
MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 693-707 

A computer simulation of the structure and 
elastic properties of MgSiO3 perovskite 

A. WALL AND G. D. PRICE 

Department of Geological Sciences, University College London, Gower Street, London WC1E 6BT 

A N D  

S. C. PARKER 

Department of Chemistry, University of Bath, Avon BA2 7AY 

ABSTRACT. The structure and elastic properties of 
MgSiOa, a major mantle-forming phase, have been simu- 
lated using computer models which predict the minimum 
energy structure by using interatomic pair potentials to 
describe the net forces acting between the atoms. Four 
such interatomic potentials were developed in this study, 
and are compared with potential NI of Miyamoto and 
Takeda (1984). The most successful potential (W3) was 
derived by fitting the short range potential parameters to 
both the experimentally obtained structural and elastic 
properties of MgSiO 3 perovskite. The relative stabilities 
of some of the possible perovskite polymorphs, the 
orthorhombic, cubic, and tetragonal phases and hexa- 
gonal polytypes, were evaluated at 0 K and between 1 
bar and 2 Mbar. The orthorhombic phase is found to be 
stable at all but the highest pressures, where the cubic 
phase may be stable. The temperature of the ortho- 
rhombic to cubic transition may decrease with increasing 
pressure. The energy of a stacking fault on (110) in the 
cubic phase was estimated using the ANNNI model and 
found to be about 1.95 J m -2 using potential W3. The 
distance of separation of partial dislocations of this type is 
predicted to increase with increasing pressure from 8.4 A 
at 1 bar to 9.2 A at 1 Mbar. 

KEYWORDS: perovskite structure, MgSiO3, structure 
simulation, mantle dynamics. 

T H E determination of the dynamic properties of the 
Earth's mantle and the way in which they relate to 
the processes of plate tectonics poses one of the 
most outstanding problems in the Earth Sciences 
today. Indeed, our ignorance of mantle dynamics is 
such that it is still considered debatable whether the 
mantle convects as a whole, or in layers divided by 
a phase or chemical change at the 670 km seismic 
discontinuity. At present, there are insufficient 
precise data available to confirm or discount either 
type of model. Even though it is generally accepted 
that magnesium silicate perovskite makes up ap- 
proximately 70~o of the lower mantle and 40~o of 
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the entire Earth (Poirier et al., 1983), little is known 
about its thermal expansion behaviour, its ionic 
conductivity, the energetics of diffusion, or the 
nature of defects in the structure. All of these 
properties will critically influence the rheology and 
behaviour of the mantle. This lack of data is 
understandable, however, as it is not yet possible to 
carry out experiments to measure structural and 
physical properties at the high pressures and tem- 
peratures thought to characterize the lower mantle. 

Most of the theories on the behaviour of mantle- 
forming perovskite are derived from the study of 
structural analogues, and the inferred bulk pro- 
perties of the lower mantle. For example, O'Keeffe 
and Bovin (1979) and Poirier et al. (1983) have 
found that the perovskites NaMgF 3 and KZnF 3 
show solid electrolyte behaviour at high tempera- 
tures, and Poirier et al. (1983) have also suggested 
that the high-temperature creep behaviour of 
KZnF3 could be explained by a dislocation- 
controlled Harper-Dorn mechanism. 

Work on magnesium silicate perovskite itself has 
mostly been confined to its synthesis, structure 
determinations, and study of the phase relations in 
the MgO-FeO-SiO2 system. (Mg,Fe)SiO3 perov- 
skite has been synthesised by Yagi et al. (1978, 1982) 
at 400 kbars and 1000 ~ Ito and Matsui (1978) at 
280 kbars and 1000 ~ and by Liu (1976) at 250 
kbars and 1400 ~ However, all the structural 
determinations were performed at ambient con- 
ditions far removed from those actually existing in 
the lower mantle. 

MgSiO3 perovskite has an orthorhombically 
distorted perovskite structure with space group 
Pbnrn at 25 ~ and l bar (Liu, 1976; Ito and Matsui, 
1978; and Yagi et al., 1978). Yagi et al. (1978) found 
the unit cell dimensions a, b, and c to be 4.780, 4.933, 
and 6.902 A respectively. The results from the other 
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studies are in close agreement. Yagi et al. (1982) 
have also investigated the structure at pressures of 
74.5 kbars and 84.5 kbars, which correspond to 
depths in the Earth of about 220 km and 260 km. 
From these investigations they derived the bulk 
modulus (K) to be 2.6 +0.2 Mbar between 1 bar and 
100 kbars, assuming d K / d P  to be between 3 and 5. 
The shear modulus (/~) has not yet been evaluated 
experimentally although Liebermann et al. (1977) 
have estimated both the bulk modulus (2.5+0.3 
Mbar) and the shear modulus (1.5 +0.2 Mbars) on 
the basis of isostructural trends in compounds with 
the perovskite structure. As the estimated value 
of the bulk modulus is in good agreement with the 
experimental value of Yagi et al. (1982), we may 
have some confidence in the estimated value of the 
shear modulus of MgSiO 3 perovskite of 1.5+0.2 
Mbar. The average zero pressure thermal expan- 
sion coefficient of Mgo.86Feo.14SiO 3 was reported 
by Knittle et al. (1986) to be 4• 10 -5 K -1. 

