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A B S T R A C T. D i f f u s i o n  i n t o  t h e  r o c k  m a t r i x  is  potentially 
an important retardation mechanism for nuclides leached 
from an underground radioactive waste repository in a 
fractured hard rock. A technique for measuring the 
intrinsic diffusion coefficient and rock capacity factor is 
briefly described. Simple solutions to migration model 
equations are used, together with diffusion results and 
typical hydrogeological parameters, to estimate the 
impact of matrix diffusion on radionuclide migration. 
It is shown that retardation factors in excess of 100 
and reductions in the peak concentration by 3 4 orders 
of magnitude are possible for non-sorhed ions, which 
would otherwise be carried by the flow and not retarded 
at all. 
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ONE of the options being considered for the safe 
long-term disposal of radioactive waste from the 
nuclear power industry is deep burial in stable 
fractured rock formations. The most probable way 
in which radionuclides from the waste could reach 
the biosphere is by groundwater transport. The 
man-made barriers surrounding the waste, the 
waste form and its packaging will all serve to delay, 
possibly for thousands of years, contact between 
the waste and the circulating groundwater. Even- 
tually, however, the barriers will be breached and 
the process of leaching and dissolution will begin, 
releasing radionuclides into the flowing water. In 
fractured rock bodies such as granite, migration 
will take place predominantly along existing open 
fracture networks, since these generally offer the 
path of least hydraulic resistance. Fortunately, 
nuclides will not usually advect with the ground 
water, but will rather be retarded by two primary 
mechanisms: sorption and diffusion into the rock 
matrix. 

The main subject of this paper is the latter 
process--namely diffusion of radionuclides from 
water flowing in the fractures to stagnant water in 
the rock matrix. Recently, models incorporating 
diffusion into the rock matrix have been increas- 
ingly studied (Neretnieks, 1980; Rasmuson and 
Neretnieks, 1980, 1981; Grisak and Pickens, 1980; 

Curtis, 1980; Glueckauf, 1980, 1981; Rae and Lever, 
1980; Kipp, 1982; Barker, 1982; Bibby, 1981; Tang 
et al,  1981; Kanki et al., 1981), and experimental 
programmes have started to measure the important 
parameters (Bradbury et al., 1982; Skagius and 
Neretnieks, 1982; Wadden and Katsube, 1982). In 
addition, a model incorporating rock-matrix dif- 
fusion has been used to interpret a field experiment 
(Hodgkinson and Lever, 1983). In the next section 
we briefly describe laboratory experiments to 
measure the parameters characterizing the dif- 
fusion process--the intrinsic diffusion coefficient 
and the rock capacity factor. These data, together 
with a typical range of realistic hydrogeological 
parameters pertaining to granite formations, are 
used in solutions of migration equations. Estimates 
are given for the retardation factor and the varia- 
tion of the maximum concentration as a function of 
distance from the source. The case chosen is that for 
a non-sorbing species, for example the iodide ion, 
since such species would be expected to migrate 
the most rapidly. Therefore, for the situation con- 
sidered, the calculations represent an upper bound 
on the migration rate. It should be emphasized that 
all species will be retarded and dispersed by 
diffusion phenomena to a similar extent. For 
sorbing species, diffusion-related retardation and 
dispersion will be in addition to delays originating 
from sorption processes, whether taking place in 
the bulk rock, on fracture surfaces, or on fracture 
infill material. 

1. Experimental procedure and results. Diffusion 
has been measured through cylindrical samples of 
granite approximately 75 mm in diameter and up to 
50 mm thick. Briefly, the method consists of sealing 
a previously saturated sample in a perspex cell. One 
face of the sample is maintained at a constant 
concentration by contact with a large volume of a 
KI solution. Diffusion across the sample is moni- 
tored continuously by measuring the iodide ion 
concentration using calibrated ion specific elec- 
trodes in a stirred solution contacting the opposite 
face of the sample (Bradbury et al., 1982). It was 
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found that small variations in temperature had no 
discernible effects. 

The diffusion through the slab is modelled by the 
diffusion equation 

, t3c' ~32c ' 
c~ ~ -  = D,~q-x2, (1.1) 

where D i is the intrinsic diffusion coeff• (the 
flux per unit area of rock is - Di c~c'/Ox) and c~' is the 
rock capacity factor. This has two contributions, 

~' = qY + p ' K ' ,  (1.2) 

where qY is the porosity, p' the rock density and K "  
the partition coefficient assuming a linear equili- 
brium isotherm. In (1.1), c' is the concentration per 
unit volume of pore water, and so ~'e' is the con- 
centration per unit volume of rock in the pore- 
water and sorbed to the rock. 

