Compositional variation in högbomites from north Connemara, Ireland

N. S. ANGUS AND R. MIDDLETON

Department of Geology, The University, Hull, HU6 7RX

ABSTRACT. Högbomite occurs in two contrasting mineral assemblages within the Currywongaun-Doughruagh intrusion of north Connemara: a cordierite-rich pelitic xenolith and an orthopyroxenite. In the latter, högbomite and green spinel form blebs within magnetiteilmenite grains. The högbomite displays significant compositional variation from grain to grain: TiO₂ (3.0-6.3%), FeO (21.6-21.3%), MgO (10.0-7.5%), ZnO (3.6-2.4%). This chemical heterogeneity appears to represent variable degrees of partial substitution of Mg and Zn by Ti, in the replacement of spinel by högbomite. By contrast, in the cordierite-hornfels, the högbomite compositions are more notably enriched in iron: TiO₂ (4.7-7.0%), FeO (29.6-24.3%), MgO (4.2-6.2%), ZnO (2.7-2.1%). This iron-rich högbomite appears to have formed primarily by interaction between opaque ore and adjacent cordierite, rather than by replacement of spinel.

Two high-grade metamorphic episodes appear to be necessary for högbomite growth, one determining chemical composition and the other appropriate physical parameters. In the Connemara occurrences thermal metamorphism and partial melting, coupled with contamination of the surrounding magma, controlled the formation of mineral assemblages rich in Fe, Mg, Al, Ti, and Zn. Emplacement of the intrusion was accompanied by amphibolite facies regional metamorphism and it is to this metamorphic event that the growth of högbomite may be attributed.

KEYWORDS: högbomite, orthopyroxenite, cordieritehornfels, Connemara, Ireland.

HöGBOMITE in accessory amounts is of common occurrence in many desilicated pelitic xenoliths in the ultrabasic and basic intrusions of central Connemara (Leake and Skirrow, 1960; Evans, 1964). In these corundum-, spinel-, and magnetite-bearing assemblages, högbomite frequently rims the iron ore, intervening between magnetite and corundum or magnetite and spinel, as well as occurring within the magnetite itself.

Within the Currywongaun-Doughruagh intrusion of north Connemara (Kanaris-Sotiriou and Angus, 1976), högbomite has been found in two quite distinctive and contrasting assemblages. The first is a cordierite-rich, hornfelsed pelitic xenolith recorded by one of us (N.S.A.) and subsequently described by Leake (1965), and the second is essentially an orthopyroxenite of magmatic origin. They occur in adjacent exposures in the NE corner of the Currywongaun body, about 750 m NE of the summit of Currywongaun, but their interrelationships with one another and with the surrounding norite are indeterminate due to poor exposure. They occur some 30 m from the inferred edge of the intrusion which is emplaced into a series of semipelitic and psammitic schists.

Broadly similar developments of högbomite are well documented (Friedman, 1952; McKie, 1963), but, as in the Connemara examples, chemical data on these occurrences of accessory högbomite is understandably meagre. In more recent years, microprobe analyses of högbomite, principally from high-grade regional metamorphic rocks (Woodford and Wilson, 1976; Wilson, 1977; Teale, 1980; Coolen, 1981; Mancktelow, 1981; Spry, 1982; Ackermand et al., 1983) and less commonly from titano-magnetite rich rocks (Čech et al., 1976; Zakrzewski, 1977; Devaraju et al., 1981) have been published. These reveal a variety of compositions and illustrate that högbomite may contain large amounts of Co (Čech et al., 1976) or Zn (Wilson, 1977; Spry, 1982), while Mancktelow (1981) has extended the range of known iron compositions to considerably higher values in the Reedy Creek högbomite of South Australia.

Mineral assemblages and chemistry

Orthopyroxenite. This consists of subhedral grains of hypersthene (75 vol. %), partly replaced by prismatic anthophyllite, and enveloped by irregular opaque ore grains (25 vol. %). The ores are mainly magnetite with lesser amounts of ilmenite of variable composition (Table I), and together they may form conspicuous segregations up to 10 mm long. Högbomite and green spinel occur as small inclusions or exsolution blebs and diffuse lamellae in the magnetite-ilmenite grains. A single ore grain may contain discrete blebs of green spinel and

