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Cordierite in the peraluminous granites of the
Meguma Zone, Nova Scotia, Canada

LYyNNE A. MAILLET AND D. BARRIE CLARKE

Department of Geology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

ABSTRACT. The peraluminous granitoid intrusions of
southern Nova Scotia contain several mineralogical ex-
pressions of the excess alumina, including variable
amounts of cordierite, in different textural types of
granitoids, ranging from fine-grained aplites through
coarser grained monzogranites and granodiorites, to very
coarse-grained pegmatites. A detailed study of the spatial,
textural and chemical characteristics of these cordierites
suggests that the majority are of relict metamorphic
origin, but that primary magmatic cordierites, as well as
cordierites which grew in equilibrium with a water-rich
fluid phase, also occur.
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CORDIERITE, typically found in thermally and
regionally metamorphosed rocks, also occurs in
igneous rocks, especially in members of the granite
family where its origin has always been prob-
lematic. Several exampiles, described below, illu-
strate the diversity of interpretations for the origin
of the cordierite in siliceous igneous rocks.
Brammall and Harwood (1923) concluded that
the cordierites in the Dartmoor granite were relicts
from the assimilation of country rock. The same
conclusion has been reached by many other authors,
e.g. by Priem et al. (1978) for a granite in Indonesia,
and by Wang et al. (1980) for some granites from
southern China. Related to this idea, that the
cordierite might be derived from the immediate
country rock, is the somewhat tenuous notion that
the cordierites, presumably very magnesian in
composition (Clemens and Wall, 1981), may have
been dragged up from the zone of magma genera-
tion and thus represent part of the refractory
residuum of partial melting. Such cordierite, with a
presumed restite origin, has been advocated by
Flood and Shaw (1975) for the New England
batholith, Australia, and by Morin and Turnock
(1975) for a granite in Ontario. And related to these
two modes of origin is a third, namely the formation
of cordierite as a result of the reaction between a
refractory phase, such as garnet, and a granitic
melt. Birch and Gleadow (1974) found such cordier-
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ites in some rhyodacites in Australia, and Flood
and Shaw (1975) also proposed that cordierite
could grow in a reaction between muscovite and
biotite or iron-rich melt at a py,o outside the
stability field of muscovite.

Still other occurrences of cordierite in granitic
rocks have been interpreted as primary magmatic
in origin. Examples include two small plutons in the
southern Appalachians (Speer, 1981), the Strath-
bogie batholith (Phillips et al., 1981), the Central
System granites in Spain (Bellido and Barrera,
1979), and the Ellison Lake pluton in Nova Scotia
(Allen and Barr, 1983). This type of interpretation is
supported by experimental studies, involving both
synthetic and natural systems, which show a field
of cordierite stability above the water-saturated
granite solidus (fig. 1). Finally, Heinrich (1955)
described the occurrence of large crystals (up to
1 m long)} in a granite pegmatite, demonstrating
the possibility of cordierite growth during late-
magmatic stages in a water-oversaturated environ-
ment.

All the granitoids of the Meguma Zone of the
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Fic. 1. Simplified P-T upper stability limits for cordierite
in synthetic systems (Hensen and Green, 1973), and a
natural system (Clemens and Wall, 1981). The large
stability field for cordierite above the granite solidus
shows that a primary magmatic origin for cordierite is
possible.
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Appalachians of eastern Canada are peraluminous
(Clarke and Halliday, 1980), and contain many of
the characteristic minerals (Clarke, 1981) of bulk
compositions with excess alumina. Two of these
phases have been described previously: Clarke et al.
(1976) concluded that the andalusite had an ex-
clusively magmatic origin, whereas Allan and
Clarke (1981) recognized both xenocrystic and
magmatic varieties of garnet in the same batholith.
This paper presents the spatial, textural, and chemi-
cal evidence necessary to understand the formation
of cordierite in the granites of southern Nova
Scotia.

Field relations and sampling

The Devono-Carboniferous granitoids of the
Meguma Zone are everywhere intrusive into a
thick sequence of Cambro-Ordovician metagrey-
wackes and metapelites which contain significant
amounts of andalusite, cordierite, and, locally,
minor garnet. The general geology of the study
area, and the sampling localities, are shown in
fig. 2. Samples of cordierite-bearing granodiorites,
monzogranites, aplites, pegmatites, xenoliths,
and country rock were collected, described, and
analysed.

