3A_3M_{10}S_{13}$; and in figs. 2, 3, and 4, the equivalent points, for example when anorthite is replaced by An_2Ab_1 are shown as K_1 , L_1 , and M_1 . The dashed boundaries $a^{1}-p^{1}-d^{1}$ illustrate the movement of the plagioclase-forsterite crystallization surface closer to the plagioclase apex as observed in the experiments and shown in subsequent figures.

Table I. Compositions (in moles) studied in the system Cao-MgO-Al₂O₃-SiO₂

Code	*	CaO	MgO	A1203	Si02	Code		Ca0	MgO	A1203	Si02	Code		CaO	14g0	A12 ⁰ 3	^{SiO} 2
H13 H14 H4 H5 H6 H15 H16	*****	1.5 2.0 2.375 2.5 2.625 3.0 4.0	2.5 3.0 3.375 3.5 3.625 4.0 5.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0 5.0 5.75 6.0 6.25 7.0 9.0	H17 H18 H1 H2 H3 H19 H20	1 1 1 1 1 1 1	3.75 5.25 6.5 7.0 7.5 9.0 12.0	8.75 10.25 11.5 12.0 12.5 14.0 17.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	12.5 15.5 18.0 19.0 20.0 23.0 29.0	H21 H22 H23 H24 H25 H26 H27	M M M M M M	3.75 5.25 6.0 6.75 7.5 9.0 12.0	10.75 12.25 13.0 13.75 14.5 16.0 19.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0	14.5 17.5 19.0 20.5 22.0 25.0 31.0

* The first part of the code identifies each compositon, the second part, K, L, M, etc identifies the lines from diopside in figs. 2, 3, and 4.

Table II. Compositions (in moles) studied in the system $CaO-Na_2O-A1_2O_3-SiO_2$

Code	,	CaO	MgD	A1203	Si02	Na ₂ 0	Code	CaO	MgO	A12 ⁰ 3	Si02	Na20	Code		Ca0	MgQ	A1203	Si02	Na ₂ 0
N19	K1	1.25	3,25	1.25	5.5	0.25	N20 L	1 1.0	4.0	1.25	6,0	0.25	N23	M1	0.66	4.666	1.25	6.333	0.25
N16	K1	1.5	3.5	1.25	6.0	0.25	N10 L	1 1.5	4.5	1.25	7.0	0.25	N24	M7	1.25	5,25	1.25	7.5	0,25
N1	К1	1.875	3.875	1.25	6.75	0.25	N11 L	1 1.7	5 4.75	1.25	7.5	0.25	N25	M1	1.5	5.5	1.25	8.0	0,25
N2	К1	2.0	4.0	1.25	7.0	0.25	N12 L	1 2.0	5.0	1.25	8.0	0.25	N26	M1	1.75	5.75	1,25	8.5	0.25
N3	k 1	2.25	4.25	1.25	7.5	0.25	N21 I	1 2.5	5.5	1.25	9.0	0.25	N27	M1	2,25	6.25	1,25	9.5	0.25
N17	¥1	3.0	5.0	1.25	9.0	0.25	N22 1	1 3.5	6.0	1.25	11.0	0.25	N28	M1	3.0	7.0	1.25	11.0	0.25
N18	ĸ1	4.0	6.0	1.25	11.0	0.25			0.0										
L19	К2	1.25	4.25	1.5	7.5	0.5	L22 L	2 1.5	14.5	4.5	22.5	1.5	L26	142	1.0	18.0	4.5	25.0	1.5
11	K2	1.75	4.75	1.5	8.5	0.5	L23 L	2 2.5	15.5	4.5	24.0	1.5	L27	142	2.0	19.0	4.5	27.0	1.5
12	K2	2.0	5.0	1.5	9.0	0.5	L16 L	2 3.5	16.5	4.5	26.0	1.5	L28	M2	3.0	20.0	4.5	29.0	1.5
13	K2	2.25	5.25	1.5	9.5	0.5	L17 L	2 4.5	17.5	4.5	28.0	1.5	L29	M2	3.75	20.75	4.5	30,5	1.5
120	K2	3.0	6.0	1.5	11.0	0.5	L18 L	2 5.5	18.5	4.5	30.0	1.5	L30	M2	4.5	21.5	4.5	32.0	1.5
1 21	1/2	Á Ő	7.0	1 5	13.0	0.5	174 1	2 7.0	20.0	4.5	33.0	1.5	1 31	M2	6.0	23.0	4.5	35.0	1.5
	112	4.0	7.0		10.0	0.2	L25 L	2 10.0	23.0	4.5	39.0	1.5	L32	M2	9.0	26.0	4.5	41.0	1.5
416	K3	1.0	6.0	2.0	11.0	1.0	A19 I	3 0.5	7.5	2.0	12.0	1.0	A23	M3	0.5	9.5	2.0	14.0	1.0
Δ1	K3	1.5	6.5	2.0	12.0	1.0	A10 I	3 1.0	8.0	2.0	13.0	1.0	A25	M3	1.5	10.5	2.0	16.0	1.0
Δ2	K3	2.0	7.0	2.0	13.0	1.0	A11 I	3 1.2	5 8.25	2.0	13.5	1.0	A27	M3	3.0	12.5	2.0	19.0	1.0
43	1/3	2 375	7 375	2 0	13 75	1 0	A12	3 1.5	8.5	2.0	14.0	1.0							
A19	23	3 5	8.5	2.0	16 0	1.0	A20 1	3 2 0	9.0	2.0	15.0	1.0							
A17	23	5.0	10.0	2.0	19 0	1 0	A21 H	3 3 0	10.0	2 0	17.0	1.0							
A17	N)	0.0	10.0	2.0	12.0	1.0	A22 L	3 4.0	11.0	2.0	19.0	1.0							

