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A n S T R A C T. New data on the kinetics of dehydration o f 
muscovite+quartz suggest the necessity for a careful 
treatment of both surface kinetics and diffusion processes 
in metamorphic reactions. A new model is proposed that 
illustrates the relative role of diffusion and surface 
reactions in the overall metamorphic process. The rate 
law for the reaction at mineral surfaces derived from the 
experimental data is shown to be probably non-linear and 
similar to rate laws derived from Monte Carlo calcula- 
tions. The experimental rate data is then used in a heat 
flow calculation to model the evolution of the muscovite 
isograd in the field. The position of the isograd, the 
temperature oversteps above equilibrium, and the width 
of 'reaction zones' are then analysed as a function of 
intrusion size and kinetic parameters. 

KEYWORDS: metamorphic reactions, surface kinetics, 
diffusion, rate laws. 

THE fOCUS of metamorphic petrology today is 
shifting from a static mode based on the thermo- 
dynamics of mineral assemblages to a dynamic 
mode aimed at the quantification of the processes 
that produced the metamorphism. As a result, the 
non-equilibrium aspects and the kinetics of meta- 
morphic processes are being increasingly studied. 
The proper role of equilibrium versus kinetics in 
describing metamorphism is still being debated 
today. As petrologists initially tackled the com- 
plexities of the texture and mineralogy of meta- 
morphic rocks, many of which could not coexist 
according to an equilibrium model, the concept 
of local equilibrium (Thompson, 1959; Helgeson, 
1968; Fisher and Elliott, 1974) was born. In this 
fashion, equilibrium was maintained at least on a 
local scale, which meant essentially for surfaces of 
mineral grains in physical contact with each other. 
Isotope studies (Lattanzi et al., 1980; Rumble et al., 
1982; Rumble and Spear, 1983; Tracy et al., 1983) 
have investigated the length scale of equilibrium 
and found many cases where it was only a few 
centimetres. 

Closer inspection of the chemical composition of 
minerals has unearthed a wide variety of zoning 
profiles which preserve, albeit encoded by the 
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kinetics, the details of the metamorphic history. 
The ubiquitous zoning found in several meta- 
morphic minerals has led to recent papers on their 
kinetic significance (Lasaga et al., 1977; Lasaga, 
1983; Ozawa, 1984; Smith and Ehrenberg, 1984; 
Wilson and Smith, 1984, 1985; Smith and Wilson, 
1985; Docka et al. (in press). 

More recently, the kinetic study has been exten- 
ded to the generation, motion and characterization 
of metamorphic fluids. Within the assumption 
of local equilibrium, it was logical to assume 
that the local mineral assemblage would control 
or buffer the composition of the fluid phase 
during dehydration/hydration and decarbonation/ 
carbonation reactions and that the kinetics were 
fast enough to be ignored. This control, however, 
can only be achieved by the continuous and con- 
current dissolution and growth of one or several 
minerals. As Greenwood (1975) has shown, the 
amount of fluid involved during evolution along 
univariant isobaric T - X c o  2 paths is minor com- 
pared with the amount involved in the reactions at 
isobaric invariant points. The latter are of central 
importance because they represent boundaries 
separating the presence or absence of one or 
more minerals and therefore are the traditional 
mappable isograds. Recent papers (Matthews, 
1980; Walther and Orville, 1982; Ferry, 1983a, b; 
Wood and Walther, 1983; Walther and Wood, 
1984; RuNe and Thompson, 1985; Tanner et al., 
1985; Schramke et al., 1986a) have begun to address 
the kinetic descriptions of these reactions. We want 
to extend these treatments in this paper. 

Kinetics of  metamorphic f luid-rock reactions 

As has been pointed out before (e.g. Yardley, 
1977; Fisher, 1978; Rubie and Thompson, 1985), 
there are several processes which must be quanti- 
fied and understood to describe the result of fluid- 
rock metamorphic reactions: (a) heat transport 
processes both conductive and convective; (b) fluid 
mass transfer processes; (e) solute mass transfer 
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processes--convective and diffusive; (d) mineral 
surface reaction processes, both dissolution and 
growth; and (e) nucleation of new minerals. Un- 
fortunately much more data are needed to complete 
this task. This absence of data has led to numerous 
theoretical models (e.g. heat, diffusion or surface 
control models), which are hard to test. However, 
some recent experimental data (e.g. Tanner et al., 
1985; Schramke et al., 1986a) can begin to provide 
the type of answers that are needed. 

In discussing concepts such as heat flow control 
of metamorphic reactions, one basic concept which 
must be introduced at the outset is that of external 
versus internal control of intensive variables within 
a metamorphic volume unit. Given a particular 
volume of rock, there are fluxes of heat and mass 
into the volume that are governed externally, i.e. 
irrespective of any reactions taking place within 
the volume. Thermal evolution models (Jaeger, 
1968; Bottinga and Allegre, 1976; England and 
Thompson, 1984; Thompson and England (in 
press)) can provide possible P - T - t  paths either 
regionally or in contact metamorphism. These 
models can provide a basis for obtaining the 
external source of heat in various parts of a 
metamorphosed assemblage. Within the particular 

volume, reactions involving heat and mass will take 
place. These internal reactions may dominate 
the external fluxes and control the concentration 
of particular chemical species or the temperature 
of the locality as advocated by the proponents of 
equilibrium models. The actual evolution of the 
mineral assemblage is determined by the interplay 
of the internal and external controls and will be 
explored in detail in later sections. For example, if 
reactions are extremely slow, the temperature in a 
given region is controlled externally and can be 
calculated by solving the heat equations with the 
appropriate external boundary conditions. How- 
ever, if the reactions are very fast, the temperature 
may be maintained close to the equilibrium tem- 
perature of a particular reaction or sequence of 
reactions (i.e. a heat-flow control process). It is this 
distinction between internal and external control 
that is essential to the description of metamorphic 
processes. 

To unravel the types of control that may be 
encountered in nature we must (1) understand the 
chemical kinetics of metamorphic reactions and (2) 
couple the heat transport to the chemical reactions. 