L. A. MAILLET AND D. B. CLARKE

Petrography of cordierite

A brief petrographic description of cordierite
from each of the sampling areas is given in Table I,
and photomicrographs of the different types of
cordierite are shown in fig. 3 (a-f). In general,
cordierites from the country rock are small (1-
3 mm), ovoid, inclusion-rich crystals, often showing
good cyclic twinning (fig. 3a); those from the
xenoliths are small to large (2-20 mm), ovoid to
xenomorphic, and inclusion-rich (fig. 3b, ¢); and
those from the granitoids are small to large (1-
40 mm), subhedral to euhedral, inclusion-poor
crystals which occasionally show simple or sector
twinning (fig. 3d, e). All cordierites in the granitoids
appear to be in chemical and textural equilibrium
with the other phases, except for one case illustrated
by Abbott and Clarke (1979; fig. 5) in which the
cordierite is rimmed with andalusite suggest-
ing that the reaction Cdt+Liq = And+Bio had
occurred. The cordierites in the xenoliths and, to a
greater degree, those in the granitoids are partially
to completely replaced either by pinite, or by a
yellowish, isotropic alteration product, similar to
that described by Haslam (1983). Finally, one
pegmatite has been found which contains large,
unaltered, blocky to euhedral cordierites (fig. 3f).
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FIG. 2. Geological map of part of the Meguma Zone showing the sampling areas in dashed boxes. (M = location of the
Meguma Zone in southern Nova Scotia; SMB = South Mountain batholith; MB = Musquodoboit batholith;
ELP = Ellison Lake pluton.)
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Millimetres

Fi1G. 3. (a) Spotted slate showing wedge-shaped andalusites, and ovoid cordierites with cyclic twinning. Scale bar

is I mm in all photomicrographs. (b)) Metasedimentary xenolith showing inclusion-rich, ovoid cordierite with a diffuse

outer boundary. (¢) Contact between xenolith (lower right) and granite (upper right), showing two large altered

cordierite grains at the boundary. (d) Monzogranite from the MB showing a large, inclusion-poor cordierite with cyclic

twinning. () Monzogranite from the SMB showing a large, subhedral, inclusion-poor cordierite with pinite alteration
along the (001) parting. (f) Pegmatite from the SMB containing a large euhedral crystal of cordierite.

Mineral chemistry

All mineral analyses were done on a Cambridge
Microscan 5 electron microprobe utilizing an Ortec
energy dispersive system at Dalhousie University.
Normal procedure consisted of analysing 2-5
points per grain and 1-5 grains per polished thin

section. Natural mineral standards were used, and a
synthetic cordierite standard was used as a control.
Estimated accuracy is +2 % of the amount present
for the major elements. Coexisting chlorite-cordier-
ite pairs from partially altered cordierites were used
to calculate a distribution coefficient for estimating
the composition of the original cordierite in cases
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where the cordierite had been completely altered to
pinite. The distribution coeflicient is calculated as:

Fe/Mg)c
KShl-Cdt — ( hi
cmo - (Fe/Mg)cas

Two distribution coefficients were found: Kp; =
1.55, and K, = 1.80. However, as can be seen from
Table II, the calculated cordierite compositions do
not differ greatly.

Averages of more than 250 analyses of coexisting
AFM minerals from the country rock, xenoliths,
and granitoids are presented in Table I1. In general,
the cordierites from the country rock have the
lowest Na,O contents and lowest Fe/(Fe+ Mg)
ratios, the granitoid cordierites have the highest,
and the xemnolithic cordierites have intermediate
values. The Na,O contents, although high in some
cases, are well within the range for cordierites in
igneous rocks (Deer et al., 1965; Flood and Shaw,
1975). The significance of these compositional
variations is discussed below.

Discussion

The purpose of this contribution is to find
a satisfactory explanation for the occurrence of
cordierite in the granitoids of the Meguma Zone,
through an examination of the spatial, textural, and
chemical evidence.

Spatial evidence. It has been shown by Jamieson
(1974) that there are chemical changes in the
xenoliths relative to the country rock, and chemical
changes in the marginal facies of the granodiorite of
the South Mountain batholith (SMB) relative to
other granodiorites of the batholith, both of which
are consistent with a reaction between magma and
country rock having taken place. More recently,
Clarke and Halliday (1980, and unpublished data)
have used Sr and Nd isotopic data to show that the
xenoliths and marginal granodiorite lie on a mixing
(reaction) line intermediate between the country
rock and the normal granodiorite. This contact
zone is of interest in the SMB because cordierite
occurs most commonly in close proximity to both
sides of the country rock-granite contact. On a
hand-specimen scale, particularly in samples of the
SMB, porphyroblasts of cordierite are abundant on
both sides of the contact between xenoliths and the
enclosing granite. Thus, on both regional and
extremely local scales in the SMB, there is a
correlation between the presence of country rock
and the abundance of cordierite.

However, in both the Musquodoboit (Mac-
Donald, 1981) and Ellison Lake (Allen and Barr,
1983} bodies (MB and ELP), cordierite may be
found throughout the plutons. The ELP is very
small (15 km?) and therefore no exposure is very
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far from the country rock. The MB, with its
anomalously large (> 59) quantities of cordierite,
is more problematic, in that considerable amounts
of country rock would need to be digested, and
suggests that more than one mechanism may be
responsible for its formation in that intrusion.