Orthorhombic perovskite ( A B X 3 )  may be viewed 
as a distortion of the aristotype, cubic perovskite 
(Megaw, 1973). In the ideal cubic perovskite (fig. 1) 
the B cation is surrounded by six anions making 
up regular B X  6 octahedra. These octahedra share 
corners, creating the twelve coordinated site which 
is occupied by the A cation. Alternatively, the 
structure may be considered to have cubic close- 
packed A X  3 layers with the B cations occupying 
one quarter of the interstitial octahedral sites (those 
surrounded by anions only). Tilting of the B X  6 

octahedra about their tetrad and diad axes (equiva- 

lent to tilting about the triad axis) reduces the 
symmetry from cubic to orthorhombic and the 
coordination of the A cations from twelve to eight 
(see fig. 2). The A X  s polyhedron can be visualized 
as a trigonal prism capped by two additional X 
anions (O'Keeffe et al., 1979). Other distortions 
of the perovskite structure (hettotypes) are well 
known (see, for example, Megaw, 1973; Glazer, 
1975), including examples in which the B cation 
is displaced from the centre of the BO 6 octahedra 
along the tetrad axis, resulting in tetragonal 
symmetry as typified by BaTiO 3 between 0 ~ and 
120 ~ 

Changes in pressure and temperature cause 
displacive phase transitions between the variants of 
the perovskite structure. For example, with increas- 
ing temperature, CaTiO3 transforms from ortho- 
rhombic to cubic at 1260 ~ (Granicher and Jakits, 
1954), and BaTiO3 transforms from tetragonal to 
cubic at 120 ~ It is, therefore, probable that 
MgSiO 3 perovskite will behave in the same way, 
transforming to higher symmetry at high tempera- 
tures. The effect of increasing pressure on the 
perovskite structure is not, however, as well 
known--it  may decrease or increase the tempera- 
ture at which a phase change to a higher symmetry 
perovskite may occur. Displacive phase transitions 
are generally rapid and nonquenchable (Hazen and 
Finger, 1982), and, therefore, the cubic phase of 
MgSiO3, if it exists, is unlikely to survive in the 
conditions at which X-ray structure determinations 
have been made. In addition, it is even possible that 
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FIG. 1. The ideal perovskite structure. (a) Perspective view of the framework of octahedra: black circles B cations, 
hatched circles A cations. (b) Projection of the structure on to (001): the octahedra are outlined by solid lines, the unit cell 

by broken lines, open circles represent X anions. After Megaw (1973). 
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FIG. 2. Projection of the observed, distorted perovskite 
structure of MgSiO 3 on to (001): black circles Mg, hatched 
circles Si, open circles O. The O O bonds in the octahedra 

are joined. 

other perovskite-related phases, such as hexagonal 
perovskite polytypes, may be stable at extreme 
pressures far above the present experimental 
pressure range. 

Given the experimental problems associated 
with studying silicate perovskites, computer simu- 
lations coupled with crystal chemical studies are 
the most promising source of insight into the 
behaviour of (Mg, Fe)SiO 3 perovskite. Hence, in 
this investigation computer modelling is used to 
simulate the structural and elastic properties of 
MgSiO3 perovskite. The computer models use an 
atomistic approach based on the classical Born 
model of the solid in which potential functions 
represent the interactions between the atoms or 
ions. It has already been demonstrated that this 
type of computer modelling may successfully 
predict mineral structures and their elastic proper- 
ties (for example, Parker, 1983a; Catlow et al., 1984; 
Parker et al., 1984; and Price and Parker, 1984). 
Once good potential models exist for MgSiO 3 
perovskite, it will be possible to investigate other 
features of perovskite behaviour such as poly- 
typism, defects, diffusion, phonon frequencies, and 
conductivity. At this preliminary stage, we only 
consider the end-member MgSiO 3 perovskite 
rather than the more complex, but more realistic 
(Mg,Fe)SiOa phase. In this study four potential 
models have been developed to simulate the known 
properties of MgSiOa perovskite at 1 bar. The 
results obtained using these potentials are com- 
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pared with the recently published potential, N1, of 
Miyamoto and Takeda (1984). Three of these 
potentials have been used to simulate the properties 
of MgSiO a perovskite at high pressures which 
cannot readily be achieved by experiment. The 
relative stabilities of the cubic, orthorhombic and 
tetragonal perovskite polymorphs, as described 
above, have been evaluated and the possibility of 
perovskite polytypes with hexagonal packing has 
also been investigated. Finally we present an 
analysis in which the energy of a stacking fault in 
cubic MgSiO3 perovskite is estimated using the 
ANNNI model approach (Price et al., 1985). 

