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ABSTRACT. We show that the structures and phases 
developed in a variety of polysomatic series, including the 
biopyroboles, are similar to those predicted by a simple 
spin model--the Axial Next-Nearest-Neighbour Ising 
(ANNNI) model in a magnetic field. We argue that the 
different polysomatic structures can be considered as 
thermodynamically stable phases, composed of ordered 
sequences of chemically distinct structural modules. We 
suggest that the key factors which determine the stability 
of polysomatic phases are (a) the chemical potential, 
which controls the proportion of the different structural 
modules, and (b) the competing interactions between first 
and second neighbour modules within the structures. 
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CRYSTAL structures can be analysed at many 
levels. At the most fundamental level, they are 
described in terms of the relative distribution of 
their constituent atoms, or of the coordination 
polyhedra of the component cations and anions. It 
is becoming increasingly apparent, however, that 
many families of structures can be usefully described 
in terms of larger basic structural units or modules. 
If such an approach to the description of crystal 
structures is adopted, many complex solids may be 
systematized in terms of series of stacking variants 
of the simple subunits. This approach was first 
popularized by Ito (1950) in his analysis of poly- 
typism in minerals, and has been extended by many 
workers including Lima-de-Faria and Figueiredo 
(1976, 1978) and Thompson (1978) in their classifi- 
cation and analysis of mineralogical structures. 

As discussed by Thompson (198 la) variations in 
the stacking of structurally compatible, isochemical 
modules give rise to polytypic families, epitomized 
by the classic polytypes such as SiC, ZnS, and CdI2. 
A more general case exists, however, in which the 
constituent modules are structurally compatible 
yet chemically distinct. Under these circumstances, 
a series of structures with a range of chemical com- 

positions can be produced by changes in the 
proportion of the two kinds of module. The result- 
ing structures form what is known as a polysomatic 
series (Thompson, 1978). For example, if modules 
A and B are chemically distinct, the sequences 
. . . A A A . . . ,  . . . A B A B  .... and . . . B B B . . .  constitute 
such a series, however it should be noted that the 
sequences . . . A B A B . . .  and . . . A A B B . . .  are poly- 
types rather than polysomes since they are iso- 
chemical. Well known examples of polysomatic 
series include the biopyribole minerals (pyroxenes, 
amphiboles, and sheet silicates), the humite group, 
pyroxenoids and phases in the CeFCO3-CaCO 3 
system. 

In principle there is an infinite number of struc- 
tures that can be constructed from combinations of 
two modules. However, in practice it is found that 
certain stacking sequences occur much more fre- 
quently than others. A recent theory which has 
been very successful in explaining the observed 
variety of polytypes relates the stabilities of various 
stacking sequences to the interactions between 
component structural modules (e.g. Price and 
Yeomans, 1984). These interactions may be viewed 
as the result of the differences in free energy caused 
by the local, small scale distortions experienced by 
an idealized module when it forms part of a 
stacking sequence. It appears that the stability of a 
given stacking sequence is dependent upon the 
interaction, not only between adjacent modules, 
but also between pairs of modules separated by 
greater distances. 

Based on these ideas, Smith et al. (1984) and Price 
and Yeomans (1984) provided an explanation for 
the observed equilibrium behaviour of many poly- 
typic families in terms of the Axial Next-Nearest- 
Neighbour Ising or ANNNI model. This statistical 
mechanical model was originally developed to 
describe magnetic systems (Elliott, 1961; Fisher and 
Selke, 1981). To relate the polytypic compounds to 
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the ANNNI model, Smith et al. (1984) and Price 
and Yeomans (1984) proposed that the basic poly- 
typic structural units can be mapped on to a 
magnetic spin variable. The interactions between 
units were then represented by a Hamiltonian with 
competing first and second neighbour interactions. 
The resulting ANNNI model provides a simple 
equilibrium description of polytypism as the tem- 
perature and interaction parameters are varied. In 
particular short-range couplings can lead to the 
existence of polytypes with very long period stack- 
ing sequences. Other important features of poly- 
typism are also explained by this model: notably 
that only a specific set of polytypes are stable for a 
given compound, that reversible phase transitions 
can occur, and that polytypes with short stacking 
sequences occur most frequently. A similar ap- 
proach has recently been adopted by Angel et al. 
(1985) to model the more complex polytypic be- 
haviour in the wollastonite system, and by de 
Fontaine and Kulik (1985) in their treatment of 
ordering in binary metal alloys. 