For  the present case of a porous slab initially at 
zero concentration, with constant inlet concentra- 
tion C1 at x = 0 and outlet concentration C2(t) 
(C2(t)<< CO at x = l, the total quantity, Q(t), 
diffused through the slab in time t is found by 
solving (1.1) to be: 

O(t) _ Dit or' 
AIC1 12 6 

2~' ~ ( - -1)"exp5 DinZTr2t_] (1.3) 
zt2,~x n 2 }. 12~ ' j '  

where Q(t) = C2(t)V, (1.4) 

V is the solution volume in the measurement cell, 
l is the sample thickness, and A the area of the 
sample. 

As t increases, the exponential term in (1.3) 
rapidly decreases leaving the asymptotic solution 

DiACl ClAI~x' (1.5) 
C2(t ) = ~ - t  6V " 

In this asymptotic limit, plots of C2(t) against t 
become straight lines from which D~ and ~' can be 
calculated from the slope and extrapolated inter- 
cept on the time axis respectively (fig. 1). 

It is important  to realize that the intrinsic 
diffusion coefficient is an inherent property of the 
three component  system: porous solid, diffusing 
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FIG. 1. The concentration in the measurement cell as a 
function of time for iodide ion diffusion through a disc of 

Ossian granite. 

species, and solvent. Since it is measured when the 
system has attained a steady state its value is 
independent of the sorption characteristics of the 
diffusing nuclide. 

Diffusion measurements using iodide ions as 
tracer have been carried out on over twenty granite 
samples obtained from four different regions of the 
United Kingdom (these were available commer-  
cially and have no direct significance for waste 
disposal). The main thrust of this paper centres on 
the impact of matrix diffusion on the radionuclide 
migration from a repository. In this context it is 
important  to know the anticipated range of values 
for D i and c(. These results are given in Table I. It is 
also interesting to note that similar measurements 

TABLE I. Diffusion parameters for granites obtained from laboratory 
diffusion experiments 

Granite Di (m 2 s-1)  c~' 

Ossian 6.4x 10-13-1.6 • 10 -12 3.1 x 10-3-2.2 x 10 -2 
Scottish Lowland 2.7 x 10-13-4.0 x 10 -13 2.2 • 10-3-2.7 x 10 -3 
Skene Complex 2.8 x 10-13-7.4 x 10 -13 1.2 • 10-3-4.6 x 10 -3 
Cornish Carnmenellis 2.3 x 10-14 3.2 x 10-14 6.0 x 10 -4 8.8 x 10 -4 
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carried out on granites from Sweden (Skagius and 
Neretnieks, 1982) and Canada (Bradbury, 1983, 
unpublished results) yield very similar diffusion 
parameters to those given here. 

2. Mioration model. In this section we describe 
the one-dimensional migration model used in sub- 
sequent sections. We start by giving the conserva- 
tion equations for the radionuclide concentration. 
These equations are considered in more detail by 
Lever et al. (1983). 

In the absence of radioactive decay, the concen- 
tration per unit volume of water in the fracture, 
c(x,t), and the concentration in the rock, c'(x,w,t), 
satisfy 

tSc Oc t32c D i ~c'] 
K~t + u~- x = OBll~x2 + -h-o--~lw= o, (2.1) 

Retardat ion  Advect ion Dispersion Flux  to rock mat r ix  

~ -  = O i ~ .  (2.2) 
Diffus ion in the  rock 

In these equations u is the mean flow velocity, DBIt 
is the longitudinal bulk dispersion coefficient, D i is 
the intrinsic diffusion coefficient for diffusion into 
the rock, h is the mean fracture half-width, x and w 
are the coordinates along and perpendicular to the 
fracture respectively, a' is the rock capacity factor 
(1.2), and K is the fracture retardation factor, given 
by 

K = 1 + Kf/h, (2.3) 

where Kf is the distribution coefficient per unit area 
of fracture wall. If dispersion and diffusion were 
absent the nuclide would move at velocity u/K. 

Sorption has been modelled by a linear equili- 
brium isotherm, and this has given the simple 
factors K and ct'. Kinetic and non-linear effects have 
both been neglected. The impact of sorption will be 
very different (usually reduced) if either the kinetics 
are slow compared with other time-scales or if the 
concentrations are sufficiently large for the quan- 
tity sorbed not to be proportional to the concentra- 
tion in the water. However, rock matrix diffusion 
will be most important for non- or weakly sorbed 
ions, and the example taken at the end of this paper 
is of a non-sorbed nuclide. So equilibrium sorption 
is included in the analysis to give an idea of how the 
results are affected. 