Computer simulation techniques 

In the atomistic approach the solid is modelled 
by developing interatomic potentials which describe 
the net forces acting upon atoms in the structure. 
The ability of the interatomic potentials to model 
the nature of interatomic forces, which may include 
contributions from ionic, covalent and van der 
Waals interactions, is crucial to the success of the 
simulation. The static cohesive energy of a crystal 
can be calculated from a summation of the interac- 
tions between the atomic pairs assuming that 
many-body effects are negligible. All our simula- 
tions are performed at an effective temperature of 
0 K, because they do not consider the vibrational 
energy, and hence the static cohesive energy is equal 
to the total internal energy. 

The computer codes WMIN (Busing, 1981) and 
METAPOCS (Parker, 1983a) use interatomic 
potentials to predict both the structural and elastic 
properties of a solid. The programs may be used in 
one of two modes; either to derive the potential 
parameters, or to find the minimum energy struc- 
ture. The potential parameters may be fitted to 
the atomic coordinates, unit ceil dimensions, and 
occasionally also the elastic moduli and refractive 
indices. Alternatively, to find the minimum energy 
structure resulting from specified interatomic 
potentials, the internal energy is minimized with 
respect to the coordinates of atoms in the unit cell, 
starting from an initial trial model which may be 
the experimentally determined structure. 

The potential parameters used consist of two 
terms, a long-range electrostatic or Coulombic 
term and a short-range repulsive term. The electro- 
static energy per formula unit is given by: 

one cel l  al l  ce l ls  

Uc=�89  ~ ~ qiqjri~ 1 

where Z is the number of formula units per unit cell, 
ql and qj are point charges, and rlj is the distance 
between atoms i andj .  This term is slowly conver- 
gent and it is, therefore, essential that it is smnmed 
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effectively to infinity. This is achieved by using the 
Ewald method. Point charges are replaced by a 
Gaussian distribution which is transformed into 
reciprocal space, but the overlap between the 
Gaussian distributions is treated in real space. Both 
these terms are rapidly convergent (Catlow and 
Mackrodt, 1982; Parker, 1983a). A Born Mayer- 
like expression is used to describe the short-range 
term: 

one  cel l  a l l  ce l l s  

U R = � 8 9  ~ Z f (Bi+Bj)"  
i j # i  

exp[(Ai + A j - -  ri3/(B i + Bj)] 

wherefis a force constant with units of energy per 
unit length, Ai, i is related to the ionic radius or 
relative size and Bi, j is related to the ionic com- 
pressibility. This sum is rapidly convergent and 
may be truncated after a suitable distance. A 
term representing the van der Waals interaction 
(__ Ci  j ri ~ 6) can also be included. 

The shell model is an alternative to the rigid ion 
models described above, and provides a simple 
mechanical description of ionic polarizability. The 
atom or ion is modelled as having a core containing 
all the mass, surrounded by a shell of charge Y 
representing the outer valence electron cloud. The 
core and shell are coupled by a harmonic spring 
such that: 

Us(ri)  = K i r2i 

where U~ is the core-shell interaction on ion i, r~ is 
the core-shell separation, and Ki is the spring con- 
stant. The ionic polarizability is given by the term: 

O:i = (Yi  e ) 2 / K i  �9 

The METAPOCS computer code is used to 
calculate the elastic constants from the second 
derivative of the lattice energy with respect to both 
strain and atomic coordinates. If a shell model is 
used, the high frequency dielectric constant, pro- 
portional to the square of the refractive index (see, 
for example, Kittel, 1976), can also be calculated. 
Both METAPOCS and WMIN can be used to 
simulate the effect of pressure on a structure. In 
WMIN an approximation of the effect of pressure is 
made by introducing an extra negative energy term 
which is proportional to pAV, where p is the 
hydrostatic pressure of interest and AV is the 
difference between the unit cell volumes at zero and 
the required pressure (Busing, 198l). METAPOCS 
has a more exact routine to simulate the effect of 
pressure in which the atomic coordinates are 
adjusted until the internal pressure is equal to the 
hydrostatic pressure required (Parker, 1983b). The 
internal pressure is calculated from the derivative of 
the lattice energy (U) with respect to the bulk strain 
(e) thus: 

Pim . . . .  1 = aU/& = (au aR)/(OR ae) 

where R is the position of all the component vectors 
(coordinates and lattice parameters). The results 
from WMIN and METAPOCS are similar for low 
pressures but differ by up to 4~  at 2 Mbars. 