We wiI1 begin by discussing recent experimental 
data on relevant chemical reactions and use them to 
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FIG. 1. Sketch of basic kinetic processes controlling the evolution of a metamorphic assemblage. 
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illustrate the key kinetic concepts needed to answer 
question (1). Then we will apply these data to a 
simple metamorphic model and answer question 
(2). Finally, we will generalize the results. 

Fig. 1 illustrates the basic kinetic processes 
relevant to metamorphic fluid reactions. Many 
earlier papers focused on the description of trans- 
port control during metamorphic reactions, in 
particular diffusion control (Fisher and Elliott, 
1974; Joesten, 1974, 1977, 1983; Fisher, 1975, 1978; 
Frantz and Mao, 1975, 1976; Weare et al., 1976). 
The description of diffusion was amenable to 
treatment by the theory of irreversible thermo- 
dynamics. Further papers (Fisher, 1973; Joesten, 
1977; Fisher and Lasaga, 1981) discussed these 
applications. The diffusion model requires fast 
surface reactions (for all minerals in the particular 
reactions) relative to the rates of diffusion so that 
'local equilibrium' can be established between the 
'fluid' (i.e. bulk fluid or an intergranular adsorbed 
fluid, or a grain boundary fluid) adjacent to each 
mineral and each mineral in the assemblage. The 
diffusion and heat flows obey the so-called linear 
kinetics: 

J i D = - Z  Oij V Cj 
J 

(1) 

= - y L ~ j V ~ j  (2) 
J 

7Q = - K V T  (3) 

where J~ and Je  are the diffusion flux of species i 
and the heat flux, respectively; Dq is the multi- 
component diffusion coefficient matrix; Lit is 
the multicomponent phenomenological coefficient 
matrix, Cj is the concentration of the speciesj in the 
'fluid',/~j is the chemical potential of species j and K 
is the thermal conductivity. One important distinc- 
tion between L o and D~j should be stated. The size 
of D~ in 'fluids' is generally restricted over a couple 
of orders of magnitude (10- s to 10- 3 cm2/sec) over 
the metamorphic range of P and T (Nigrini, 1970). 
However, for a tracer (Fisher and Lasaga, 1981): 

Dii R T 
Eli -- (4) 

Ci 

Because Lu contains the added dependence on C~, 
the Lu can and will vary over many more orders of 
magnitude. These linear laws (equations 1-3) have 
been upheld in both extensive theoretical and 
experimental works. It should be noted that the 
fluxes in equations (1) and (2) are based on unit area 
of fluid. To convert to fluxes based on unit area of 
rock, we must incorporate the values of the porosity 
and tortuosity as will be done below. 

There are some broad and pertinent comments 
that should be also stated at this point. The first 

use of diffusion-controlled growth models came 
from material scientists, for example in studying 
corrosion mechanisms or powder reactions. In 
many cases, and under their experimental condi- 
tions, the materials were much more reactive than 
minerals in the field. The use of diffusion-control 
models in metamorphic reactions has not been 
proven universally, especially in reactions other 
than those involving carbonates. It is important to 
stress that even so-called 'diffusion' textures may 
not be uniquely assigned to diffusion control as will 
be shown below (that is a typical problem with 
kinetics!). Only by careful experimental data, as 
well as modelling and field data, can these questions 
be answered. It is important, therefore, not to use 
diffusion models indiscriminately because of their 
convenience. 

The description of nucleation and growth or 
dissolution at mineral surfaces is not as advanced as 
that of diffusion. This was recognized by Fisher 
(1978) in his useful summary of the earlier kinetic 
work. By far the most common assumption has 
been to use a linear theory 

R i = - ~ L ~ A G  i (5) 
J 

where R i is the rate of a particular metamorphic 
reaction and AGj are the free energies of the various 
reactions describing the kinetic process [sometimes 
affinities ( - A G )  are used in (5)]. Although Fisher 
(1978) tried to give some justification for equation 
(5), it is clear that it does not have such a sound 
theoretical basis as equations (2) and (3). Transition 
state theory (Lasaga, 1981; Aagaard and Helgeson, 
1982) can be used to justify the form of equation 
(5) when AG~ << RT. However, such justification 
requires a number of assumptions, including the 
absence of linear and planar defects (Lasaga, 
1981), which must be satisfied but which for some 
heterogeneous kinetic processes may not be fully 
valid. 

Recently, Walther and Wood (1984) have 
extended Fisher's (1978) paper with additional 
calculations on the relative rates of diffusion, fluid 
flow and surface reaction. Many of these earlier 
treatments are necessarily oversimplified because 
adequate experimental data are lacking. Now that 
new data are available, we want to discuss further 
some of the earlier points. 

One of the central reactions in the low-pressure 
high-grade metamorphism of pelitic rocks is the 
dehydration of muscovite: 

KA13Si30 lo(OH)2 + SiO 2 
muscovite quartz  

KA1Si30 s + A12SiO5 + H20. 
feldspar andalusite 

or si l l imanite 
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This reaction is probably typical of those involving 
aluminosilicates. The kinetics of this reaction have 
been studied recently by Schramke et al. (1986a). 
Several important results from that work which 
shed light on the previous discussion of meta- 
morphic fluid-mineral reactions will be summarized 
here. First, the reaction, under the conditions studied 
(350-700 ~ 1-3 kbar), is 'surface-controlled' and 
specifically depends on the reaction at the surface 
of the andalusite crystals. Therefore, each total 
reaction rate (an extensive property) was normalized 
to unit area of andalusite. This result is very 
important as it challenges the usual simple notions 
that diffusion-control is pervasive in metamorphic 
reactions (although, of course, life would be much 
simpler for theoreticians if it were!). The extension 
of the data to field conditions and the possibility of 
surface control in nature will be further quantified 
below. We should stress that in metamorphic 
reactions controlled by surface processes it is 
usually one mineral surface that is important, as 
obtained by Schramke et al. (1986a). Which mineral 
surface controls the kinetics must be determined 
experimentally and, of course, may vary if the 
relative abundances of the reactants or products 
change sufficiently. In general, however, it is 
expected that low solubility minerals will be the 
more likely candidates for surface control. 