In this paper we develop the ideas advanced by 
Price and Yeomans (1984) to study polysomatic 
sequences. As in the case of polytypes, there is in 
theory an infinite number of members of a given 
polysomatic family, but in fact, in any one series, 
only a limited number of phases are found. We 
attempt to model these systems by mapping the two 
chemically distinct units which are involved in a 
polysomatic sequence on to magnetic spins with 
orientations 1" and $ respectively. A Hamiltonian is 
then constructed which includes the interactions 
between the modules, together with a chemical 
potential term which controls the relative abun- 
dance of the two species. The resulting model is 
shown to be equivalent to the ANNNI model in a 
magnetic field. In the following sections, we discuss 
some of the structural characteristics of polysomatic 
series and introduce the ANNNI model in a field. 
Finally, we discuss the application of the ANNNI 
model in a field to polysomatic behaviour. 

Polysomat i c  series. The biopyriboles provide an 
excellent example of a polysomatic series (Thomp- 
son, 1978; Veblen and Buseck, 1979). This family 
includes a wide range of common minerals includ- 
ing pyroxenes, amphiboles, and trioctahedral micas 
(biotite, talc, etc.). The pyroxene structure is charac- 
terized by the development of infinite chains of 
corner-sharing SiO4 tetrahedra, bound together by 
interstitial cations. In contrast, the micas contain 
infinite silicate sheets, while the amphiboles are 
double-chain silicates, and can be considered to be 
structurally intermediate between pyroxenes and 
micas. In fact, all biopyriboles can be regarded, in at 
least an idealized way, as being made up of 
modules, some of which are pyroxene-like and 

some of which are mica-like. Figs. la and b show 
examples of these modules. The pyroxene and mica 
modules are arranged in two dimensions to form 
component sheets or layers. Idealized biopyriboles 
can be viewed as being made of successive pyroxene 
and mica layers stacked parallel to (010). Biopyri- 
bole structures can consequently be described in 
terms of stacking formulae, which record the 
sequences of mica (M) and pyroxene (P) layers 
along rolo]. Thus, the pyroxene structure, 
. . . P P P  .... can be denoted by the code (P), and the 
mica structure .... M M M . . . ,  by the code (M), while 
the amphibole structure, which can be written 
. . . M P M P  .... can be described by the code (MP) .  

Despite the fact that there is an infinite number of 
potential stacking sequences only five have been 
found to form distinct phases (Thompson, 1981b). 
The principal series, containing the largest number 
of examples of biopyriboles conforms to the general 
formula (M(,_ 1)P), where n is a positive integer that 

, - - T - - ~ - - ~ - -  , F___P__4 

(b) 

I 
I 
I 

P M P M I P M P 
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FIG. 1. (a) Idealized modules for biopyriboles as seen in 
cross section. The A and K sites of amphiboles and micas 
are shown as open half circles, and the M2 sites in 
pyroxene as solid half or quarter circles. All other M sites 
are shown as regular octahedra, and all Si sites as 
idealized tetrahedra. (b) Idealized section normal to c of an 
amphibole such as tremolite. Dashed vertical lines show 
(010) boundaries which divide the amphibole into mica 
(M) and pyroxene (P) modules. (After Thompson, 1978). 
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describes the characteristic width of the silicon- 
oxygen chains in the structure. Thus, n = 1 cor- 
responds �9 to the pyroxene structure, n = 2 to the 
amphibole structure, n = 3 to the triple chain 
jimthompsonite structure (MMP), and n = oo to 
the mica structure. No structures with other values 
of n have been observed. One other biopyribole has 
been observed, however, which does not conform to 
the above formula, namely the mineral chesterite, 
which has a stacking formula (MMPMP). Chester- 
ite, therefore, is structurally intermediate between 
amphibole and jimthompsonite. 