The short-range potential parameters may be 
derived empirically by fitting them to experiment- 
ally determined data, or non-empirically either 
using Hartree-Fock molecular orbital methods 
which are expensive in computer time, or the more 
computationally economic electron gas method 
based on a statistical atom model (Catlow and 
Mackrodt, 1982). In this study four potentials W1, 
W2, W3, and W4 (Table I) were derived by fitting 
the potential parameters to the experimentally 
determined data for MgSiO 3 perovskite, although 
the O ... O -  short-range term in W4 was derived 
using the Hartree Fock method. These potentials 
are compared with potential N1 of Miyamoto and 
Takeda (1984) which was derived by fitting to the 
Mg2SiO4 olivine structure rather than to MgSiO3 
perovskite. 

Table I The potential parameters. 

AMg ASi A 0 BMg Bsi BO 
WI 1.1731 1.9410 1.6221 0.0450 0.1800 0.1291 

W2 1.1419 1.9400 1.6175 0.0204 0.2019 0.1469 

W3 1.0876 1.7732 1,7069 0.0238 0.1757 0.1503 

W4 2.2389 2.6065 1.1230 0.2170 0.2579 0.0745 

NI 0,97 0.608 1.770 0,065 0.0172 0.105 

W1. To derive this potential WMIN was used to 
fit the potential parameters to the X-ray data for 
MgSiO3 perovskite from Yagi et al. (1982). Full 
ionic charges of Mg + 2.0, Si + 4.0, and O -2 .0  
were assumed. 

W2. This derivation of this potential was similar 
to that of W1, WMIN being used to fit the 
potentials to X-ray data, but the oxygen and 
silicon charges were varied by trial and error until 
a reasonable prediction of the bulk modulus was 
achieved. The optimum partial charges were found 
to be Mg + 2.0, Si + 2.8, and O -1.6.  

W3. This potential includes a shell model for 
oxygen to simulate its ionic polarizability. Using 
METAPOCS the potential parameters were fitted 
to X-ray data, bulk and shear moduli, and a 
calculated refractive index. The ionic charges in the 
potential thus developed were Mg + 1.899, Si 
+ 3.168, O core +0.201, and O shell - 1.889 with a 
spring constant of 81.71 kJ-2 mol-1. 

The refractive index of MgSiO3 perovskite has 
not been measured experimentally. Instead we 
used a calculated value of 1.839 + 0.004, which was 
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obtained using the Gladstone-Dale relationship 
between refractive index, chemical composition, 
and density described by Mandarino (1976, 1978, 
1979). To assess the accuracy of this method when 
applied to perovskites, calculations were made for 
CaTiO3, SmTiO3, GdA103, and ScA103. Their 
measured mean refractive indices are 2.318, 2.052, 
2.014, and 1.94 respectively (the latter three values 
are from Bass, 1984). The values calculated using 
the Gladstone-Dale relationship are 2.284, 2.058, 
2.053, and 2.010. The small differences, all less than 
0.07, between the calculated and measured refrac- 
tive indices demonstrate that it is reasonable to use 
this method for perovskites. 

W4. In this potential the values for the O - ... O -  
short-range term were taken from Catlow (1977), 
and were derived using Hartree-Fock methods. An 
empirically derived value for the van der Waals 
coefficient between O 2 - . . . O  2- of 2690 kJ A 6 
tool-1 was also included. The remaining Mg-O 
and Si-O short-range terms were fitted to the 
structural data of Yagi et al. (1982). Full ionic 
charges were used. 

N1. This potential was developed by Miyamoto 
and Takeda (1984) who used WMIN to fit the 
potential parameters to the structural data of 
Mg2SiO4, starting with values of AMg and BMg 
obtained by fitting to MgC12. Again full ionic 
charges were used. 

Silicates are known not to be fully ionic in 
character and, therefore, partially ionic charges 
were introduced into potentials W2 and W3 with 
the aim of improving the nature of the simulated 
Si-O bond. Price and Parker (1984) successfully 
used a Morse potential to model the covalency of 
the Si-O bond in olivine, in which Si has tetra- 
hedral coordination. However, fitting a Morse 
potential to the Si-O bond in MgSiO3 perovskite 
failed, probably because SiO6 octahedra have less 
covalent character than SiO4 tetrahedra. Swanson 
and Prewitt (1983) demonstrated that this is, 
indeed, likely to be the case by their detailed 
electron density study of K2SivISiIVOg, from which 
they inferred that the partial ionic charges on Si w, 
Si Iv, and O are + 3.29(15), + 2.52(11), and - 1.43(8) 
respectively. The Si w charge of + 3.168 in potential 
W3 and that reported by Swanson and Prewitt 
(1983) agree within the error of their determination, 
although the charge of + 2.8 in W2 is slightly lower. 