Any discussion of 'diffusion control' or 'surface 
control' must begin with the vital acknowledge- 
ment that after a microscopically small time period, 
the rate of transport of components away from the 
surface of any mineral, by diffusion, fluid flow or 
both, must necessarily equal the reaction rate at the 
surface of that mineral. The discussion about 
whether diffusion or surface processes 'control' the 
rate really refers to the question: 'are the concentra- 
tions in the fluid adjacent to mineral surfaces the 
equilibrium concentrations?' In the case of slow 
surface rates, we do not expect the concentrations to 
be the local equilibrium ones. The proper under- 
standing of the interplay between surface reaction 
and diffusion in metamorphic reactions is so funda- 
mental that we have developed a general (though 
simplified) model to show the salient kinetic 
relationships in detail. This model is the topic of the 
next section. 

A metamorphic reaction model 

The understanding of the results of the experi- 
ments on muscovite and their relation to general 
metamorphic fluid reactions can be achieved with a 
useful model. The interplay between transport (e.g. 
diffusion), surface reaction and the surface area 
dependence of the overall rate are illustrated in 
fig. 2. Most simple examples in the literature (except 
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FIG. 2. (a) Metamorphic reaction model. Minerals A and 
B are assumed infinitely planar at a distance L. The 
concentration of component in fluid is given below. 
(b) Simplified model of three-dimensional case where 
finite minerals A and B communicate through a boundary 

fluid of effective area Ab- 

for the pure diffusion models) deal with one so l id  
reacting with a fluid or many solids reacting only by 
diffusion processes (e.g. metasomatic models). For 
metamorphic reactions, we must develop a new and 
broader model which includes surface reaction 
as well as diffusion between minerals A and B 
mediated by some metamorphic fluid. Let us 
assume, with no loss of generality, that B dissolves 
to make A. Fig. 2a illustrates the situation where 
there is infinite surface area for planar A and B. The 
minerals are separated by a distance L. For the sake 
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of simplicity, assume that the process is governed 
by the transport  and reaction of one component  
(e.g. At or Si). Ideally, this treatment can (and 
probably should) be extended to several com- 
ponents. If Cr A and CoBq are the equilibrium 
concentrations of the component  in the 'fluid' in 
contact with minerals A and B respectively, then the 
surface reaction rates, R A and Rn, and the diffusion 
flux, J,  will be given by 

A A n A R A = kA(C s - -  Ceq ) (6) 

RB = -- kB(C L -- Cg)", (7) 

cg- c~ 
J = - - D ~ -  (8) 

where C A, Cs B are the concentrations of the 
component  at the surface of A and B respectively 
and D "is the diffusion coefficient in the fluid 
medium, kA and k B are rate constants, and nA and 
nB are real numbers; these latter parameters are 
determined from experimental data such as in 
Schramke et al. (1986a). The important  point made 
earlier is that, at all times, the rates are equal 
(ignoring signs): 

R A = R B  : d (9) 
B A 

or D Cs -- Cs 
L 

A A n a 
k A ( C  s - Ceq  ) = 

B k.(Coq- c~)... (10) 
Equation (10) can be solved, in general, for the two 
unknowns, Cs A and Cs a. However, if n a and nn are 
not  equal to a small integer, the solutions must be 
done numerically. None the less, the key kinetic 
concepts are all obtained if we approximate 
na "~ nn ~-- 1. (This is not to say that deviations o f n  a 

or nB from 1 are not  important  in the actual 
kinetics.) Now we have: 

C a C A 
D s - s  a A 

L ka(C s -- C~q) (11) 

A A kA(C ~ - Ceq ) = k.(C~q - C~ .  (12) 

Equations (11) and (12) are easily solved for Cs A 
and CsB: 

c A  = ~B C~q -]- (])B-'~ 1)~ A c A  (13) 
(YB + 1)(TA + 1) -- 1 

= 1)YB Ceq  -1- ]?A Ceq  c B  (~)A + B A 

(YB + 1)(Ta + 1)--  1 (14) 

where the dimensionless variables, ~A and YB, are 
defined by 

k A L  
~A = - -  ( 1 5 )  

D 

k n L  
7 B i  D (16) 
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Now, if we take into account the finite size of A 
and B, we can approximate the generally three- 
dimensional problem by a model such as in fig. 2b. 
Here it is assumed that the surface region all around 
A is 'stirred' and maintained at some uniform value, 
C A, and similarly for B. In between, we must 
transport  the component  from B to A across a 
distance L. Now, the equality of surface reaction 
and diffusion flux is identical to that given earlier 
except that the rates are 

A A A RA = kA Aa(Cs  -- Ceq) ~ (17) 
,B B 

RB = -- kn AB(Ceq -- Cs) ~ (18) 

D 
and J = - ~-A b ( C~ - C A) (19) 

where A A and AB are the surface areas of A and B. 
Ab is an effective grain boundary  or intergranular 
cross-sectional surface area for transport  between 
A and B. In this case, the solutions to Cs a and C~ 
are identical  to equations (13) and (14), except that 
now we use Ya' and 7B' instead of YA and 7B: 

, k A L  
~A ~ ~ b b  A A ( 2 0 )  

kB L 
7 ~ b b A B  �9 (21) 

Let us analyse equations (13) and (14). If the rate of 
surface reaction is fast for mineral A, 7A (or 7A') will 
become very large. In this case, the numerator  in 
(13) will become (TB + 1)~a (drop the 1). Because 7a is 
very large, we can also ignore the first term in the 
numerator  of (13). Therefore, C A equals Ce a .  
Similarly, if the rate of surface reaction of mineral B 
is large, Cs B will become C~q. If both  rates are high, 
C A = CeAq and Cs B = Cenq and we obtain 

D B a 
: = C e q ) A  b RA RB J =  z ( C o q -  (22) 

(again ignoring + signs). Equation (22) is the usual 
'mass-transport controlled' model. On the other 
hand, for slow surface rates the situation is not  as 
simple. Now, the best way to proceed is to insert 
equations (13) and (14) for C A and C~ into 
equation (23) 

D 
R A = R ,  = J = = A b ( C g - C  A) (23) 

L 

and using 7' rather than 7, obtain 

__ YA ])B(Ceq - -  Ceq)  ( 2 4 )  RA = RB = d D A  b , t B A 

L (7~+ 1)(~+ 1)- 1 

Equation (24) is the general equation for the overall 
rate, of which equation (22) is but  a special case. 