Hydrodynamic dispersion arises from the dif- 
ferent transit times for various paths through the 
fracture network. In this analysis dispersion in the 
direction of the flow is modelled by a diffusion-like 
term, with a 'geometric' dispersivity (Bear, 1972) 

DBII = Do + allTU, (2.4) 

where all is an empirical constant and y is a length 
scale between fracture intersections. This is assumed 

to be similar to the diffusion length or mean half 
fracture separation l. Hydrodynamic dispersion is 
only represented by a diffusion-like term after a 
moderate number of fracture intersections, which 
can in practice be quite a large distance from the 
source. Nevertheless, it will be used to give an 
estimate of the spreading even before it is a truly 
valid concept. 

Transverse dispersion, spreading orthogonal to 
the flow direction, has not been included in the 
model considered here. Generally it leads to a 
further significant dilution of the concentration at 
all times, although at early times the decrease will 
depend on the spatial distribution of the source. 
Therefore, the maximum concentrations calculated 
here are on the pessimistic side. An alternative 
interpretation of the solution considered here is 
that it is the total quantity integrated over a plane 
perpendicular to the flow direction. When this 
integration is carried out the transverse dispersion 
term, here neglected, disappears. This quantity is 
relevant when looking at the total flux returning to 
the biosphere. 

Finally, initial and boundary conditions are 
required to complete the equations. Initially the 
concentrations in the rock and fracture are assumed 
to be zero. At the fracture surface the concentration 
is continuous, 

c ( x , O  = c ' (x ,  w = 0, t). (2.5) 

There will be no flux of nuclide mid-way between 
the fractures, thus 

~w w = 1 = 0, (2.6) 

where 2l is the mean fracture spacing. For a fracture 
network it is an oversimplification to take a single 
value of l; however, it is sufficient to give a guide to 
the importance of the effect. At the inlet, the 
concentration c(O,t) is assumed to be specified as a 
function of time. There are a number of possible 
downstream boundary conditions. They can be 
applied either at the point where the quantity of 
nuclide is being monitored or at a point far from 
both the source and the monitoring point. The 
latter course leads to simpler solutions, and so is 
adopted here. 

3. Analytic solutions of  the migration equations. 
The equations described in the previous section do 
not have simple analytic solutions for general 
parameter values. However, there are some simple 
solutions for certain values of the parameters 
(l,u,DL,...) and for certain boundary conditions. 
From these an understanding of diffusion into the 
rock matrix can be gained, and so two are examined 
here. 

We consider two inlet boundary conditions. The 
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first is a step function with zero concentration for 
t < 0 and constant thereafter, 

c(O,t)= ~0 t < 0, (3.1) 
( c o t > 0 .  

The other condition is a ' top-hat '  condition with 
zero concentration until t = 0 and after t = T, and 
a constant concentration between, 

c(O,t) = ~0 t < O, t > T, (3.2) 

t c o 0 < t < T .  

As the equations in section 2 are linear, the solution 
for (3.2) can be obtained as the sum of two 
step-function solutions. We will be particularly 
interested in the case of a short pulse input, when T 
is short compared with other time scales. 

The first analytic solution considered is the case 
of non-zero hydrodynamic dispersion in the frac- 
ture and no diffusion into the rock (D i = 0). Then 
the solution for the step function boundary condi- 
tion (3.1) is (Harada et al., 1980; Hodgkinson et al., 
1984): 

Co( _ [-I'x2K \~ I" u2t \�89 c.,t): ) ] 
f XU\ [-/'x2K \ ~r I / u2t \~]7  +expto. jerfcLI, ) Jj' (3.3) 

The first term is the solution for an infinite medium 
with the initial concentration at t = 0 that c = 0 for 
x > 0 and c = co for x < 0. This distribution is then 
convected with velocity u/K and spread over a 
distance of order (DBIIt/K) ~. Thus, after the front has 
travelled a distance x from the source, the time- 
scale it has been spread over is of order 

{DBIIxK2"~�89 (3.4) 

The second term in (3.3) is the correction term 
required to satisfy the boundary condition at x = 0. 
Once the step-function has been convected away 
from the source, as the distance over which it has 
dispersed is much smaller than the convection 
distance, it can be neglected. 

The solution for a ' top-hat '  inlet profile is found 
by taking the difference of two solutions of the form 
(3.3). The approximate solution for a pulse is found 
to be 

CoTX { (x--utlK)Z~ (3.5) r 
2(nDBIEtS/K)~exp\ 4DBIIt/K f 

This clearly shows an exponential fall-off at large t 
after the pulse has passed. Once the pulse has been 
convected away from the source, the maximum 
arrives at t = Kx/u and the time-scale over which 
the arrival is spread is again given by a (3.4). 