Both chesterite and jimthompsonite are natu- 
rally associated with structurally disordered bio- 
pyriboles. These two minerals seem only to form 
during the alteration of the amphibole anthophyl- 
lite to talc. It is therefore possible that they may be 
entirely metastable relative to anthophyllite and 
talc. Even if they are stable they certainly have only 
a narrow field of stability. Whether they are stable 
or not, the question still remains as to why 
the amphibole, chesterite and jimthompsonite 
sequences are adopted in preference to any of the 
other possible stacking arrangements such as 
(MMMPP), (MMPP) or (MPP) (Veblen and 
Buseck, 1979). 

The significance of this question is reinforced 
when other polysomatic series, such as that in the 
CeFCO3-CaCOa system, are considered. Four 
minerMs have been reported to occur in this system, 
all of which are composed of ordered layers consist- 
ing either of CeFCO 3 or of CaCO3 (Donnay and 
Donnay, 1953; Van Landuyt and Amelinckx, 1975). 
If these layers are labelled A and B respectively, the 
structures of the four minerals can be described by 
the codes (A), (AB), (AAB), and (ABAAB). The fact 
that these sequences are exactly the same as those 
adopted by the biopyriboles suggests that they may 
represent particularly favourable configurations. 
In the following sections, we shall show that if 
we assume effective short-range competing inter- 
actions between the component modules, it is 
possible to explain why some polysomatic con- 
figurations appear to be more favoured than others. 

The A N N N I  model in a magnetic field. The 
ANNN1 model was first developed to describe 
magnetic phases, and it is therefore convenient 
to discuss it using the terminology of magnetic 
systems. We consequently introduce the concept of 
an Ising spin variable, s~, which can either take the 
value of + 1 or - 1. In the ANNNI model, a spin s i 
is associated with each of the i sites of a cubic 
lattice. In an applied magnetic field (H), the spins 
interact in a way which is described by the Hamil- 
tonian: 

9(r ~ =-joEXSiSj-J1211sisj-JeEIIsisj--HEsi . (1) 
n n  n n  n n n  i 

The first term represents a strongly ferromagnetic 
interaction (Jo > 0) between nearest neighbour (nn) 
spins which lie within planes perpendicular (J_) to a 
unique axial direction (11). This term requires that at 
zero temperature the spins in any one layer are 
aligned parallel to each other. The second and third 
terms describe interactions between first and 
second or next nearest neighbour (nnn) spins along 
the unique direction (11). These interactions can 
either be ferromagnetic (J > 0) or antiferro- 
magnetic (J < 0). The properties of the ANNNI 
model depend upon the relative signs and magni- 
tudes of J1 and J2. The final term describes the 
effect of the applied magnetic field (H) on the 
interaction of the spins. 

The low-temperature configurations of the 
model comprise sequences of bands or groups of 
consecutive layers with the same spin value 
terminated by layers of opposite spin. For example, 
the configuration: 

�9 ..TT$$TT$$$TT$$TT&$$... (2) 

is constructed from a basic unit of three two-bands 
followed by one three-band. We denote this (2223) 
where, if necessary, bars are used to indicate that 
the spins lie antiparallel to the magnetic field 
(s~ = - 1). In the absence of a magnetic field, the 
spins T and ~ are energetically equivalent and it is 
unnecessary to use the bar notation, and so a 
stacking sequence such as (22) can be more simply 
written as (2). Useful parameters which will be 
needed later are: 

~ = � 8 9  and tl=H/lJl[. (3) 