There are some interesting results of equation 
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(24). First, the general equation (24) is proport ional  
to B A (Ceq--Ceq). Therefore, it is clear that, even in 
cases controlled by linear surface kinetics, the 
overall rate (including the diffusion flux) can be 
written as i f  the whole process were diffusion- 
controlled [equation (22)] but  with an effective 
diffusion coefficient defined as 

Den" - (7~ + 1)@] + 1)-- 1" (25) 

This result is very important  because it illustrates 
that applying models that use diffusion control to 
model successfully field data does not  imply that 
diffusion control is operative at all! Only in the case 
where both ~,~ and ~,] are large does Def f become 
equal to the true D and we obtain real diffusion 
control. Care should be taken to distinguish D~ff 
from D in equation (25) in interpreting field data. Of 
course, if the surface reaction kinetics are very 
non-linear then even equation (24) does not  hold 
and it should be easier to separate the models based 
on diffusion control from those based on surface 
control. 

Let us now investigate a situation where surface 
reaction at B is very fast but  surface reaction at A is 
very slow (high ~B. and low )'A'), the denominator  in 
equation (24) becomes 7B, and we obtain 

DAb B 
Rate = ~ ~ A , ( C e q  - -  C e $  ) ~- 

B A kA Aa(CCq -- Ceq). (26) 

Note that although equation (26) looks similar to 
equation (22), if 7~ is very small (y] << 1) and y~ is 
large (TB >> 1), as in this case, equations (13) and (t4) 
yield 

cg cf. 

so that the fluid is fairly homogeneous and close to 
Ce~ in composition. Therefore, the fluid is quite 
different from the fluid expected in the diffusion 
control case. Equation (26) shows how the surface 
area of only one mineral (in this case A) becomes the 
rate-controlling factor as observed in the experi- 
mental data of Schramke et al. (1986a). Similarly if 
the rate of surface reaction of B were slow, the rate 
would depend on A B. However, if the rates of A and 
B are slow but  similar, the overall rate will not  have 
a simple dependence on surface area. 

The model developed here does indeed account 
for the dependence of the overall rate on one 
mineral surface area in most cases. The same 
calculations can be generalized to other nA and n~ 
as well as several components. None the less, it is 
hoped that even at this level, the explanation of the 

role of surface versus transport terms in the overall 
rate of metamorphic reactions is greatly clarified. 

Exper imen ta l l y  de termined surface rate laws 

Because the muscovite reaction is not  'controlled' 
by diffusion transport  (under the experimental 
conditions of Schramke et  aI., 1986a), the depend- 
ence of the rate on AG may  not  be linear. In fact, 
recent Monte Carlo simulations (Blum and Lasaga, 
1985; Lasaga and Blum, 1986) indicate that if 
defects, such as dislocations, are present, the growth 
rate may vary as AG 2'6 to AG 2"9. To analyse 
the data in Schramke et al. (1986a), the 2 kbar 
dehydration rates (in units of moles water/cm 2 area 
andalusite/sec) were plotted versus the free energy 
of the hydrat ion  reaction in fig. 3. A least-squares fit 
of a rate law such as 

R = kAG" (27) 

yields 

R = 4.38 x 10-22 AG 26s moles cm -2 sec -1 
(28) 
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FIG. 3. Plot of muscovite dehydration rate as a function 
of AG for the 2 kbar data of Schramke et al. (1986a). Data 
are shown by �9 and the solid line is the theoretical fit of 

equation (26). 

with AG in Joule/mole. Even with the small data set, 
the agreement with the Monte Carlo predictions is 
striking. If one plots the rate data versus A T ,  
where A T is the increase in temperature above the 
equilibrium temperature (601 ~ here), the results 
are as shown in fig. 4. Because AG and AT are 
nearly linear in this region, the rate law is now 

R = 2.51 x 10-17AT 269 moles cm -2 sec 1. 
(29) 

Fig. 4 will be useful in the later sections. 
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FIG. 4. Plot of muscovite dehydration rate as a function 
of temperature. The equilibrium value of T under these 
conditions is 601 ~ from the data of Schramke et al. 

(1986a). 

Fig. 5 illustrates the same behaviour for the 1 
kbar dehydration data. Now, the rate data obey 

R = 2.73 x 10-2~  2"~ moles cm -2  sec -1. 
(30) 

Again, we obtain a highly non-linear behaviour. 
The exponents obtained in the Monte  Carlo cal- 
culations and in the analysis of the experimental 
data above, are both similar to those expected from 
the classical BCF theory of crystal growth. Accord- 
ing to that theory, the growth occurs on the steps of 
a spiralling screw dislocation by surface diffusion 
of adsorbed atoms and the theory predicts (e.g. 
Christian, 1975): 

Growth  Rate = k A G  2. (31) 
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FIG. 5. Plot of muscovite dehydration rate as a function 
of AG for the 1 kbar data of Schramke et al. (1986a). Data 
are shown b y ,  and the solid line is the theoretical fit of 

equation (26). 

The usual method of writing the rate law as used 
by several workers (Schramke et al., 1986a; Lasaga, 
1981; Wood and Walther, 1983) based on transition 
state theory is 

R = Ae - ~/RT( 1 -- e "a~/RT) (32) 

where E is an activation energy and n is some 
number on the order of unity. Equat ion (32) 
becomes a linear rate law if AG << R T ,  similar to 
equation (5), and is thus essentially different from 
equation (31). Schramke et  al. (1986a)had problems 
fitting the experimental data to this equation, 
however. While equation (32) has general validity 
within the assumptions of transition state theory, it 
encounters difficulties if defects (such as at surface 
reactions) dominate the kinetics. It is this role of 
defects which was investigated by the Monte  Carlo 
studies of Lasaga and Blum (1986). 