Secondly, we consider the solution for the case 
DBII = 0 and 1 = ~ ,  i.e. negligible hydrodynamic 
dispersion in the fractures and effectively infinite 
rock perpendicular to the fracture. The solution for 
the step function input (3.1) is for no nuclide to 
arrive before t = Kx/u, while after this the concen- 
tration is given by 

z �89 
(3.6) 

coT z ~ ( z 
c(x't)= n~(t--Kx/u)a/2exp~ t--[s (3.8) 

An extremely important  feature of the solution is 
now clear. For  large times, as long as the thick-rock 
(l = m) solution is valid, c falls off algebraically as 
t 3/2 (Gleuckauf, 1981), rather than exponentially, 
as is the previous case with no diffusion into the 
rock but with dispersion in the fracture (3.5). 

We have seen in this section that there are two 
important time-scales. When there is hydrodynamic 
dispersion and no rock-matr ix  diffusion, there is no 
additional delay and the time-scale over which the 
concentration changes is given by a (3.4). When 
there is diffusion into the rock and no hydro- 
dynamic dispersion z (3.7) gives both the time-scale 
of the delay of nuclide and also the time-scale for 
either the pulse to pass or for the step function to 
attain its constant value. 

4. General form of the solution. In the last section 
two ideal solutions to the equations for special 
values of the parameters were discussed for two 
boundary conditions, (3.1) and (3.2). In this section 
the simple solutions already described are used to 
examine more general forms of the solution for 
values of the parameters when no simple analytic 
solution is available. 

As the nuclides migrate from the repository, 
different physical processes will determine how the 
concentration changes in different regions along 

Di~'x 2 
where ~ -  4u2h2, (3.7) 

(Neretnieks, 1980; Lever et al., 1983). �9 is the 
characteristic time-scale of diffusion into the rock 
matrix. If t - K x / u  << z, the argument of the com- 
plementary error function is very large and so the 
concentration is negligible. For  t - Kx/u ~ 0(z) the 
argument of the complementary error function is 
order 1, and so significant quantities of the nuclide 
are arriving. For  t -- Kx/u >> z, the concentration is 
effectively co. 

The solution for the ' top-hat '  condition (3.2) is 
obtained by taking the difference of two solutions of 
the form (3.6) and this can be simplified when the 
release time is short compared to the transit time to 
give the approximate solution 
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the migration path. At very short times the effects of 
diffusion and dispersion are not important. The 
principal effect, if it takes place, is retardation by 
sorption on the fracture walls, otherwise the nuclide 
is advected at the flow velocity. 

The next process to become important is hydro- 
dynamic dispersion. This can be seen by comparing 
the time-scales on which diffusion spreads the front 
or pulse, r (3.7), and the time-scale for dispersion, ~r 
(3.4). 

"C Oio;t x 3/2 
- ~ ~ 2 �9 ( 4 . 1 )  

4D~Nu2h K 

For small enough x, this is less than 1, suggest- 
ing that spreading by hydrodynamic dispersion 
dominates that by diffusion. An estimate of the 
distance, x = Ldt, at which the transition takes 
place, can be obtained by setting the ratio z/cr (4.1) 
to unity. This gives the transition distance as: 

{DBIFuh4KZ)I/a (4.2) 
Ld,--~3\  D2~,2 ] " 

In deriving the time-scale for spreading by disper- 
sion, we neglected retardation by diffusion. How- 
ever, even though dispersion is spreading the front 
more than diffusion, diffusion into the rock could 
still be retarding the nuclide, and so rather than 
include in (4.2) the retardation factor in the absence 
of diffusion, K, it is better to include the value 
appropriate to that value of Lat. This retardation 
factor, K(Ld0 , will be discussed shortly. Thus, 
instead of being given by (4.2), Lat is the solution of 

( DBI[Uh 4[K(Ldt) ]Z ~ 1/3 
Lat = 3 Ix- ~ j . (4.3) 

Initially, nuclides diffuse into the rock as though 
it were infinite, and the thick-rock solutions dis- 
cussed in the previous section are valid. However, 
the influence of neighbouring fractures is eventually 
felt. If at some point along the fracture, the nuclide 
has been diffusing into the rock for a time ta, there 
will be appreciable concentrations at a distance 
2(Dite]c()~ from the fracture. Once this becomes 
comparable with half the fracture separation l, the 
thick-rock solution breaks down. The position, 
x = Ltq, at which this occurs if the maximum is 
being monitored, can be found by substituting 
td = Z(X), given by (3.7), and this gives: 

luh 
Ltq ----- Oii" (4.4) 

Much further from the repository a region of 
quasi-equilibrium is reached when the nuclide 
concentration in the rock and fractures are ap- 
proximately in equilibrium. In this region the 
migration can be modelled by an equivalent porous 
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medium and the concentration again approxi- 
mately satisfies the convection-diffusion equation 
(Glueckauf, 1980; Lever et al., 1983): 