The ground state (zero temperature state) of the 
ANNNI model in the absence of a magnetic field is 
shown in fig. 2a. For J1 > 0 and J2 > 0, the spins in 
the layers normal to the unique axial direction will 
be parallel, thus resulting in the ferromagnetic 
ground state (oo). For J~ < 0 and J2 > O, a 
ground state consisting only of 1-bands, (1), will 
satisfy both interactions. However, for Ja < 0 there 
is competition between first and second neighbour 
interactions. For [J1/J2[ > 2 the first neighbour 
dominates the states (oo) or (1)  persist. However, 
for IJ1/J:l < 2 the second neighbour interaction 
results in a ground state comprised entirely of 
2-bands, (2). On the boundary between (oo) and 
(2)  all states which contain no 1-bands have the 
same energy, because any such state can be con- 
structed from lengths of (2)  and ( oo ). Similarly, on 
the line between (1)  and (2)  all phases containing 
only 1- and 2-bands have the same energy. The 
boundaries along which the ground state is infinitely 
degenerate are known as multiphase lines. It should 
be noted that the ( o o ) : ( 1 )  boundary is not a 
multiphase line. 
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FIG. 2. (a) Ground state of the ANNNI model in the 
absence of a magnetic field, and (b) schematic low- 

temperature diagram of the ANNNI model. 

As summarized by Price and Yeomans (1984), 
the effect of temperature on the ANNNI model in 
zero-field has been investigated by using a com- 
bination of low-temperature series and linear pro- 
gramming techniques (Fisher and Selke, 1981). An 
isothermal section of the ANNNI phase diagram at 
non-zero temperatures is given in fig. 2b. Near each 
multiphase line there is an infinite sequence of 
stable phases, (2"-13),  m = 1,2,3... between (2)  
and ( ~ ) ,  and (12"), m = 1,2,3 .... between (1)  
and (2). The phases are separated by first-order 
phase transformations. As m increases the phase 
fields become very narrow, with the width of the mth 
field of the order exp ( -  8mJo/kT ). 

Several authors (e.g. Smith and Yeomans, 1983; 
Pokrovsky and Uimin, 1982) have analysed the 
phase diagram of the ANNNI model in an applied 
field. When a magnetic field is applied to the system, 
the spins T (parallel to the applied field) and ,~ 

(antiparallel to the applied field) become energetic- 
ally distinct. The application of a magnetic field 
favours the development of a ferromagnetically 
aligned state, (oo); consequently the stabilization 
of antiferromagnetic states, such as (22), requires 
larger values of I J21. This is reflected in the ground 
state of the ANNNI model in an applied magnetic 
field for J1 > 0 (shown in fig. 3a), by the transforma- 
tion of the multiphase point (x = �89 q = 0) into two 
multiphase lines, t /=  26, for t />  0, and ~/= - 26 for 
tt < 0. At non-zero temperatures infinite sequences 
of commensurate phases appear near each multi- 
phase line for Iql < 1. For sufficiently large fields, 
phases of the type ((22)"-123) are stable near 
q = 26 and ((22)"-12]) near tt = - 2 6  (n = 1,2,3). 
As expected on physical grounds, these phases form 
an infinite subset of those stable in zero field, which 
comprises all phases which have a finite magnetiza- 
tion in the direction of the field. The phase boundary 
between ( ~ )  and ( ~ )  is not a multiphase line, 
and no new phases will appear as the temperature is 
raised. 

The situation for J1 < 0 is more complicated as 
shown in fig. 3b. Note that in a finite field (12) and 
(12) are stable even at zero temperature. In the 
figure dotted lines represent multiphase boundaries 
which are unstable as the temperature is raised. As 
shown in fig. 4, at non-zero temperatures the 
sequence (12(22)") appears between (12) and 
(22), and (12(22)") appears between (22) and 
(12) for all values of~/(n = 1,2,3). On the boundary 
between ( ~ )  and (12), new phases which are 
made up of combinations of (13) and (12), for 
example (13), (1213) and ((i2)213), appear as the 
temperature is raised for sufficiently large q. Simi- 
larly phases like (1 ] )  and (121]) appear between 
(12) and ( ~ ) .  