The importance of these non-linear rate laws lies 
in their qualitative shape. Close to equilibrium 
(AG = 0), the slope of the rate curve is nearly zero 
(e.g. fig. 4). The 'flatness' of the curves near AG = 0 
means that the system will respond very feebly to  an 
initial deviation from equilibrium (e.g. an overstep 
in temperature above the equilibrium temperature). 
It is not until a more sizeable deviation from 
equilibrium occurs that the rate will increase 
dramatically and produce an appropriate negative 
feedback to decrease the overstep (see below). In 
short, it is much easier to deviate from equilibrium 
(for 'small '  deviations) for non-linear rate laws than 
for linear ones. On the other hand, it is very difficult 
to incur sizeable deviations in a non-linear system 
because the slope of the rate vs. A T  curve finally 
increases to very high values. 

Appl icat ion  o f  react ion data  to s imple metamorphic  
models  

The data of Schramke et al. (1986a) can now be 
used to quantify general metamorphic  models. We 
will begin by analysing some simple cases and then 
tackle the detailed problem of coupling heat fluxes 
and chemical kinetics. 

At the outset, any model  of heterogeneous 
kinetics must deal with the value of the specific 
surface area (4). In our case, we need the specific 
surface area of andalusite. To estimate this value in 
the field, we can use the formula in Lasaga (1984), 

-40 - 1000 3 X  o cm2/kg rock (33) 
p 100r0 

where X o = volume ~ of mineral 0 
A 0 = specific surface area of mineral 0 
ro = mean radius of mineral 0 
p = density of solids. 
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U s i n g  XAn d = 5%; rAn d : 0.1 cm; p = 2.6 g/cm 3 
yields 

.,~ = 577 cm2/kg rock. 

Knowing A, the time for completion of meta- 
morphic reactions can be estimated. Using the 
dehydration data at 2 kbar and equation (29) 
(where T~q = 601 ~ an overstep of 50 ~ yields a 
rate of 9x10  -13 moles cm -2 sec -1 while an 
overstep of 5 ~ yields 1.9x10 -15 moles 
cm 2 sec 1. The total rate will be given by the 
product of the specific surface area, .4, and the 
rate per unit area; i.e. Rtot=5.19• -1~ to 
1.10x 10 -12 moles/kg rock/sec for the range of 
temperature oversteps from 50 ~ to 5 ~ . In estimating 
the amount of muscovite, we will obtain an upper 
boundary if the mean water content of pelites is 
used. Based on the data in Holland (1984), the H20 
content of shales is around 3-6 wt. %. Using the 
value of 4.5 wt. %, one kilogram of rock will con- 
tain 2.5 moles of water. Using similar arguments 
Walther and Wood (1984) obtained 2 moles H20 / 
kg rock. In general, therefore, if the 'intrinsic' rate is 
given by R (moles cm -2 sec-1) and the specific 
surface area by A (cm2/kg rock), the minimum time 
needed to reach completion for the dehydration 
reaction will be given by 

2.5 
t = -~_. (34) 

R A  

Based on the A value obtained above, we can vary 
from 100 to 1000 cmZ/kg (of course, it can deviate 

even further) and for various temperature oversteps 
compute the reaction times. The results are given in 
Table I. Obviously there is a wide range of times 
possible. Whether or not these times are considered 
'long' depends on the rates of the other processes 
during the metamorphic event and will be in- 
vestigated further below. 

TABLE I. Times to muscovite dehydration 

aT(~ ~ (c~/kg) t (yrs> 

50 10oo 84 
5O lOO 84O 
5 i000 41,516 
5 i00 415,160 

I0 iO00 6,h2h 
i0 i00 6h,240 

There are a few comments which should be 
added based on the experimental data and its 
theoretical implications. A general question in 
metamorphic kinetics is the role of diffusion in the 
intergranular fluid as a possible limiting rate for the 
chemical reactions as discussed earlier. The diffu- 
sion flux of a species in the field can be written as 

(omitting multicomponent diffusion--e.g. Lasaga, 
1979): 

Dtp c~C 
J -  02 0x (35) 

where D is the diffusion coefficient of the species in 
the intergranular fluid, ~p is the porosity and 0 is the 
tortuosity. Values of D vary with species as well as 
with pressure and temperature. However, they 
generally fall in the range 10 -5 cmZ/sec to 10 -3 
cmZ/sec (Nigrini, 1970; Ildefonse and Gabis, 1976; 
Balashov et al., 1983; Brady, 1983). For our 
purposes, we can choose D = 10 -~ cmZ/sec, 
~p = 0.001, 0 = 1. It is important to note that the 
surface reaction rates obtained by Schramke et at. 
(1986a) will be valid reoardless of the porosity of the 
rock. However, the speed of diffusion in the field 
will depend strongly on ~p. Using the values just 
mentioned, the diffusion flux will be given by 

J = 10 7AC ~xx moles cm- 2 sec- a. (36) 

The hardest term to constrain is the size of the 
concentration gradient. We can estimate A C / A x  by 
using solubility data. For example, the solubility of 
quartz at 600 ~ and 2 kbar is around 10 4 
moles/cm 3 (Fournier and Potter, 1982). The value 
of C near quartz could be close to this C~q/f the 
surface kinetics are fast (i.e. see equation 13 or 14). 
Close to the surface of a mineral like andalusite, C~q 
will be much smaller and by inference so will C. 
Therefore, we can estimate A C / A x  by 10-4/Ax 
moles/cm 4 (Ax in cm). Ax in this case is the distance 
between the region close to saturation with quartz 
and the region close to the andalusite surface. It will 
roughly correspond to the physical separation of 
grains and thus will typically be 0.1-10 mm. 
Leaving Ax as a parameter to be varied, we can use 
the value of 10-11/Ax for the diffusion flux under 
'diffusion-controlled' conditions to find out the 
cases where it is valid. If the temperature oversteps 
the equilibrium temperature by an amount AT, the 
surface rate will be given by equation (29). If 
this rate is much smaller than the diffusion flux 
estimated above, then the condition s for 'transport- 
control' are not valid, as shown earlier. We can find 
out the boundary between 'surface-control' and 
'diffusion-control' by setting 