The purely empirically derived potentials W1, 
W2, and W3 have similar A (relative ionic radius) 
and B (relative ionic compressibility) parameters. 
However, this is not the case for the potentials 
which include terms transferred from other com- 
pounds, W4 and N1. The Bsi and BMg values are 
larger in W4 than in the totally fitted potentials and 
the B o value is smaller, giving a structure with 

comparatively soft cations and rigid anions in 
accord with the observations made by Prewitt 
(1985). In N1, the magnesium ion is relatively more 
compressible, but the silicon and oxygen ions 
are more rigid than in the empirically derived 
potentials. 

The extent to which these potentials can be 
used to reproduce the experimentally determined 
structural and elastic properties of MgSiO3 perov- 
skite will be discussed in the following section. In 
subsequent sections the potentials will be used to 
predict the structure of MgSiO3 at pressures of up 
to 2 Mbars, and to investigate the behaviour 
of phases structurally related to orthorhombic 
perovskite. 

Comparison of the experimental and 
simulated results 

The success with which the five potentials Wl ,  
W2, W3, W4, and N1 simulate MgSiO3 perovskite 
at 1 bar can be assessed from the results presented 
in Table II. As would be expected, the structures 
simulated using the three empirically derived 
potentials, Wl ,  W2, and W3 are in good agreement 
with that determined experimentally. Of these 
potentials, the best reproduction of the unit cell 
dimensions a, b, and c is achieved using Wl ,  with 
a root mean squared (rms) error of only 0.018 A. 
Potentials W l  and W3 give the best prediction of 
Si-O bond lengths (the rms errors are less than 
0.013 A). The variation of bond lengths within the 
SiO6 octahedron provides a measure of its distor- 
tion. This is best reproduced using W2 and W3, 
while W l  predicts an octahedron which is too 
regular. The Mg-O bond lengths are predicted well 
by W3 (rms error of 0.029 A). W2 also reproduces 
the Mg-O lengths well (the rms error for the 
shortest six bonds is 0.026 A), but it overestimates 
the longest Mg O bonds by 0.1 A giving an overall 
rms error of 0.055 A. The elastic moduli are 
not so well reproduced. The fully ionic potential, 
Wl ,  predicts shear and bulk moduli that are too 
stiff by a factor of 1.7 and in contrast, the moduli 
from W2 are a factor of 0.7 too soft. The values 
from W3, which was fitted to elastic data, are 
good, being within the error of the experimental 
values and those predicted by Liebermann et al. 
(1977). 

Potentials W4 and N1, which were not entirely 
derived by fitting to perovskite data, also produce 
reasonable results. The unit cell dimensions are 
reproduced well by W4 (rms error of 0.033 A), but 
N1 produces unit cell dimensions that are too large 
with a rms error of 0.130 A. The rms errors in the 
Si-O bond lengths of 0.029 A from W4 and 0.045 A 
from N1 are both larger than for Wl ,  W2, or W3, 
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~l~3-e I f .  Comparison of the simulated and experimentally determined 

unit cell parameters 

Experimental WI W2 W3 W4 NI 

a(A) 4.780 4.785 4.775 4.979 4,802 4.862 

b(~) 4.933 4.925 4.931 4~ 4.884 5.043 

c(~) 6,902 6.932 7.021 6.957 6,881 7.084 

V(~ 3) 162.747 163.365 163.315 165.162 161.379 173.693 

I(A)** 0.018 0.069 0.023 0.033 0.130 

Si-02(2) 1.760 1.782 1.782 1.767 1.762 1.824 

$i-01(2) 1.819 1.815 1.845 1,808 1.776 1.848 

Si-02(2) 1.789 1.783 1.768 1.797 1.764 1.824 

I(A)** 0.013 0.020 0,013 0.029 0.045 

Mg-02(2) 2.064 2.051 2.072 2.097 2.049 2.029 

Mg-01(1) 2.099 2.203 2.034 2.061 2.026 1.981 

Mg-01(1) 2.124 2.115 2.089 2,130 2.228 2.325 

Mg-02(2) 2.194 2.246 2.180 2.247 2.377 2.431 

Mg-02(2) 2.473 2.506 2.573 2.493 2.448 2.526 

I(~)** 0.041 0.055 0,029 0.119 0.171 

K(Mbar) 2.62 4.38 2.08 2.5B 3.32 7.14 

u(Mbar) 1.50 2.53 1.07 1.33 1.98 4.35 

* Yagi et ai.(1982) 

**I = (Z((dobs-dcalc)2/ n))1/2 

and the predicted SiO 6 octahedra are too regular. 
Potentials W4 and N1 do not reproduce the Mg-O 
bond lengths as well as W1, W2, and W3, giving 
comparatively large errors of 0.119 A (W4) and 
0.171 /~ (NI). Like the other fully ionic potential 
W1, the predicted bulk modulus values for W4 and 
N1 are too stiffby factors of 1.3 and 2.7 respectively 
(see Table II). 