In the next section, we shall show how poly- 
somatic behaviour can be mapped on to the 
ANNNI model in a field. 

Polysomatic behaviour and the A N N N I  model in 
afield. We have seen that members of polysomatic 
series may be considered as various combinations 
of two types of structural unit, which we shall term 
A and B. As in the case of polytypic systems, we 
shall assume that the stability of polysomatic 
phases is determined by the interaction between 
these units. The energy of the interactions is 

A A  BB A B  B A  described by the termsJ~ ,J~ andJ~ ( = J ~ ) ,  
where, as in previous sections, ~ = 0,1,2, for inter- 
actions between modules within the component 
polysomatic sheet, and between modules in ad- 
jacent layers (nn) and second neighbour modules 
(nnn) along the axial direction (11) respectively. 

To define the Hamiltonian of a polysomatic 
phase, we introduce a variable ti, which is set equal 
to 1 if the module on site i is of type A and equal to 0 
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FIG. 3. Ground state of the ANNNI model in a magnetic field for (a) J~ > 0 and (b) da < 0. Ground state phases are 
indicated in bold type. At finite temperatures infinite sequences of phases appear in the vicinity of the multiphase 
boundaries, which are depicted by broken lines. The stable sequences are indicated in the figure; in each case n takes 

integer values 1,2,3 .... 

if it is of type B. The Hamil tonian for a polysomatic 
compound can then be written as: 

A A  AB = E [ - - d ,  Z t i t j - S ~  Z t i (  1 - t J ) -  
~=O,1,2 

J~AE(1 - t 3 t j -  J ~ n E ( 1  - t 3 (1  - t 0) ] - 

u a E t , - u ' E ( 1 - - t i )  (4) 
i 

in which ~ takes the values 0, 1, and 2 for ~•  

EII, and E IL respectively, and #a and /t" are "t"he 
nn nnn 
chemical potentials which control the relative 
abundances of units A and B. 

To relate (4) to the Hamil tonian of the ANNNI  
model in a magnetic field, we make the substitution 
s~ = 2t~-1. Hence an A module is represented by 
s i = l o r T a n d a B m o d u l e b y s i = - I  or L T h e  
resulting Hamil tonian is, to within a constant term, 

E 1 A A  BB AB = [ ~ -  J~ - S~ + 2S ,  )Xsis j  + 
~=0,1,2 

iI A +  B 2JAA + 2JBB JAA + ~ - - p  ,u --  o o - -  1 
j B B  j A A  • j B B ' ~ '  S ] 

1 - 2 T 2 J ~ . .  ( 5 )  
i 

This is directly comparable to the Hamil tonian (1) 
with the choice of variables: 

j ~ _  I ( I A A A _ I B B  "plABh 
- ~ w ~  ~,,~ -~-.,~ j ,  ~ = 0 , 1 , 2  ( 6 )  

H 1 A B A A  BB = ~ #  --p + 2 J  o - -2J  o + 
j A A  __ I B B  ~ I A A  __ I B B $  

1 ~  T ~  02  t- (7) 
Having established the mapping between the 

Hamiltonians for the polysomatic series and the 
ANNNI  model in a field, we can re-express 
the ANNNI  phase diagrams (figs. 3 and 4) as 
chemical potential diagrams. For  the special case 
J A A _ _  BB - J~ = 0, the mapping is simply: 

J= = - C ' / 2  (8) 

H = (#a__ #n)/2 (9) 

in which case the ground state diagram is the same 
as fig. 3, except for a change of length scales. Other 
values of j~a,  BB J~ , etc. have no effect on the nature 
of the phase boundaries, but  do in general change 
the relative shapes of the phase fields by altering the 
position and slopes of the phase boundaries. For  
example, if J i  B AB __ = J~ - 0 we have the mapping: 

J~ = J~A/4 (10) 

H 12(~A __ t~B + 2JAA AA AA = +J1  +J2  ) (11) 

which results in the ground state diagrams shown 
in fig. 5. These diagrams have the same relative 
disposition of phase fields as those in fig. 3; 
however the positions of the fields and the slopes 
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FIG. 4. Schematic low-temperature diagram of the 
ANNNI model in a field in the vicinity of the multiphase 
line �89 J1 < 0, H > 0, showing how an infinite 
sequence of commensurate phases spring from a multi- 

phase point. 

between the boundaries have been altered as a 
result of the mapping. 