No. of analyses	Hypersthene (1)	Anthophyllite (4)	Magnetite (8)	Ilmenite (composition range)
SiO ₂	51.29	53.30	0.19	0.21-0.29
Al ₂ Õ ₃	3.29	4.00	0.54	_
TiÕ,	0.11	0.07	0.22	47.48-19.22
FeO	21.58	16.27	91.12	50.42-72.27
MgO	22.17	22.13	0.08	1.22-0.32
MnO	0.55	0.53		0.51-0.00
CaO	0.20	0.43		
Na ₂ O	_	0.44		
ZnÕ	0.04			_
Anhydrous total	99.23	97.17	92.15	99.84-92.10
$\overline{X_{\rm Fe} = {\rm Fe}/({\rm Fe} + {\rm Mg})}$	0.35	0.29		

TABLE I. Analyses of minerals associated with högbomite in the orthopyroxenite

Hypersthene was analysed by X-ray fluorescence and atomic absorption techniques. Other analyses are means of the indicated number of electron microprobe point analyses.

högbomite, as well as 'intergrowths' of the two minerals, and, although it is usually anhedral, rare well-formed högbomite crystals with rectangular or hexagonal outlines are sometimes evident. Little if any högbomite or spinel is developed along hypersthene-ore boundaries, but grains frequently occur at magnetite-ilmenite junctions.

Analyses of the cores of three individual högbomite grains, illustrating the compositional variation in TiO₂, MgO, and ZnO, are presented in Table II. The associated green spinel displays little variation in composition and is represented by the mean of ten point analyses. The spinel and högbomite compositions have been recalculated to Zakrzewski's (1977) proposed formula, $R_{2-2x}^{2+}Ti_x$ $R_4^{3+}O_8$, and, although it has not been conclusively verified, the analyses fit this structural formula reasonably well (Table II). The role of Si^{4+} in the structure of högbomite has not been explained, although published data frequently demonstrate its presence in small quantities. In the data presented here, silica occurs in amounts at or near the detection limit of the electron microprobe. For the purpose of formula recalculations, Si⁴⁺ has been assumed to be present as a solid solution of (Mg,Fe)₂SiO₄ with högbomite, and any inaccuracies introduced by this assumption are expected to be small. Although there is a reluctance to propose solid solution of silicon in an oxide structure, recent studies of silicon in magnetite (Newberry et al., 1982) have revealed silicon in solid solution with an average value of 1.2 wt. % Si, equivalent to solid solution of 9 mole % Fe₂SiO₄.

The green spinel contains almost equal amounts of Fe^{2+} and Mg in the structure, indicating a

composition on the hercynite-pleonaste boundary, while the presence of about 4% ZnO points to a solid solution with about 7% gahnite. The Zn is

TABLE II. Electron-microprobe (EDS) analyses of högbomite and spinel from the orthopyroxenite

	Högbomite			Spinel	
No. of analyses	(1)	(1)	(1)	(10)	
SiO ₂			0.23	0.31	
$Al_2 \tilde{O}_3$	61.22	61.33	61.18	61.66	
TiÕ,	3.00 21.59 10.04 3.56	4.50 21.57 9.47 2.66	6.31	0.70	
FeO			21.32	21.97	
MgO			7.49	10.92	
ZnO			2.42	3.97	
Anhydrous total	99.41	99.53	98.95	99.53	
	Number of cations on the ba of 8 oxygens*				
Si			0.012	0.017	
Al	3.854	3.832	3.842	3.906	
Fe ³⁺	0.146	0.168	0.134	0.068	
Ti	0.121	0.179	0.253	0.028	
Fe ²⁺	0.819	0.789	0.817	0.920	
Mg	0.799	0.748	0.595	0.875	
Zn	0.140	0.104	0.095	0.158	
$X_{\rm Fe} = {\rm Fe}/({\rm Fe} + {\rm Mg})$	0.55	0.56	0.62	0.53	

Each analysis is the mean of the indicated number of point analyses.

* Formula calculated on the basis of Zakrzewski (1977).

presumably leached and concentrated from the opaque ore which typically reveals several hundred ppm Zn when analysed by AAS. Usually significant levels of TiO_2 (0.5 to 1.0%) are also present which may indicate some limited solid solution with högbomite.