,& ~c 02c 
K ~-+U~x  x = DeSex 2, (4.5) 

with enhanced values of the retardation factor and 
dispersion coefficient given by 

~'l 
K ' = K +  X 

~t2/3U2 
De = DBjr 4 3hDiK, z. (4.6) 

In this region the solutions (3.3) and (3.5), obtained 
for pure hydrodynamic dispersion, are again ap- 
propriate, and the slow fall-off in concentration at 
large times for the thick-rock solutions, (3.6) and 
(3.8), is no longer found. Curtis (1980) found that at 
large distances, the time of arrival of the maximum 
was shifted by a constant, corresponding to the 
time taken to diffuse across the rock between the 
fractures. Clearly, as the distances get larger, this 
constant becomes less significant. He also found 
that the transition from the thick-rock solutions 
was fairly slow. 

The distances (4.3) and (4.4) have been expressed 
in terms of the flow velocity in the fracture u. It is 
helpful to relate this to the hydraulic gradient 
driving the flow, A 

gAh 2 
u -  3 v '  (4.7) 

where v is the kinematic viscosity and g the 
acceleration due to gravity. When this is substi- 
tuted it is seen that the distances Ldt and Ltq are very 
sensitive to the values of the fracture aperture 2h. 

5. The retardation factor. One of the main effects 
of diffusion into the rock matrix is increased nuclide 
retardation. There are a number of ways of defining 
the retardation factor, depending on the form of 
input. For  a pulse it is convenient to define the 
retardation of the maximum concentration, whilst 
for a step-function it is more sensible to define it by 
the breakthrough of a fraction of the constant 
limiting value. However, we saw in section 3 that 
when the nuclide is diffusing into thick-rock both of 
these are determined by z, and so different defini- 
tions will only differ by a constant factor. Later, in 
the quasi-equilibrium region, the retardation factor 
tends to a constant, given by (4.6), and all defini- 
tions are equivalent. So in this section we will 
concentrate on the retardation of the maximum 
concentration in a pulse, bearing in mind that it is 
typical of more general definitions. 

The retardation of the maximum is not affected 
by hydrodynamic dispersion, which simply spreads 
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the pulse. So at very short times, when diffusion 
effects are negligible, the retardation is determined 
by sorption on the fissure walls, given by (2.3). As 
diffusion into the rock matrix becomes more im- 
portant the retardation of the maximum increases. 
Initially the nuclide diffuses into the rock as though 
it were infinite in extent; the influence ofneighbour- 
ing fractures is not felt. The concentration is given 
approximately by (3.8) and the maximum arrives at 
time 

K L  2 K L  Dio~'L 2 
tmax -- U ~-~'C = ~--q- 6u2h 2 . (5.1) 

Thus, the retardation factor, x, of the maximum is 

x(L) = Utmax DI=t'L (5.2) 
L = K + 6uh~, 

x increases linearly with distance from the reposi- 
tory in the region where the thick-rock solution is 
valid. 

However, this solution starts to break down 
when the influence of diffusion from neighbouring 
fractures becomes important. This occurs at a 
distance Ltq from the repository, given by (4.4). 
After this the retardation stops increasing linearly 
with distance and tends to the constant retardation 
factor characteristic of the quasi-equilibrium 
region, where the concentration in the rock is 
approximately the same as in the fracture. The 
limiting value of the retardation factor is given by 
(4.6) 

~'l 
x = K '  = K +~- .  (5.3) 

It is worth noting that the term oH~h, by which 
rock-matrix diffusion enhances the retardation 
factor K, is simply the ratio of the amount of 
nuclide held immobile in the rock matrix (sorbed 
and in solution in the pore-water) to the amount 
flowing in the fissure. 

The transition from the thick-rock solution to 
the quasi-equilibrium solution takes place over a 
large distance. This can be seen by equating (5.2) 
and (5.3) to find the distance from the repository 
where the two asymptotes meet, this is at 

6uhl 
L = Di = 6Ltq. (5.4) 

6. The maximum concentration. Having studied 
the retardation factor we now consider the varia- 
tion along the migration path of the maximum 
concentration, first for a pulse input, and then for a 
decaying step function. 

The behaviour of the maximum concentration of 
the pulse is different in the various regions described 
in section 4. Initially the characteristics of the input 
pulse are retained. The first significant effect arises 
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from longitudinal dispersion for distances less than 
Ldt, given by (4.3). The concentration is given by 
(3.5) and the maximum is 

coT(_ u a "~ 
Cm'x= 2 krcDBIIKZL]" (6.1) 

An important point to note is that crux falls off as 
L -�89 For distances greater than Lat, diffusion into 
the rock becomes the dominant process, and for 
Ldt < L < Ltq the nuclide diffuses into the rock as if 
it were infinite in extent. The maximum concentra- 
tion arrives at the time given by (5.1) and is 

= 0.93 c~ (6.2) 
Cmax Di~x, L 2 �9 

Consequently as long as the thick-rock approxima- 
tion is valid, the maximum concentration will 
decrease as L -2, i.e. more rapidly than (6.1). 