10-11 
k A T "  - (37) 

Ax 

Using equation (29), we obtain a plot of AT versus 
transport distance, Ax, for the boundary as given in 
fig. 6. It is clear that, in general, unless Ax is quite 
large, the required values of AT for 'diffusion- 
control' are high. In fact, the AT values in fig. 6 will 
be shown to be greater than the actual values 
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obtained in the model  of contact metamorphism to 
be carried out below. These calculations suggest 
that not  only are the experimental data controlled 
by the surface kinetics but also this control is 
expected to extend in the case of alumino-silicate 
reactions to the field situations. 

25O 

w 

~o 2O0 

w 

Lb 150 
C~ 

I 0 0  

c2 

w 

5 0  

D1 FFUSION-REACT ION BOUNDARY 

B~ffcstsn (transpsrtl contro~ 

O I 31 I 71 
o.o ~Lo 2.~ .o ,.o do L o .o L o /. ..... 

D I F . U S , Q N  D!ST ,aNCE I c , ~  

FIG. 6. Temperature overstep required for diffusion to 
match surface reaction rates as a function of diffusion 
distance between the minerals. For temperature oversteps 
higher than those in the figure, diffusion will dominate the 

rate. 

Of  course, there are other chemical reactions 
which may very well be governed by the rates of 
mass transfer in fluids (e.g. the calcite-wollastonite 
reaction, Tanner et al., 1985). Much more experi- 
mental data are needed to discern the ultimate 
kinetic controls on the major metamorphic  reac- 
tions. 

Heat flow and reaction 

The effect of metamorphic reactions on the 
external heat flow in a tectonic event and vice-versa 
is a key problem for petrologists and geophysicists. 
Using the previous data, we can begin with some 
simple calculations. The thermal history of a region 
and any chemical reactions that occur are coupled 
by the enthalpy of the reactions, AH,. For  the 
muscovite dehydration reaction, AH, = 18 kcal/ 
mole H 2 0  (Kerrick, 1972). We would like to 
compare the internal heat sink induced by the 
reaction to the external heat inputs. To do this, the 
thermal history resulting from the intrusion of an 
igneous body can be calculated and used as a zeroth 
order reference point. 

The heat flow is essential to the operation of these 
endothermic reactions. In fact, it is critical to decide 
whether the external sources control the heat or the 

reaction itself. At this point, it is useful to carry out  
some calculations on the cooling of a magmatic 
intrusion. If the pluton is 2a x 2b • 2c in size, the 
initial magmatic  temperature is T O and the initial 
country rock temperature is T 1, then the tempera- 
ture at position x, y, z is (Jaeger, 1968) 

f x  m \  f y  ~ t \  f z  x t \  
T = T1 +(To-- T O f ~ a , j ) f ~ , ~ J f k c , ~ 7 ) ( 3 8  ) 

where 

1 u + l  u- -1  
f(u, z)--~ i [ e r f ( ~ - ~ z )  -- e r f ( ~ ) ]  (39) 

and u, z are defined by the expressions in paren- 
theses in equation (38). If this equation is used to 
compute T at several distances from a mafic 
intrusion 1 x 10 x 10 km in size (essentially a one- 
dimensional problem--e.g,  a dyke or a sill) with 
T o = 1200 ~ and T 1 = 200 ~ the result is as given 
in fig. 7. 

To proceed further we could set Teq = 600 ~ as 
the dehydration temperature (i.e. the equilibrium 
value for the 2 kbar pressure, Schramke et al., 
1986a). This temperature is shown as a dashed 
line in fig. 7. As can be seen, 50 m away from the 
contact the temperature exceeds 600 ~ after close 
to 600 years, reaches a maximum of 644 ~ 2000 
years later and finally drops below 600 ~ at 
t = 8000 years. The time interval for reaction is 
then 7400 years. Of  course, the time interval 
involved decreases as the distance from the contact 
is increased (fig. 7), until at 110 m from the contact, 
the temperature never exceeds 600 ~ Using 
a simple petrologic model (including neglect of 
nucleation), the reaction isograd would be sharp 
and coincide with this last distance. 

Let us now look at the actual heat flow, for the 
case discussed above. At a distance of 50 m the rate 
of temperature rise, as 600 ~ is first exceeded, is 

d T  
- -  = 0.07 ~ 
dt 

If the heat capacity is set to 0.25 cal g -  1 ~ - 1, this 
temperature rise can be converted to a net input of 
heat in a unit volume of 0.0175 cal g 1 yr-1  or 
5.5x 10 -7 cal kg -1 sec 1. 

It is important  to compare the external heat 
source with the heat sink represented by the 
dehydration reaction. If the temperature is allowed 
to increase by 50 ~ above equilibrium, equation 
(29) shows that the rate of reaction will be 5.19 x 
10- lo  moles kg-1  sec-1. If the enthalpy of de- 
hydration is taken as 18 kcal/mole (Kerrick, 1972) 
then the heat sink is 

9.3 x 10 -6 cal kg -1 sec i. 
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If the AT  = 5 ~ then the heat sink is now 

1.98 x 10- s cal k g -  1 sec 1. 

Comparing these reaction heat sinks suggests that 
the control resulting from coupling between the 
external heat and the chemical reactions may range 
from external to internal control depending on the 
size of the intrusion and the rate parameters 
(including the ,4 term). The description of the 
system, in this case, required a more careful account 
of the heat flux-chemical reaction equations. 