It can be concluded, therefore, that the simula- 
tions of MgSiO 3 perovskite using the transfer 
potentials W4 and Nl  are not as successful as those 
achieved using the empirical potentials fitted 
entirely to perovskite data (W1, W2, and W3). In 
particular, they are less capable of predicting 
the Mg-O or Si-O bond lengths. Simulation of 
MgSiO 3 perovskite at higher pressures has, there- 
fore, been confined to using potentials W1, W2, and 
W3. 

A comparison of the simulated and experiment- 
ally determined structure of MgSiO3 perovskite 
(from Yagi et al., 1982) at pressures of 74.5 kbar and 
84.5 kbar is shown in fig. 3. All the calculated unit 
cell lengths are within 1~o of those determined 
experimentally. 

The change in unit cell volume with increasing 
pressure (fig. 3) is best reproduced by W3; this is 
reflected in the calculated bulk modulus (K). The 
values o f d K / d P  obtained using Wl ,  W2, W3 are 3, 
5, and 5 respectively--all within the range of 3 to 5 
assumed by Yagi et al. (1982). However, only the 
bulk modulus values of W2 (2.08-2.55 Mbar) and 
W3 (2.55-3.04 Mbar) are close to the experi- 
mentally determined value of 2.6 Mbars between 0 
and 100 kbar. The shear moduli (p) predicted by 
W1, W2, and W3 between 0 and 100 kbar, are 2.5 
to 2.7 Mbar; 1.1 to 1.3 Mbar; and 1.3 to 1.6 Mbar 
respectively. When compared with the inferred 
value of the shear modulus of t.5+_0.2 Mbars 
(Liebermann et al., 1977), it is again found that the 
values from W1 are too stiff, while those from W2 
are too soft, and that only those from W3 are in 
good agreement. The pressure dependence of the 
shear modulus, dt~/dP, predicted by W2 and W3 is 
similar (2.7 and 2.8), and that of W1 is slightly 
lower (1.46). 

The ratios of the unit cell parameters a, b, and c 
can be used to investigate any change in the 
orthorhombic distortion of MgSiO 3 perovskite 
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FIG. 3. Comparison of the simulated and experimentally determined unit cell parameters a, b, e, and V for 
orthorhombic MgSiO 3 perovskite. 

with increasing pressure. If the distortion becomes 
less, the ratios will tend towards those of the 
ideal cubic perovskite, which are b/a = 1'0 and 
c/a = c/b = x/2. Over this pressure range the 
ratios show no clear trends. Potentials W1, W2, 
and W3 predict similar results in that the e/a ratios 
become closer to x/2, the e/b ratios deviate from 
x/2, and the b/a ratios either stay about the same 
or trend away from 1. Yagi et al. (1978) found that 
the c/b ratio tends towards x/2 with increasing 
pressure, but the b/a and e/a ratios do not approach 
the ideal values. 

As the elastic properties of a mineral are more 
difficult to simulate than its structure, they provide 
a more rigorous test of the suitability of a potential 
(Burnham, 1985). This is because they depend on 
the second derivative of the potential function, 

whereas the structural parameters depend only on 
the first. The three fully ionic models all give elastic 
moduli that are too rigid. An improved model is 
obtained with the partial charges of W2 and good 
results from the shell model, W3. Therefore, we 
conclude that W3 is the most useful potential yet 
developed to describe MgSiO 3 perovskite, as it 
reproduces well both the structural and elastic 
properties of this major Earth-forming mineral. 

The effect of pressure on the orthorhombic, cubic, 
and tetragonal perovskite polymorphs and phase 