Eventually the thick-rock solution breaks down 
and the system tends slowly to a quasi-equilibrium 
characterized by an enhanced retardation and an 
enhanced dispersion, given by (4.6). The migration 
equation is again approximately a convection- 
diffusion equation and so the maximum concentra- 
tion is similar to (6.1), with DBII replaced by De and 
K by K',  and is 

co T ( u 3 ~ 
Cmax = ~ - ~ ~ j  . (6.3) 

Now, as in the region dominated by longitudinal 
dispersion, the maximum decreases as L -r One 
simple way to characterize the effect of rock-matrix 
diffusion is to compare the asymptote (6.3) with the 
asymptote when there is no matrix diffusion but 
only dispersion (6.1). This ratio is determined by the 
hydrogeologic and diffusion parameters, and does 
not depend on L or q. It is given by 

cm.x(Oo) _ (O ,K2  
E c ~  \DoK '2J  " (6.4) 

Thus the maximum will be significantly reduced if 
K'  is greater than K (i.e. there is a substantial 
increase in retardation), or if De is much greater 
than DBp E gives the fractional reduction in the 
quasi-equilibrium region. The fractional reduction, 
e, along the migration path is a function of the 
migration distance, and is found from (6.1) to (6.3) 
to be approximately 

1 L < Ldt, 
(u~rh2D~liK" ~ 

e(L)= 3.3~ Diot, La/2 j L a t < L < L t q ,  (6.5) 

E Ltq < L. 

Finally, we examine a step-function boundary 
condition. There is only a reduction in maximum 
concentration if the nuclide is decaying, including 
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that in the source. Then if it is retarded sufficiently 
for the transit time to become comparable to, or 
greater than, the half-life, there is a significant 
reduction. Of course, the nuclide probably decays 
into another radionuclide. However, as most 
nuclides are significantly sorbed, this may be much 
less mobile. 

The maximum concentration in the absence of 
retardation by diffusion is approximately 

Cmax = coexp(--2KL/u), (6.6) 

where 2 is the decay constant. With diffusion it is 
approximately 

Cmax = CoeXp(--g~(L)L/u), (6.7) 

where the retardation factor is given by (5.2) and 
(5.3), depending on whether L is less than or greater 
than 6Ltq. So the approximate fractional reduc- 
tion, e, is given by 

fexp(--Dio~'e2/6u2h 2) L < 6Ltq, 
e(L) ~-- [exp( - -a  lL2/uh) L > 6Ltq. (6.8) 

7. Estimates of the enhanced retardation and 
reduction in maximum concentration. As an example 
of the sort of delays that may be expected from 
diffusion into the rock we consider the migration 
of a non-sorbed (K = 1), non-decaying pulse of 
nuclide. This is a good example because non-sorbed 
nuclides are probably not  retarded by other physi- 
cal processes, only dispersed, so they are the ones 
most likely to return rapidly to the biosphere. 

The following values for physical constants and 
hydrogeological parameters are used: 

9 = 10 ms -2 
V = 10 -6  m 2 S -1 

A = 10 -3. 

We take two sets of diffusion parameters, based on 
the range given in Table I for granites: 

D i = 10-a2 m 2 s-a,  ~, = 10 -2, 
D i = 5 x 1 0 - 1 4 m  2s -1 ,  ct '=5•  -4  , 

and two values of the dispersion length constant: 

a l j = l  and a l j=10 ,  

to reflect the way the quantities we calculate depend 
on D~, ct', and all. Bourke et al. (1982) recently 
reported fracture separations (2/) of 10 m and 
fracture apertures (2h) of 5 x 10- s m. So we con- 
sider two values of/, 2 m, and 5 m, and two values of 
h, 2.5 x 10 -2 m and 10 -4 m, to see the dependence 
of the quantities of interest on the fracture para- 
meters. These quantities are: (i) the distance from 
the repository at which diffusion into the rock starts 
to dominate hydrodynamic dispersion, Lat (4.3); 

(ii) the distance at which the thick-rock solutions 
break down and the quasi-equilibrium solutions 
start to be appropriate, Ltq (4.4); (iii) the maximum 
retardation factor K '  (5.3), attained in the quasi- 
equilibrium region; (iv) the maximum fractional 
reduction, E (6.4), in the maximum concentration 
compared to its value without diffusion into 
the rock, again attained in the quasi-equilibrium 
region. The results are shown in Table II. 