It is now possible to interpret the behaviour of 
polysomatic materials in terms of the ANNNI 
model. We can identify each phase of the ANNNI 
model in a field with a polysomatic structure, by 
equating the sequence of spin bands with the 
stacking sequence of the polysome. For example, if 
in considering the biopyriboles we take M to 
correspond to s i = + 1 or T and P to correspond to 
si = - 1 or $, the codes (o~) and (oo) correspond 
to those of the pyroxene (P) and mica (M) struc- 
tures, (1i> to the amphibole structure (MP), (2i> 
to jimthompsonite (MMP), and (2ili> to chester- 
ite (MMPMP). We can then use the phase diagrams 
determined for the ANNNI model in a field to 
establish which polysomatic stacking sequence 
would be expected to be stable for given values of 

A A  yA, #8, j~ , etc. Transformations between poly- 
somes will occur because of changes in chemical 
potential or in the interaction energies as a function 
of pressure and temperature. Thus, as the condi- 
tions to which a polysome is subjected vary, the 
point defined by the corresponding interactions 
and the temperature will describe a trajectory, 
which may pass through many different poly- 
somatic phases. The exact form and extent of this 
path, and hence the sequence of stable polysomes, 

A A  will critically depend upon the relationship of J,  , 
etc., with the external conditions. It is expected, 
however, that changes in the interaction para- 
meters will be small compared to changes in 
chemical potential, and that trajectories will 
generally be approximately parallel to the chemical 
potential axis. 

In this paper, we are not in a position to calculate 
the relative or absolute magnitudes of the inter- 
action parameters for any given polysomatic series. 
However, we can use the form of the ANNNI model 
phase diagrams described above in a qualitative 
fashion to interpret the behaviour of a variety of 
polysomatic families. If we consider the biopyri- 
boles, there is no doubt that mica, ( ~ ) ,  pyroxene, 
(o~) and amphibole, (11), are stable phases. By 
inspection of fig. 3b, we can readily see that these 
structures correspond to ground states of a system 
in which Jl  < 0. It follows from figs. 3b and 5b that 
jimth0mpsonite, (2 i ) ,  could occur as a stable 
phase in this system if J2 < 0. In such circum- 
stances, the observed sequence of phase changes on 
the dehydration of talc to the pyroxene enstatite are 
compatible with a simple trajectory on a phase 
diagram such as that in fig. 5b. If the trajectory has 
its origin in the ( ~ )  field and follows a path closely 
parallel to the chemical potential axis, then changes 
in the chemical potential successively stabilize the 
(21>, (1i> and (oL) phases. As discussed above, it 
is possible that chesterite, <2ili>, only occurs as a 
metastable phase in nature. This inference is sup- 
ported by our ANNNI model analysis, in which 
the (2111) phase is always metastable at finite 
temperature with respect to the (2i> or (1i> 
phases. However, calculations show that the degree 
of metastability is small near the (1i):(1~) 
boundary, and that once formed this phase would 
be expected to be long lived. We are not in a 
position however, to state that J2 in this system is 
negative. It is quite possible that J2 is positive for 
the biopyribole systems and that both jimthomp- 
sonite and chesterite only occur as metastable 
phases. All that we can obtain from the ANNNI 
approach is the indication that it is possible under 
suitable conditions for phases of the type ( 2 i )  to be 
stable. 