Table III. Experimental temperatures and products

Code	°C	Phases	Code	٩C	Phases	Code	٥С	Phases	Code	٩C	Phases		
H13 K H14 K H4 K	1278 1264 1280 1306 1292 1286	fo an lq fo an di lq fo an di lq fo lq fo lq fo lq fo lq	Н2 Ц	1306 1292 1286 1280 1274 1263	fo lq fo lq fo lq fo an di lq fo an di lq fo an di lq fo an di lq	N19 K1 N16 K1 N1 K1	1274 1250 1274 1250 1242 1247	fo pl lq fo pl lq	N11 L1	1274 1263 1260 1251 1250 1242	fo pl lq fo pl lq fo pl lq fo pl lq fo pl di lq fo pl di lq		
H5 K	1280 1274 1306 1292 1286 1280	foandilq foandilq fo lq fo lq fo lq fo lq foandilq	H3 L	1306 1292 1286 1280 1274 1263	fo lq fo lq fo lq fo an di lq fo an di lq fo an di lq fo an di lq	N2 K1	1263 1260 1251 1242 1234 1263	fopl la fopl la fopl la fopl la fopl di la fopl di la fo la	N12 L1	1234 1263 1260 1251 1250 1242	fopldilq foll lq fopllq fopllq fopldilq fopldilq		
Н6 К	1274 1306 1292 1286 1280 1274	fo an dì lq fo lq fo lq fo lq fo an di lq fo an di lq fo an di lq	H19 L H20 L H21 H H22 M	1280 1280 1278 1264 1278 1264	foandilq fo dilq foan lq foan lq foan lq foan lq foandilq	N3 K1	1260 1251 1242 1234 1263 1260	fopl lq fopl lq fopldi lq fopldi lq fopldi lq folq	N21 L1 N22 L1	1234 1274 1260 1242 1274 1250	fopldilq fodilq fodilq fopldilq fodilq fodilq fodilq		
H15 K H16 K H17 L H18 L H1 L	1280 1280 1278 1264 1280 1306	fo an di lq fo an di lq fo an lq fo an lq fo an di lq fo lq	H23 M H24 M H25 N	1278 1264 1278 1264 1278 1264 1264	foan lq foandilq fo lq foandilq foandilq foandilq	N17 K1	1251 1242 1234 1274 1260 1242	fopldilq fopldilq fopldilq fodilq fodilq fodilq fopldilq	N23 M1 N24 M1 N25 M1	1242 1250 1274 1260 1250 1274	fopldilq foplsplq fopllq fopllq fopllq fopllq		
	1292 1286 1280 1274 1263	fo lq fo lq fo an di lq fo an di lq fo an di lq fo an di lq	H26 M H27 H	1278 1264 1278 1264	fo dilq foandilq fo dilq foandilq	N18 K1 N20 L1 N10 L1	1242 1274 1250 1242 1274 1263	fopldilq fopllq foplpxlq foplpxlq fopllq fopllq	N26 M1 N27 M1	1260 1250 1274 1260 1250 1260	fopllq fopllq follq fopllq fopllq fopllq fodllq		
L19 K2 L1 K2	1274 1251 1239 1229 1274 1257	fopllq fopllq fopllq fopldilq foldilq fopldilq	L16 L2 L17 L2	1274 1251 1245 1239 1229 1251	fo lq fopl lq fopl lq fopl lq fopl lq fopl di lq fopl lq		1260 1251 1242 1234	fopl lq fopl lq fopl lq fopl lq fopl di lq	N28 M1	1250 1274 1250	fo pl di lq fo di lq fo pl di lq		
L 2 K2	1251 1241 1239 1274 1257 1251	fopl lq fopl lq fopldilq foldilq fopl lq fopl lq fopl lq	L18 L2 L24 L2	1239 1229 1251 1245 1239 1274	fopl lq fopl di lq foldi lq folq fopl di lq fopl di lq foldi lq	A16 K3 A1 K3 A2 K3	1234 1234 1222 1213 1205 1246	fopllq fopllq fopllq fopldilq fopldilq fopldilq	A11 L3	1246 1234 1227 1222 1213 1205	fopl lq fopl lq foplpx lq foplpx lq foplpx lq foplpx lq foplpx lq		
L3 K2	1241 1239 1274 1257 1251 1245	fopldilq fopldilq folq folq fopllq fopllq fopllq	L25 L2 L26 M2	1251 1239 1274 1251 1239 1245	fo dilq fopldilq fodilq fodilq fopldilq fopldilq fo, splq	АЗ КЗ	1234 1227 1222 1213 1205 1246	fopl la fopldila fopldila fopldila fopldila fopldila	A12 L3	1246 1234 1227 1222 1213 1205	fopllq foplpxlq foplpxlq foplpxlq foplpxlq foplpxlq foplpxlq		
L20 K2	1241 1239 1274 1251 1245 1239	fopldilq fopldilq foldilq fodilq fodilq fopldilq	L27 M2 L28 M2 L29 M2	1245 1229 1245 1229 1245 1245 1229	fo splq foplsplq fopl lq fopl lq foplpxlq fopl lq fopl pxlq	A18 K3	1234 1227 1222 1213 1205 1234	fo di lq fo pl di lq fo di lq	A20 L3 A21 L3	1246 1234 1227 1213 1246 1234	fopllq fopllq fopllq fopldilq fodilq fodilq		
L21 K2 L22 L2 L23 L2	1251 1239 1245 1229 1251	fo di lq fopl di lq fo splq fo splq fopl splq	L30 H2 L31 H2 L32 H2	1245 1229 1245 1229 1229	fopl lq fopldilq foldilq fopldilq fopldilq	A17 K3 A19 L3 A10 L3	1234 1234 1227 1246 1234 1227 1213	fo di lq fo sp lq fo sp lq fo pl lq fo pl lq fo pl px lq fo pl px lq	A23 M3 A25 M3 A27 M3	1246 1246 1227 1213 1246 1227	fo splq fopl lq fopl lq fopl lq fopl lq fodilq fodilq		