The limiting values of the retardation shown 
vary from 10 (for the case of low rock capacity, 
small fracture separation and wide fracture aper- 
ture) to 2000 (for high capacity, wide separation 
and small aperture), and the fractional reduction in 
maximum concentration are in the range 10 -4  to 
10 -3 . The distances at which the transitions take 
place vary considerably: Lat from 3 m to 6.5 x 
10 a m (6.5 km) and Ltq from 100 m to 3.3 x 105 m 
(330 km). Clearly the highest values are much larger 
than any migration distances that would be en- 
countered in practice, indicating that the maximum 
retardation and reduction could not  be attained. 
The wide range shows how important  it is to have 
accurate field data for the separation and aperture 
of the major water-bearing fractures. 

We further illustrate the retarding effects by 
calculating the travel times for water and a non- 
sorbed nuclide along a path of given length for a 
given set of rock parameters. These values, referred 
to as the central case, are migration distance 
L =  2000 m, diffusion parameters D i ~ 10 -12 
m 2 s-1  and ~' = 0.01, fracture parameters l = 5 m 
and h = 2.5 • 10 -5 m, dispersitivity air = 1 and 
hydraulic gradient A = 10 -3. The effect on the 
travel times of varying each in turn is examined, and 
the results given in Table III. The nuclide travel 
time is calculated from the retardation factor, based 
on the arrival time of the maximum of a pulse. 
Clearly the breakthrough or initial arrival time is 
somewhat earlier, but the above value provides a 
suitable estimate for the purpose here. 

For  the central case, the water travel time is 30 
years, and the time for the non-sorbed nuclide 
about  2000 times longer, i.e. 60000 years, as the 
migration path is sufficiently long for the quasi- 
equilibrium region to be attained (L > 6Ltq ). 
Changing the dispersitivity all does not alter these 
results (although it would alter the initial break- 
through time). Decreasing 1 to 2 m decreases 
the limiting retardation factor to 800, the quasi- 
equilibrium solution is still relevant, and so the 
nuclide travel time is decreased to 24 000 years. The 
other four variations all result in the migration 
distance being smaller than 6 Ltq, so the quasi- 
equilibrium region is not  attained, and the thick- 
rock solution (5.1) has to be used instead as an 
estimate. The effects of reducing the migration 
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TABLE I I .  The effect of rock-matrix diffusion on nuclide migration 

h (m) I (m) u (ms-1) La, (m) Ltq (m) K '  E 

(i) D i = 10 -12 m 2 s - 1 ,  ct' = 10 -2, all = 1 

2.5x 10 - s  2 2.1 x 10 -6 2.6 100 800 2.9x 10 -4 
2.5 x 10 -5 5 2.1 x 10 -6 5.0 260 2000 1.2x 10 -4 

10 -4 2 3.3 x 10-5 45 6700 200 1.5 x 10 -4 
10 -4 5 3.3x 10 5 64 17000 500 6.0x 10 -5 

(ii) D i = 5 x 1 0 - 1 4 m 2 s  -1, c t ' = 5 •  -4, a l l = l  

2.5 x 10 -5 2 2.1 x 10 -6 59 2.1 x 103 41 1.3x 10 -3 
2.5x 10 -5 5 2.1• -6 84 5.2x 103 100 5.4x 10 -4 

10 -4 2 3.3 x 10-5 2200 1.3 x 102 11 6.7 x 10 -4 
10 -4 5 3.3 x 10-5 3000 3.3 x 102 26 2.7 x 10 -4 

(iii) D i = 10 -12 m 2 s -1, ct' = 10 -2, all = 10 

2.5x 10 -5 2 2.1 x 10 -6 16 100 800 7.6x 10 -4 
2.5 x 10 -5 5 2.1x 10 -6 39 260 2000 3.0x 10 -4 

10 -4 2 3.3 x 10 -2 110 6700 200 4.7x 10 -4 
10 -4 5 3.3 x 10 -5 170 17000 500 1.9 x 10 -4 

(iv) D i = 5 x l 0 - 1 4 m 2 s  -1, ~ ' = 5 x 1 0  -4, a l l=10  

2.5x 10 -5 2 2.1 x 10 -6 1.5• 2.1x 103 41 4.2x 10 -a 
2.5 x 10 - s  5 2.1x 10 -6 2.2x 102 5.2x 10 s 100 1.7x 10 -3 

10 -4 2 3.3 x 10 -5 4.8 x 10 a 1.3x 105 11 2.1x 10 -3 
10 -4 5 3.3 x 10 -2 6.5 x 103 3.3 x 102 26 8.5 x 10 -4 

Ldt is the distance where thick-rock diffusion dominates hydrodynamic disper- 
sion, Ltq where the thick-rock solutions break down, K '  and E the limiting 
retardation factor and fractional reduction in maximum concentration in the 
quasi-equilibrium region. 

dis tance to 500 m or  increas ing the hydraul ic  
gradient  to 4 x 10-  3 are identical; the wate r  a n d  
nuclide t ravel  t imes are reduced  respectively to 7.6 
and  4900 years,  giving a r e t a rda t i on  factor  of  640. 
I f  the rock  po ros i t y  is lower  and  the intr insic 
diffusivity is co r r e spond ing ly  lower  (ct' = 5 x 10 -4,  

TABLE I I I .  The effects on the travel times for 
water and a non-sorbed nuclide of a variation of the 

parameters 

Water travel Non-sorbed nuclide 
Variation time (yrs.) travel time (yrs.) 