Other mineralogical examples of polysomatic 
behaviour (Thompson, 1978) which can be ex- 
plained in a comparable manner include the 
CeFCO3-CaCO 3 system discussed previously, the 
humite series of minerals, chlorites and septa- 
chlorites, and the pyroxenoids. The humite 
minerals can be considered to be made from two 
units, one which has the olivine (Mg2SiO,) struc- 
ture (O) and the other which has the norbergite 
(Mg2SiO,- Mg(OH,F)2 ) structure (N). Olivine (O) 
and nobergite (N) represent end members of the 
humite series, which also contains the intermediate 
phases chondrodite (ON), humite (OON), and clino- 
humite (O00N). By mapping the series (O), 
(O00N), (OON), (ON), and (N) on to the ANNNI 
phases (Go), (3 i ) ,  (2i>, (1 i ) ,  and (o-0), the 
stability of the humite phases can again be inter- 
preted by reference to fig. 5b. Similarly, pyr- 
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FIG. 5. Ground-state phase diagram of the ANNNI model in a field written in terms of the chemical potential 
AB __ BB A# : /zA-#~ for the case J, - J, = 0, ~ = 0,1,2: (a) j A A  > O; (b) j,~A < 0. The ground states and most important 

finite temperature phases are indicated. In (b), a possible trajectory describing the behaviour of biopyriboles is shown. 

oxenoids have been described (e.g. Thompson, 
1978) as being composed of wollastonite (W) and 
pyroxene-like slabs (P), with known forms having 
structures described by the codes (W), (WP), 
(WPP), and (WPPP). The explanation for the 
development of these structures is the same as that 
proposed for the humite group of minerals. Finally, 
in contrast, the septachlorite and chlorite phases 
are  composed of brucite (B) and talc (T) layers. 
Their structures can be described by the stacking 
codes (TB) and (TTBB) respectively. These two 
phases are polytypic modifications within the 
larger polysomatic series, but nevertheless corre- 
spond to adjacent ground state structures (15)  and 
(22)  in the ANNNI phase diagram shown in figs. 
3b and 5b. 

Conclusion. We have presented an analysis of the 
ANNNI model in a magnetic field, and have shown 
how the model can be applied to describe the 
energetics of polysomatic phases. The ANNNI 
picture provides a mechanism involving short- 
range competing interactions through which such 
phases can exist as stable equilibrium states. More- 
over, it indicates, as is indeed observed, that specific 

configurations of structural units will be favoured. 
We conclude that the key factors controlling the 
stability of polysomatic phases are, (a) chemical 
potential, which controls the proportion of the 
component modules, and (b) nature of the compet- 
ing interactions between first neighbour and 
second neighbour layers in the structure. 

It should be noted, however, that the finite 
temperature phases of the ANNNI model are 
stabilized by spins flipping (T ~ 1). This must, of 
course, be a gross over-simplification of the excita- 
tions that lead to structural changes in the real 
crystal. Nevertheless, the known equilibrium be- 
haviour of several mineralogical polysomatic series, 
including the biopyribole, pyroxenoid and humite 
families of minerals appear to be described by our 
model. In addition, it appears that the polysomatic 
behaviour of other systems, such as the hexagonal 
barium ferrites (Van Landuyt et al., 1973, 1974) and 
the recently described hydro-serpentines (Mellini 
et al., 1985), may also be broadly described by the 
ANNNI model. However, these systems are insuffi- 
ciently characterized to enable thermodynamically 
stable and metastable phases and behaviour to be 
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distinguished. Further  work on such complex poly- 
somatic series will enable the limitations of our 
application of the A N N N I  picture to be determined. 
F rom our present understanding of mineral be- 
haviour, however, we conclude that the A N N N I  
model provides a powerful way of describing the 
factors which determine the crystal structures of a 
large range of malerials, that can be described in 
terms of constituent structural units or modules. 
We believe that our approach will prove to be 
increasingly useful, not  only in understanding 
mineral systems such as those described here, but 
also in describing inorganic and metallurgical 
structural families. 
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