The heat equation with chemical reaction is 
given by 

c~T c ~2T AH~Rto t 
8~ = x~x2 q pCp (40) 

x, the thermal diffusivity, is typically ~ 0.01 cm2/ 
sec. AHr is the enthalpy of reaction (cal/mole); Rto t is 
the rate of reaction (moles cm -3 sec-1); pCp is the 
volume heat capacity in cal cm 3 K-~.  Note  that 
direct solution to equation (40) transcends the 

simpler discussions of 'heat flow control '  versus 
'reaction control '  of metamorphic  reactions. Equa- 
tion (40) was solved by the implicit Crank-  
Nicholson finite difference method. The initial 
conditions assume a 1 km wide 'infinite' intrusion at 
temperature 1200 ~ (e.g. a large mafic dyke or sill) 
and a country rock at an initial temperature of 200 
~ These conditions correspond to the calculations 
shown in fig. 7. Due to symmetry, only one side of 
the system needed to be modelled. The boundary 
conditions were 

t3T 
- 0 a t  x = 0 (41 )  

~x 
T = T O at x = Xmax. (42) 

Equation (41) follows from the symmetry of the 
problem. Equat ion (42) sets T equal to the initial 
country rock value, To, at some distance, x . . . .  
sufficiently removed from the contact to validate 
the approximation.  As a self-consistency check on 
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FIG. 8. Thermal profile for the intrusive used in fig. 7 but now allowing for metamorphic reaction. The dashed line gives 
the case with no reaction and the solid line the results with reaction. (a) 500; (b) 1000 years. 

equation (42), the values of T in the numerical 
results were checked to be close to T o before 
reaching Xma x. 

In the numerical calculations, x, AHr, p, and Cp 
were kept constant. A pressure of 2 kbar was 
assumed. The surface area A was taken as 577 
cm2/kg rock based on the earlier calculations. The 
reaction term, Rtot, in equation (40) is given by .4R, 
where R is zero if T < 601 ~ and is calculated from 
equation (29) if T/> 601 ~ (AT = T-601).  The 
total number of moles of water given off was 
monitored in the calculations. If the moles given off 
exceeded 2, it was assumed that all the muscovite 
had disappeared and R was set back to zero (even if 
T > 601 ~ The accuracy of the numerical scheme 
was checked by comparing the calculations for 
R = 0 with the analytic solution [equations (38) 
and (39)]. Finally, the calculations assumed that the 
water of dehydration was removed quickly from the 
system. Therefore, we did not include the hydration 
rate data, which is also available in Schramke et al. 
(1986a). 

Fig. 8a, b compares the temperature profile with 
and without chemical reaction after 500 and 1000 
years. The effect of the heat sink caused by the 
dehydration reaction is to lower the temperature 
(solid line) for the first 100 m by between 5-10 ~ for 
the 500 year thermal profile, and by 10-15 ~ for 
the 1000 year thermal profile. 

Fig. 9 analyses in detail the evolution of the 
muscovite isograd as the intrusion cools and 
the country rock is invaded by a thermal pulse. The 
width of the isograd can be inferred from the place 
where the number of muscovite moles is 2 per kg 
(no reaction) and the place where there is no 
muscovite left. Fig. 9a yields 15 m for T = 500 
years. This width grows to 20 m by the time the 

'molar profile' has ceased to vary (fig. 9f). If we place 
the isograd at the point where n . . . .  = 0 for first 
time, we see in fig. 9 that the isograd moves steadily 
outward as time progresses. The isograd lies at 
x = 15 m at T =  500 years and the final value 
occurs at x = 65 m (T 1> 6000 years). This value 
contrasts with the simple value of 105 m discussed 
earlier. This contraction of the isograd around the 
intrusion is caused by: (1) the lowering of T due to 
the heat sink of the reaction; and (2) the sluggish- 
ness of the reaction itself. 

Greenwood (1975) and many others after him 
have focused on isobaric invariant points as the 
unique thermodynamic loci, which define isograds 
and buffer the temperature of the assemblage. This 
tenet of faith can now be scrutinized with the results 
in fig. 9. The regions with n . . . .  = 0 or 2 are not on 
the invariant point. Hence, the region of interest 
is that where 0 < nmusc < 2. According to the 
thermodynamic data and the local equilibrium 
assumption, the temperature throughout this 
region should be 601 ~ Fig. 9 shows that the 
temperature can overshoot the invariant point by 
nearly 40 ~ 

As a comparison, if the surface rates are increased 
by three orders of magnitude (more comparable to 
carbonate reactions), the results above become 
more in line with the invariant buffer assumption. 
The results are shown in fig. 10. Note that now the 
temperature deviation is only a few degrees and 
that the isograd exhibits a much sharper spatial 
front. 

Table II summarizes the results for a variety of 
surface area terms and intrusion sizes. Obviously 
the range of widths can easily reach up to 100 m for 
large intrusives (> 1000 m). It is interesting to note 
that Tyler and Ashworth (1982) observed 'reaction 
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zones' on the order of 300 m for the muscovite 
isograd in the contact metamorphic zone around 
the Strontian granodiorite (~  2000 m half width), 
Scotland. They ascribe the width to the variation 
arising from varying XH:O. There is no question 
that added thermodynamic variables (in the phase 
rule sense) can affect the isograd development. 
However, using the kinetic data available now, 
our results show that kinetics can indeed play just 
as major a role in the interpretation of the reaction 
widths. 

TABLE II. Isograd width (metres) 

Half-wldth 
a (metres) / X (cm2/kg) 11.5 115 577 1150 

lOO 7 a 13 9 
250 32.5 a 22.5 15 
500 50 27.5 20 15 

I000 70 35 25 20 

a no muscovite out region 

Table III gives a variety of results from the 
calculations. The maximum AT refers to the maxi- 
mum temperature overstep observed. Obviously 
this AT can reach values of 60-90 ~ especially for 
small intrusions. The column 'isograd position' 
gives the distance (in m) from the contact where the 
n . . . .  = 0 boundary is to be found, i.e. the position 
of the muscovite-out isograd. It is interesting to 
note that in a one-dimensional model (i.e. an 
intrusive sheet of half-width a), the place where 
T,,,x = 601 ~ (for out T o and T 1 values) is given by 
x = 1.2196a. If the kinetics were infinitely fast and 
their effect on the thermal evolution small (i.e. 