Central case 30 60000 
L = 500 m 7.6 4900 
Di = 5x10-14m2s-1 / 
ct '=5x10-4 . 30 230 
l = 2 m 30 24000 
h = 10 -4 m 1.9 21 
all = l0 30 60000 
A = 4 x 10- 3 7.6 4900 

The central case has a migration length L = 2000 m, D i = 10-12 
m 2 s -1, ct'=0.01, / = 5  m, h=2.5•  -5 m, a l l=l ,  and 
A = 10 -3. 

D i = 5 • 10-14 m 2 s - 1), then  the r e t a rda t ion  is only  
7.4, c o m p a r e d  wi th  a m a x i m u m  value of  100 in the 
quas i -equ i l ib r ium region,  and  the nucl ide travel  
t ime is 230 years. I f  the half  f racture  ape r tu re  h is 
increased by  a factor  of  4, to  10 - 4  m, the re ta rda-  
t ion factor  is on ly  11. The  wa te r  travel  t ime is 
reduced  to 1.9 years  (as the hydrau l ic  gradient  is 
kept  cons tan t )  and  the nucl ide travel  t ime is a mere  
21 years. Thus ,  a compara t ive ly  small  change  in h 
leads to a d ramat i c  change  in the re ta rda t ion ,  
because  in the th ick-rock diffusion region the 
increase in the travel t ime (5.1) is p r o p o r t i o n a l  to 
h -  6 (as u is p r o p o r t i o n a l  to h2). This  again  e m p h a -  
sizes the need for a g o o d  charac te r iza t ion  of  the 
m a j o r  wa te r -bea r ing  fractures.  

Finally,  we give two  i l lustrative curves to s h o w  
h o w  the fo rmulae  developed in sect ions 4 to 6 can  
be used to cons t ruc t  a p p r o x i m a t e  curves  showing  
the deve lopment  of  the solut ion.  We  again take as 
the specific example  the values: h = 2.5 x 10-5 m, 
l =  5 m, D i = 10 -12 m 2 s -x ,  ct = 0.01, all = 1, 
A = 10 -3. First ,  the r e t a rda t ion  factor  is s h o w n  in 
fig. 2. This  increases f rom 1 at L = 0 to the cons t an t  
value of  2000 in the quas i -equ i l ib r ium region. The  
two asympto t i c  reg ions  are shown:  the so lu t ion  
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when it is diffusing into effectively infinite rock (5.2) 
and the quasi-equilibrium constant (5.3). The posi- 
tion of the breakdown of the former, Ltq , is marked, 
and the long transition to the equilibrium seen. 
Then in fig. 3 the fractional reduction, e, in the 
maximum concentration arising from diffusion into 
the rock matrix is plotted as a function of distance 
from the source. The three asymptotes are given by 
(6.5). Initially diffusion has no effect, hydrodynamic 
dispersion dominates and e = 1. Then there is a 
transition region before the thick-rock solutions 
dominate after Ldt. This long transition arises 
because diffusion retards the pulse, and so increases 
spreading by dispersion, before it dominates in the 
spreading of the pulse. After this the thick-rock 
region is seen, which in turn gives way to the 
quasi-equilibrium solution at  Ltq. Here the frac- 
tional reduction is again a constant (1.2 • 10-4), 
determined by the enhanced dispersivity and 
retardation. 

8. Conclusions. We have described the results of 
laboratory experiments measuring the intrinsic 
diffusivity and rock capacity factors for weakly 
sorbed ions in granitic rocks. These values have 
been used when the effects of diffusion from water 
flowing in fractures into immobile water in the rock 
pores is important  for radionuclide migration. 
Simple solutions have been presented, which enable 
the positions of the transitions between regions 
where different phenomena dominate  to be calcu- 
lated. The retardation factor and reduction in 
maximum concentration have been calculated in 
the different regions and their asymptotic be- 
haviour plotted. We have seen that for non-sorbed 
ions, which would not otherwise be retarded, 
retardation factors in excess of 100 and reductions 
in the maximum concentration of 3 or 4 orders of 
magnitude are possible. 
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