The högbomite, in contrast to the green spinel, is not consistent in composition (Table II). Notably, TiO₂ ranges from 3.0 to 6.3%, with MgO (10.0 to 7.5%) and ZnO (3.6 to 2.4%) displaying sympathetic variation. This compositional variation of högbomite and its relationship to the spinel is shown in fig. 1. Mg and, to some extent, Zn show inverse correlations with Ti (fig. 1a and b), and although Fe²⁺ is lower in högbomite than in spinel (fig. 1c), it lacks the strong correlation shown by Mg. This lower Fe²⁺ in högbomite is balanced to some extent by higher Fe³⁺, as the plot of Ti v. Fe²⁺ + Fe³⁺ (fig. 1d) shows broadly comparable total iron levels in the two minerals.

The heterogeneity displayed by the högbomite compositions appears to represent varying degrees of partial substitution of Mg and Zn by Ti in the replacement of spinel by högbomite. This was initially put forward as a mechanism of högbomite formation by Friedman (1952) and subsequently substantiated by Zakrzewski (1977), who also suggested that the loss of Al in högbomite is compensated by oxidation of Fe. Similar substitutions of the type $Ti \rightleftharpoons 2R^{2+}$ and $Ti \rightleftharpoons 2Al$ were put forward by Coolen (1981), with the charge balance in the latter type maintained by coupling the Ti substitution with an iron-oxidation reaction and a Fe-Al substitution to give the net equation: $Ti + 2Fe^{3+} \rightleftharpoons 2Fe^{2+} + 2Al$.

Cordierite-rich hornfels. Leake (1965) has previously described this hornfels and his account needs only minor qualification. Partially pinitized cordierite (90% by vol.) and opaque ore (9%) constitute the bulk of the rock, with högbomite comprising about 0.5%, and biotite and anthophyllite the remainder. The opaque ore has dedeveloped along the cordierite grain boundaries and comprises both magnetite and ilmenite (Table III).

FIG. 1. Individual analyses of högbomite and spinel. (a) Mg v. Ti⁴⁺; (b) Zn v. Ti⁴⁺; (c) Fe²⁺ v. Ti⁴⁺; (d) Fe³⁺ + Fe²⁺ v. Ti⁴⁺. Cations calculated on basis of Zakrzewski's formula (1977). Open squares högbomite and open circles spinel in orthopyroxenite. Solid squares högbomite and solid circles spinel in cordierite hornfels.

No. of analyses	Cordierite (1)	Anthophyllite (7)	Magnetite (7)	Ilmenite (7)
SiO ₂	48.17	51.81	0.13	0.07
$Al_2 \tilde{O}_3$	33.56	5.24	0.42	0.09
TiO ₂	0.01	0.25	0.17	46.96
FeO	4.87	16.83	92.68	51.05
MgO	10.57	20.58	_	_
MnO	0.09	0.51	_	1.35
CaO	0.06	0.53	_	_
Na ₂ O	0.34	0.51		
$K_2 \overline{O}$	0.02			
ZnO	0.01			—
Anhydrous total	97.70	96.26	93.40	99.52
$\overline{X_{\rm Fe} = {\rm Fe}/({\rm Fe} + {\rm Mg})}$	0.21	0.31		

 TABLE III. Analyses of minerals associated with högbomite in the cordierite-hornfels

Cordierite was analysed by X-ray fluorescence. Each of the other analyses is representative of seven energy-dispersive electron microprobe analyses.

No. of analyses	(29)	Högbomite (composition range)		Spinel (6)
SiO ₂	0.19	0.23	0.00	0.10
Al_2O_3	57.77	58.43	58.21	59.70
TiO ₂	5.98	4.69	6.97	0.26
FeO	25.36	29.61	24.31	24.21
MgO	5.15	4.15	6.23	8.03
MnO	0.18	_		
ZnO	2.44	2.72	2.13	8.34
Anhydrous total	97.07	99.86	97.85	100.64
	Number of cations on the basis of 8 oxygens			
Si	0.009	0.013	0.00	0.006
Al	3.776	3.786	3.733	3.865
Fe ³⁺	0.204	0.189	0.267	0.124
Ti	0.250	0.194	0.285	0.011
Fe ²⁺	0.976	1.174	0.839	0.988
Mg	0.426	0.340	0.505	0.658
Zn	0.100	0.110	0.086	0.338
Mn	0.009		_	_
$\overline{X_{\rm Fe}} = \rm{Fe}/(\rm{Fe} + \rm{Mg})$	0.73	0.80	0.69	0.63

 TABLE IV. Electron microprobe analyses of spinel and högbomite from the cordierite-hornfels

Each analysis is the mean of the indicated number of microprobe point analyses.

* Formula calculated on the basis of Zakrzewski (1977).