transitions between them 

Changes in the perovskite structure at depth in 
the Earth may influence the rheology of the mantle. 
To investigate the nature and possibility of any 
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structural alterations, we have simulated the 
observed orthorhombic, and hypothetical cubic, 
and tetragonal polymorphs of MgSiO 3 perovskite, 
described above, at pressures of 0 kbar, 100 kbar(10 
GPa), 200 kbar(20 GPa), 500 kbar(50 GPa), 1 
Mbar(100 GPa), and 2 Mbar(200 GPa), cor- 
responding to depths in the Earth of approximately 
300 kin, 600 km, 1270 kin, 2270 kin, and 3470 km 
according to the Preliminary Reference Earth 
Model (Dziewonski and Anderson, 1981). At any 
given pressure and temperature, only one of these 
possible polymorphs can be stable. Changes in 
pressure and/or temperature may, however, cause 
one polymorph to transform to another. The Gibbs 
free energies (G) of the various possible perovskite 
polymorphs were calculated at zero temperature 
and the pressures of interest, to provide a measure 
of their relative stability. Phase transitions between 
these perovskite polymorphs are displacive and 
may be of first or higher order. We, therefore, also 
investigated changes in the distortion of the tetra- 
gonal and orthorhombic perovskite polymorphs 
with increasing pressure to see whether continuous 
(or second order) phase transitions were predicted 
to occur. 

Computer simulation results. The Gibbs free 
energy (G) was derived using the relationship 
G = U +  P- V -  T" S, where U is the calculated 
lattice energy, P is the pressure of interest, V is the 
molar volume, T the temperature and S the entopy. 
As the simulations are effectively at absolute zero, 
the product T. S is also zero. Evaluation of the free 
energy shows that at 1 bar, in agreement with the 
observed behaviour of MgSiO 3 perovskite, the 
orthorhombic polymorph is the more stable form, 
irrespective of the potential used (whether W 1, W2, 
or W3). It was also found that the tetragonal 
polymorph was predicted to have a stability inter- 
mediate between that of the orthorhombic and 
cubic phases. At higher pressures the relative free 
energies and the predicted changes in structural 
distortion of the polymorphs differ according to 
the potential used. Potential W1 predicts that the 
orthorhombic phase is always more stable than the 
cubic, with the difference in their free energy (AG) 
increasing with increasing pressure (see fig. 4 and 
Table Ilia). In contrast, W2 and W3 predict that 
the difference in free energy between the two phases 
becomes less at higher pressure (fig. 4, Table Ilia). 
By 2 Mbar both W2 and W3 predict that the cubic 
phase is the more stable. 

In addition to different energetic behaviour, 
our simulations of the structure of orthorhombic 
MgSiO3 perovskite show that the changes in the 
orthorhombic distortion as a function of pressure 
also vary according to the potential used. All three 
potentials predict a decrease in a, b, c, and V with 
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FIG. 4. Comparison of the Free energy difference AG 
between the orthorhombic and cubic phases (AG(o--c)), 

and the cubic and tetragonal phases (AG(t-c)). 

increasing pressure. However, the extent of the 
change is different for each potential (see fig. 5). W1 
predicts the least contraction of the unit cell and 
W2 the most, in accordance with their calculated 
bulk moduli. The ratios between a, b, and e 
predicted by W1 deviate from the ideal cubic values 
whilst, in contrast, those from W2 and, to a lesser 
extent from W3, become closer to them. An alterna- 
tive way of looking at the degree of orthorhombic 
distortion of MgSiO 3 perovskite is to consider the 
rotation of the SiC6 polyhedron about its threefold 
axis. This angle of rotation q~ can be calculated 
using the relationship developed by O'Keeffe et al., 

Table I l l a  Calalculated AG (kJmo1-1) for  the 

orthorhombic to cubic perovskite phase 

t rans i t i on .  

P(kbar) 0 100 200 500 1000 2000 

W1 148.4 156.4 163.6 179.8 195.7 205.8 

W2 114.6 106.8 93.8 78.3 42,5 -24.0 

W3 91.2 91.2 86.1 86.1 71.5 - I . 1  

Table IZZb Calculated ~G {kJmol " I )  for  the 

tetragona] to cubic perovskite phase t rans i t i on .  

P(kbar) 0 100 200 500 1000 2000 

WI 31.9 22.9 15.9 3.4 0.1 - i . i  

W2 56,6 25,4 5.1 -0.4 -0.4 0.7 

W3 47.7 21.8 4,0 -0.0 0.0 -0.0 
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FIG. 5. Comparison of the unit cell parameters a, b, c, and V, and the angle of rotation, q~, of the SiO 6 octahedron about 
the threefold axis for orthorhombic perovskite simulated using potentials W1, W2, and W3 between 0 and 2 Mbars 

pressure. 

1979 (which applies strictly to regular octahedra) of 
(p = cos-  l(x/2a2/bc ) (where we use a, b, c as defined 
by Yagi et al., 1978, not O'Keefe et al., 1979). 
Perovskite with an ideal cubic structure has a (p 
value of zero degrees. The results from W2 and W3 
show a decrease in q~ between 0 Mbar and 2 Mbar 
of 22 ~ to 4 ~ and 19 ~ to 6 ~ respectively (see fig. 5) and, 
therefore, also a decrease in orthorhombic distor- 
tion with increasing pressure. These results suggest 
that because the value of q~ has not decreased to 0 

by 2 Mbars, the phase transition, predicted by 
calculation of the free energy, would be of first 
order. In contrast the value from W1 changes little 
from 18 ~ . 