FIG. 2A, B, and C. Experimental data for joins of the type diopside-K, diopside-L, etc. with similar joins to L_1 , L_2 etc., in which anorthite is replaced, in steps, by albite. The compositions studied are shown as filled circles, and the data from Tables I-III are used to construct the contours. These are not liquidus contours, since all the samples had forsterite as liquidus phase at some higher, undetermined temperature, but they are contours for the appearance of the second crystalline phase, usually plagioclase or diopside. In a few cases when there was a high albite and high enstatite content in the starting material, for example close to M_3 in C, the pyroxene in the experimental charge is shown as px (in the tables) to indicate uncertainty about its identification as augite. It may be pigeonite or a mixture of pigeonite and augite. The diagrams are drawn for the assumption that it was augite. Data for the Di-Ab-Fo join

are from Schairer and Morimoto (1959). An early version of fig. 2A was published by Humphries (1972).

FIG. 3. Forsterite projections into the plane Woll-En-Al₂O₃ (CS-MS-A) shown in fig. 1A. Fig. 3A is a location diagram for the joins studied (see also fig. 1) and fig. 3A is also a summary diagram, the curves a_1-p_1 , a_2-p_2 etc. derive from figs. 3B to F which show, at greater scale, details of the Fo-Plag-Lq field. Contours (at 20 °C in fig. 3B, otherwise at 10 °C, except fig. 3F) are drawn as best fits to the data in the tables for the compositions shown as filled circles. K, L, M, etc., serve as cross-reference points between the figures. In fig. 3B the two circles at 1266 °C and 1272 °C are projections of liquid compositions from microprobe analyses by Presnall *et al.* (1978). The nature of the calcium-poor pyroxene phases shown in fig. B as Pr (for protoenstatite) is uncertain in the light of the recent finding of orthopyroxene in the join enstatite-diopside (Longhi and Boudreau 1980). The open circle (fig. A) represents the position of the Ol, An₆₀Ab₄₀, Di, boundary at 1235 ± 5 °C from Emslie (1971) in agreement (to better than 10 °C) with the present data. The open circle (fig. D) is the forsterite projection of an analysis by Eggler (1974) of a liquid at 1228 °C in equilibrium with forsterite, plagioclase, calcium-poor pyroxene (from a composition with a normative An₅₀Ab₅₀), and it also agrees with the present data (1240 °C by interpolation).