As in the orthopyroxenite, the högbomite is invariably associated with the ores, but the grains are larger and more irregular, and tend to have developed along cordierite-ore grain junctions and to have extended along intergranular boundaries within the ore. Green spinel is extremely rare, occurring as minute relicts within högbomite crystals, accompanied by tiny granules of (?)corundum.

The mean of 29 högbomite analyses, together with two specific analyses to illustrate the extremes of compositional variation, are presented in Table IV. Also included is the mean of six analyses made on two grains of green spinel, and all analyses have again been recalculated to Zakrzewski's (1977) proposed formula.

The green spinel is richer in Fe and Zn and poorer in Mg and Ti than its counterpart in the orthopyroxenite, and on the basis of the limited analytical data appears to be fairly consistent in composition. An even greater contrast is evident in the composition of the högbomite: TiO₂ contents are notably higher (fig. 1), with values approaching 7.0%, while the mean value of 6.0% is close to the upper limit recorded in the orthopyroxenite högbomite. More pronounced, however, are the degree of iron enrichment and Mg depletion (fig. 1a and c). FeO (total) has a mean value of 25.4%, and with some values approaching 30.0%, putting these among the most iron-rich högbomites yet recorded (Mancktelow, 1981). There is a clear inverse relationship between Fe²⁺ and Mg which is not evident in the högbomite from the orthopyroxenite (fig. 2), and although there appears to be no overall pattern to the Fe^{3+} variation (fig. 1*d*), generally the högbomite in the cordierite hornfels is more highly oxidized. Zn displays little variation and the mean of 2.4% ZnO is similar to that of the högbomite in the orthopyroxenite. The presence of Zn in högbomite (and associated spinels) has been noted by most authors and it would appear to be a ubiquitous though usually minor constituent of the mineral.

In contrast to the apparent gradation in chemical composition from the green spinel into the more Ti-rich högbomite in the orthopyroxenite, no such relationship is apparent between these minerals in the cordierite-hornfels (fig. 1). Also in terms of Ti, Fe, and Mg there is a clear compositional distinction between the högbomites in the two assemblages. These compositional contrasts could possibly arise if the Fe-rich högbomite of the cordierite hornfels formed primarily by interaction between opaque ore (magnetite and ilmenite) and adjacent cordierite, rather than by replacement of spinel which would seem to have played only a minor contributory role. The wide range of Fe²⁺/Mg ratios (fig. 2) may indicate a lack of

equilibrium between individual grains (no compositional zoning was detected) due to most of the component elements being drawn from the immediate vicinity of each grain, coupled with arrested development of the mineral before subsequent recrystallization and homogenization.

FIG. 2. Mg v. Fe²⁺ for högbomite and spinel. Symbols as in fig. 1.

Discussion

The requisite conditions for högbomite formation have been referred to recently by several authors.

In the Strangways Range of central Australia, Wilson (1977) recorded högbomite, developed from green spinel, in highly aluminous magnesian granulite-facies rocks that appear to have formed during a high amphibolite-facies retrogression of the granulites. Teale (1980) proposed a broadly similar origin for högbomite in a spinel-phlogopite schist from Mount Painter Province of South Australia. The original assemblage formed during an initial upper amphibolite-facies metamorphism, while a second similar metamorphic event, under conditions of high oxygen fugacity, led to partial replacement of spinel by högbomite and corundum. Chemically this spinel and derivative högbomite are more magnesian, with correspondingly less Fe and Zn, than their equivalents in the orthopyroxenite of Currywongaun.

Högbomite comparable in composition to that of the cordierite-rich hornfels has been described from aluminous segregations within laminated meta-arkoses at Reedy Creek, in South Australia (Mancktelow, 1981). The högbomite is enclosed within cordierite aggregates, both as separate inclusions and intergrown with magnetite, ilmenitehematite, and green hercynite, but no clear replacement relationship is evident between the hercynite and högbomite. Mancktelow states that the högbomite 'appears to be a stable member of this upper amphibolite-facies mineral assemblage, with no evidence of breakdown or alteration'. Like the Reedy Creek högbomites with a mean FeO (total) of 26.3%, those in the cordierite-hornfels are equally rich in FeO (25.4%), but also have significantly higher Zn and Ti contents.