Textural evidence. In terms of size, shape, and
number of inclusions, there is a transition in the
cordierites from the grains in the metamorphic
aureole, through those in the xenoliths, to those in
the granitoids. In general, the cordierites become
larger, more euhedral, and less riddled with in-
clusions through this sequence. This transitional
behaviour, from cordierites which are clearly meta-
morphic to those which occur as single grains in the
granitoids, is also suggestive of a metamorphic
nucleation for the cordierites, followed by their
continued growth and compositional modification
in the xenoliths, and their ultimate completion in
the granitoid melt. However, the textural evidence
alone does not preclude the additional possibility
of direct nucleation of cordierite from the melt
(Clemens and Wall, 1981; Jamieson, 1984).

Chemical evidence. 1t can be seen from the
analyses in Table I1, and the AFM plot in fig. 4, that
one group of xenolithic cordierites has composi-
tions which are clearly intermediate between those
of the metamorphic aureole and those of the
granitoids. These samples were collected immedi-
ately adjacent to the contact with the country rock.
A second set of xenolithic samples, collected several
hundred metres from the inferred contact, shows
more iron-rich cordierite-biotite coexisting pairs.
Our interpretation of these chemical data is that the
cordierites nucleated in the metamorphic aureole
and were chemically modified as they began to
react, first in the xenoliths, and then as discrete
crystals in the granite melt as the xenolith was
largely digested and/or disaggregated. In phase
equilibrium terms, the apparent tendency for the
cordierites to grow in the granite melt means that
the melt had to be saturated in cordierite (unless the
‘overgrowths’ were metastable), either initially, or
as a result of the digestion of the country rock as
described above. Scanty evidence from the South
Mountain batholith, where cordierite is more
abundant near the contacts (if not entirely confined
to the contact zones), may suggest that the latter is
true, namely that these granites were not sufficiently
rich in (MgO + FeO) and/or Al,O; to have precipi-
tated cordierite directly from the melt without prior
contamination with, or addition of, these consti-
tuents from the country rocks.

Conclusions

Of the five possible origins for cordierite in
granite cited in the introduction (relicts from the
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FiG. 4. Coexisting cordierite-biotite pairs from Meguma Zone metamorphic, xenolithic, and granitic rocks, projected

from muscovite in the AFM diagram (Mn included with Fe). Where coexisting cordierite was completely altered, the

distribution coefficient Ky,, was used to estimate an original composition for the cordierite (see text). Analytical data
from Maillet (1984), Allen and Barr (1983), MacDonald (1981), and Jamieson (1974).

country rock, relicts from the zone of anatexis
(restite), reaction involving some other phase,
primary magmatic, and pegmatitic), we believe that
the evidence available, for grains with an origin that
can be traced, largely supports the first, namely
as somewhat modified grains which originally
nucleated in the metamorphic aureole, but which
were stable in the granite melt and continued to
grow there. The implication is that the granite melt,
at least in the vicinity of the contacts, was a vast
stew of primary and relict grains all attempting to
come to chemical equilibrium. The fate of the
quartz and feldspars of the xenoliths is difficult to
trace because these represent major constituents of
the granitoid rocks, but it is relatively easy to trace
the development of the unusual cordierite grains in
their progress from the aureole to the magma. This
conclusion is very interesting in the light of the
exclusively primary magmatic origin assigned to

the andalusite (Clarke et al., 1976), and the primary
magmatic and aureole origin for the garnet (Allan
and Clarke, 1981) in the same rocks.

However, this is not the complete picture for
cordierite. Allan and Clarke (1981) described an
early relict garnet which had been derived from the
aureole and was undergoing resorption in the
magma. They also described a magmatic garnet
which occurred in some late aplitic dykes. Tt is
clear from these occurrences that the magma did
not have garnet as a liquidus phase initially,
but later, when the A/CNK ratio (and perhaps
(Fe + Mn)/ (Fe+ Mn + Mg) also) was higher, garnet
precipitated directly from the melt. A similar
sort of phenomenon may also be true for the
cordierite, because MacDonald (1981) has de-
scribed a late-stage aplite from the MB which
contains clearly primary, poikilitic cordierite with
quartz inclusions. Thus, it is possible that, even at
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an early stage, the melts may have become saturated
with cordierite and thus, even in the initial stages,
there may have been a mixture of primary and
xenocrystic varieties. However, if both types do
occur, we have not yet found any criteria by which
to distinguish between them. The possibility of
having both metamorphic and magmatic cordier-
ites removes the problem of digesting unacceptably
large quantities of country rock in the case of the
Musquodoboit batholith.

Finally, there is the occurrence of cordierite in a
pegmatite dyke (fig. 3f) which evidently has grown
directly from a water-oversaturated system where
the A/CNK ratio may have greatly exceeded levels
obtainable in water-undersaturated melts. The
resulting rocks have been termed “hyperaluminous’
by Clarke (1981). This, then, represents at least a
third type of cordierite in the granitoids of southern
Nova Scotia, after the relict xenocrystic and mag-
matic varieties.

As this example has shown, our general conclu-
sion is that, for the origin of any of the characteristic
minerals in peraluminous granites, simple universal
interpretations (e.g. the restite model) are rarely
justifiable, even for a single mineral phase in a single
pluton.
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