FIG. 4A to E. Estimates of phase diagrams in diopside-forsterite-plagioclase based on data from joins of the type Diopside-K (and in fig. A extra data from points near the anorthite forsterite diopside field boundary). Estimates of the temperatures of the points where the plagioclase, diopside, and olivine fields meet are given in fig. 5.

aluminous compositions as albite replaces anorthite, and temperatures on these successive surfaces drop.

To more clearly illustrate the manner in which the plagioclase field contracts and the fields of diopside and forsterite expand as Na:Ca increases, the diagrams in fig. 4 were constructed. Along this series the temperature of the feldspar, diopside, forsterite, liquid equilibrium (points a_1 to a_5) decrease (details summarized in fig. 5). Further, but smaller, temperature decrease occurs as enstatite is added (see also fig. 5). The most striking feature (also seen in fig. 2A) is that increasing albite has relatively little effect on temperature until the albite content is above 67% after which there must be a more rapid drop in temperature down to the values for the join diopside-albite-forsterite.

The behaviour of the equilibrium involving spinel with feldspar and olivine is less well documented, but at some point between fig. 3C and D the forsterite, spinel, liquid field no longer covers the point K, that is the locus of the points b_1 , b_2 , b_3 crosses the point K. Spinel is no longer in reaction relation with the liquid. Fig. 6 illustrates this feature and leads to an estimate of $An_{59}Ab_{41}$ for the change from spinel reaction to spinel precipitation in the equilibrium plagioclaseforsterite-spinel-liquid.

Conclusion. The basic forms of the diagrams presented have been known and well used by petrologists in past discussions of basaltic petrogenesis and differentiation. The present data for plagioclase, diopside, forsterite, liquid provide some temperature information and show a very nonlinear slow decrease in temperature up to high albite contents, followed by a rapid decrease of temperature.

FIG. 5. Schematic diagrams to show changes in temperature of the plagioclase, diopside, olivine, liquid equilibrium as enstatite is added and as albite replaces anorthite, based on data in the tables. The temperature of p_1 is known but temperatures of p_2 , p_3 , etc. at which enstatite starts to crystallize with the three other minerals are not known. The temperature of p_5 will be close to the plagioclase-diopside-forsterite piercing point at 1130 °C given by Schairer and Morimoto (1959).

FIG. 6. Projection from forsterite on to the join spinelanorthite-albite showing the same field boundaries as in fig. 2 and estimating that An₅₉ marks the change in nature from spinel reaction to spinel precipitation.

REFERENCES

Biggar, G. M. (1972). Mineral. Mag. 38, 768.

— and O'Hara, M. J. (1969*a*). Ibid. 37, 198. — — (1969*b*). Ibid. 1.

- Cox, K. G., Bell, J. D., and Pankhurst, R. J. (1979). The interpretation of igneous rocks. George Allen & Unwin, London, 450 pp.
- Eggler, D. H. (1974). Am. J. Sci. 274, 297.
- Emslie, R. F. (1971). Carnegie Inst. Washington Yearb. 69, 148.
- Humphries, D. J. (1972). Progress in Exptl. Petrol. 2nd Report. NERC London, Publication Series D, No. 2, p. 120.
- Longhi, J. and Boudreau, A. E. (1980). Am. Mineral. 65, 563.
- O'Hara, M. J. (1976). Progress in Exptl. Petrol. 3rd Report. NERC, p. 103. London, Publication Series D, No. 6, 1976, pp. 103-26.
- Presnall, D. C., Dixon, S. A., Dixon, J. R., 'Donnell, T. H., Brenner, N. L., Schrock, R. L., and Dycus, D. W. (1978). Contrib. Mineral. Petrol. 66, 203.
- Schairer, J. F. and Morimoto, N. (1959) Carnegie Inst. Washington Yearb. 58, 113.

[Revised manuscript received 12 February 1981]