In these varied Australian examples, högbomite appears to be a stable component of an upper amphibolite-facies metamorphic event subsequent to an earlier high-grade amphibolite or granulite facies metamorphism. Similarly, Zn-rich högbomite in phlogopite-staurolite-cordierite schists within the Geco base-metal deposit of Ontario (Spry, 1982) appears to have formed during an upper amphibolite to lower granulite-facies metamorphism. In the Furua granulites in southern Tanzania, and in the granulite facies metaperidotites of Galicia in Spain, högbomite growth can also be correlated with similar retrogressive metamorphic events (Coolen, 1981).

Two high-grade metamorphic episodes, therefore appear to be necessary for högbomite growth. The first determines the essential chemical composition, that is a mineral assemblage rich in Fe, Mg, and Al, accompanied by Ti and Zn. The second metamorphism is instrumental in producing the appropriate physical parameters and presumably high oxygen fugacity necessary for högbomite development. In attempting to equate these requirements with the Connemara occurrences, a direct analogy is not immediately obvious. However, Evans (1964) has shown that relative increases in Mg, Fe, and Ti in the pelitic hornfelses of the Cashel-Lough Wheelaun intrusion in south Connemara arise by removal of K, Na, Ca, Si, and Al in the form of a fractional granitic melt. The origin of the cordierite-rich hornfels in Currywongaun can similarly be linked to thermal metamorphism and partial melting of the original pelitic xenolith, and the adjacent orthopyroxenite, with its abnormally Fe-rich orthopyroxene (Fs₃₅), probably crystallized from the surrounding contaminated basic magma. The syntectonic nature of the Connemara basic intrusions is well established (Leake, 1970; Kanaris-Satiriou and Angus, 1976) particularly their complex magmatic and structural evolution during the regional D_2 and D_3 deformations. Of specific interest in the present context is the emplacement of the Currywongaun-Doughruagh intrusion into Middle Dalradian sediments undergoing amphibolite-facies regional metamorphism and it is to this regional metamorphic event that the growth of högbomite in the cordierite-rich xenolith and orthopyroxenite may be attributed. This equates well with the formation of högbomite in the Cashel hornfelses in which the high oxidation ratios $[Fe^{3+}/(Fe^{2+} + Fe^{3+})]$ were attributed by Evans (1964) to an amphibolite facies metamorphism which produced a reaction in the xenoliths along the lines:

spinel + cordierite + oxygen ≓ magnetite + corundum + chlorite ± högbomite.

Acknowledgements. We are indebted to Mr F. C. F. Wilkinson for his guidance in electron microprobe analysis, to Mr P. M. McSherry for producing the diagrams and to Professor B. E. Leake for his advice on the manuscript.

REFERENCES

- Ackermand, D., Windley, B. F., and Herd, R. K. (1983) Mineral. Mag. 47, 555-61.
- Čech, F., Rieder, M., and Vrana, S. (1976) Neues Jahrb. Mineral. Mh. 525-31.
- Coolen, J. J. M. M. M. (1981) Ibid. 374-84.
- Devaraju, T. C., Uttangi, V. H., and Coolen, J. J. M. M. M. (1981) J. Geol. Soc. India, 22, 439-43.
- Evans, B. W. (1964) Geochim. Cosmochim. Acta, 28, 127-56.
- Friedman, G. M. (1952) Am. Mineral. 37, 600-8.
- Kanaris-Sotiriou, R., and Angus, N. S. (1976) J. Geol. Soc. Lond. 132, 485–508.
- Leake, B. E. (1965) Am. Mineral. 50, 1092-5.
- -----(1970) In Mechanism of igneous intrusion (G. Newall and N. Rast, eds.), spec. publ. Geol. J. 2, 103-22.
- and Skirrow, G. (1960) J. Geol. 68, 23–40.
- McKie, D. (1963) Mineral. Mag. 33, 563-80.
- Mancktelow, N. S. (1981) Ibid. 41, 91-4.
- Newberry, N. E., Peacor, D. R., Essene, E. J., and Geissman, J. W. (1982) Contrib. Mineral. Petrol. 80, 334-40.
- Spry, P. G. (1982) Can. Mineral. 20, 549-53.
- Teale, G. S. (1980) Mineral. Mag. 43, 575-7.
- Wilson, A. F. (1977) Ibid. 41, 337-44.
- Woodford, P. J., and Wilson, A. F. (1976) Neues Jahrb. Mineral. Mh. 15-35.
- Zakrzewski, M. A. (1977) Ibid. 373-80.

[Manuscript received 14 November 1984; revised 4 March 1985]