AH ~ 0), then we would expect the isograd at 
position 1.2196a or 0.2196a m from the contact. 
This value corresponds to 22, 55, 110, and 220 m for 
the a = 100, 250, 500, and 1000 m cases illustrated 
in Table III and is clearly an upper boundary. The 
two places marked by - -  in the table correspond to 
situations where muscovite persisted right up to the 
contact. 

TABLE llI. Isograd widths, positions and T oversteps 

Isograd Isograd 
Half-width A width Max. position 

(~etres) (cm2/kg) (metres) ~T (~ (metzes) 

lOO 577 9 60 7 
250 577 15 40 2T.5 
500 577 20 41 67.5 

i000 577 25 29 150 

i00 11.5 8 91 
250 11.5 32.5 92 
5OO 11.5 5O 95 25 

i000 11.5 70 h5 90 

One aspect that has not been treated in detail 
here is the rate of nucleation. Nucleation rate data 
are almost non-existent for metamorphic reactions. 
However, in our experimental study of the musco- 
vite breakdown kinetics, nucleation experiments 
were included. These data are just now being sorted 
out (Schramke et al., 1986b). A proper treatment 
of simultaneous nucleation and growth would 
incorporate models such as those developed by 
Avrami (see Kirkpatrick, 1981), or more likely new 
extension of these earlier models that incorporate 
heterogeneous nucleation and pre-existing crystals. 
We are currently working on these theoretical 
developments. In developing nucleation models it 
is imperative that experimental data be obtained 
and used. One reason for this is that the theory of 
nucleation is in worse shape than the theory of 
growth. We cannot be content to just borrow the 
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very simple formulae from materials science. There- 
fore, we do not claim to put nucleation phenomena 
in our results. None the less, given all the caveats 
above, one can crudely 'simulate' a nucleation effect 
by requiring that a certain temperature overstep be 
reached before reaction takes place. This modifica- 
tion was included in the model and the results also 
given in Table IV. 

TABLE IV. Effect of nucleation on isograds 

Nucleation Reaction zone Max. Isograd posltlon 
overstep ~ A* width (metres) AT(~ (metres) 

O 577 20 hi 67.5 
5 577 iT.5 h2 67.5 

25 577 2.5 h2 60.0 
0 ii.5 50 95 25 
5 ii.5 50 95 25 

25 11.5 h2.5 95 25 

* em21kg rock 

A nucleation-induced overstep of 5 ~ did not 
change the results significantly. The maximum 
temperature oversteps remained about the same, as 
well as the position of the isograd. Only the width of 
the 'reaction zone' was decreased slightly, for 
example from 20 to 17.5 m in the A = 577 cm2/kg 
case (Table III). Increasing the nucleation-induced 
overstep to 25 ~ significantly decreased the 
'reaction zone', while the isograd position changed 
slightly. In this case, the reason for the relative 
abruptness of the 'reaction zone' stems from two 
factors. On the one hand there is no reaction until 
the temperature exceeds T~q+25 ~ but at this 
point the reaction proceeds at a very fast pace, 
because the overstep is so large. Therefore, regions 
which either never exceed T~q + 25 ~ or do so very 
briefly will now remain 'unreacted'. These results 
suggest that nucleation can have an effect on the 
width of the 'reaction zone' only if the effective 
overstep is large enough. Based on the abundance 
of heterogeneous nucleation sites and our pre- 
liminary data, I do not feel that the AT = +25 ~ 
case is likely. However, it is safest to wait for new 
experimental data on nucleation to have the last 
word. 

play of diffusion and surface reactions in the 
breakdown and growth of metamorphic minerals is 
elucidated by the new data and by the formulation 
of a metamorphic reaction model. For reactions 
involving low-solubility aluminosilicates, the rates 
at the mineral surface of one of the reactants or 
products may control the overall rate and not the 
diffusion transfer. However, both surface reaction 
and diffusion must occur at equal rates. 

A reaction-diffusion model was developed to 
analyse the interplay of surface kinetics and 
diffusion fluxes in the overall reaction rate. The 
dependence of the rate on the surface area of one 
mineral (reactant or product) in the case of slow 
surface kinetics was shown quantitatively by the 
model. The model included the usual diffusion- 
control term as a limiting case of very fast surface 
kinetics. An important result of the model for the 
case of near-linear surface reaction rate laws is 
the possibility of recasting the overall rate as a 
'diffusion-control' model with a new effective diffu- 
sion coefficient. 

The kinetic description of surface reaction rates 
may require the use of non-linear terms. The new 
data on muscovite dehydration predicts a non- 
linear dependence on AG or on the temperature 
overstep AT that seems to be in agreement with 
theoretical Monte Carlo simulations of growth and 
dissolution in the presence of linear defects. While 
some reactions may obey linear kinetics, the results 
presented here strongly suggest that more meta- 
morphic reactions be studied in detail. 

The reaction rate equations can be coupled with 
the heat flux equations to enable a description of 
the overall processes in the field. The numerical 
modelling carried out here shows that the usual 
assumptions regarding the buffering of temperature 
and composition at univariant reaction points have 
to be modified, especially for the sluggish reactions 
involving silicates. Furthermore, the sharpness of 
an isograd is clearly dependent on the thermal 
evolution and the rates of reaction. For the 
examples carried out in the text, the width of the 
isograd varied from a few metres to nearly 100 m as 
the rates of reaction and the size of the intrusion 
were varied over ranges easily expected in the wide 
range of metamorphic conditions. The expression 
of these kinetic results in field observations should 
be further studied. 

Summary 

The effectuation of metamorphic reactions 
necessitates the operation of many kinetic proces- 
ses involving both heat and mass transfer. New 
kinetic data enable us to appraise the importance of 
several of these processes. In particular, the inter- 
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