The free energy difference between the meta- 
stable tetragonal and cubic phases (AG(t-c))  
calculated for all three potentials is predicted to 
gradually decrease to zero with increasing pressure 
(see fig. 4 and Table IIIb). This occurs at about 300 
kbar using W2, 350 kbar using W3, and above 500 
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kbar using W1. The unit cell dimensions of the 
tetragonal phase also gradually become closer to 
those of the simulated cubic perovskite and they are 
actually equal at the pressures above the inversion 
pressure (AG = 0). Our computer simulations using 
potentials Wl ,  W2, and W3, therefore, predict that 
a phase transformation, possibly second order, 
occurs between the hypothetical tetragonat and 
cubic phases with increasing pressure. 

In an attempt to determine which potential pro- 
vides the best model of MgSiO3 perovskite 
behaviour in response to increasing pressure, we 
will look at the results of some experimental studies 
on the effects of pressure on phase transitions in 
perovskites, and also at some possible crystal 
chemical approaches to the problem. 

Experimental studies on perovskites. The small 
number of experimental studies of the effects of 
hydrostatic pressure on phase transitions between 
perovskite polymorphs show that, at least within 
the pressure range investigated (0 to 60 kbars), 
perovskite phase transitions may have a negative 
or positive d P / d T  slope. For example, phase 
transitions between the orthorhombic and rhombo- 
hedral polymorphs of BaTiO3 (Samara, 1971); 
the tetragonal and cubic polymorphs of BaTiO3 
(Clarke and Benguigui, 1977); the ortherhombic 
and pseudocubic monoclinic polymorphs of 
CdTiO3 (Martin and Hegenbarth, 1973); and the 
tetragonal and cubic polymorphs of PbTiO3 
(Ikeda, 1975) have a boundary between the two 
phases with a negative d P / d T  slope--the phase 
change being caused by both increasing pressure 
and temperature. The d P / d T  slope has been 
found experimentally to be positive for the phase 
changes between orthorhombic and cubic PbZrO 3 
(Samara, 1970); orthorhombic and cubic PbHfO 3 
(Samara, 1970); tetragonal and cubic SrTiO3 (Okal 
and Yoshimoto, 1975); and tetragonal and cubic 
KMnF 3 (Olai and Yoshimoto, 1975). Only the 
distortions in SrTiO 3 and KMnF 3 are caused by 
rotation of the B X  6 octahedra (in this case about the 
tetrad axis); the others are caused by displacement 
of the B cations from the centres of the octahedra. 
All these phase transitions are first order except 
those in BaTiO3, PbZrO3, and PbHfO 3 at 
high pressure which are second order. Thus the 
behaviour of MgSiO 3 perovskite is not obviously 
predicted from these experimental results. 

Crystal chemical arguments. A crystal chemical 
approach to the study of the effect of pressure on the 
degree of orthorhombic distortion in MgSiO3 
perovskite was used by Yagi et al. (1978) and 
O'Keeffe et al. (1979), with conflicting results. Yagi 
et al. (1978) developed a relationship between the 
degree of orthorhombic distortion, the relative 
sizes of B X  6 octahedra and the A cation in the 

perovskite structure (ABX3) using their ionic radii 
in octahedral coordination (although Mg has a 
coordination number of at least 8). They predicted 
that the structure would become more regular at 
high pressures. O'Keeffe et al. (1979) arrived at the 
opposite conclusion by deriving a relationship for 
the change in cp, the angle of rotation of the SiO6 
octahedron about its threefold axis, in terms of the 
relative compressibilities of the A - X  (1) and B - X  
(L) bonds: (d cos r = (x/2)(/~l-/~L) cos ~o, where 
x = 0.854 (Yagi et al., 1978). A positive change in q~ 
indicates an increase in distortion and, conversely, 
a negative change a decrease. They predicted a rate 
of change in q~ of 1 ~ per 100 kbars using the 
structure of MgSiO3 determined by Yagi et al. 
(1978). However, their conclusion is not very 
reliable because the value of/~L used was taken 
from Mg-O bonds in octahedral coordination in 
garnet between 1 bar and 60 kbar, whereas the 
Mg 1+ in perovskite has a coordination number of 
at least 8. In addition,/~1 was calculated by assum- 
ing it to have half the compressibility of/~L. Our 
computer simulations show that this is unlikely to 
be true, particularly for the shortest six Mg-O 
bonds. 

Changes in the overall structure of MgSiO 3 
perovskite will almost certainly be determined by 
the relative compressibilities of the constituent 
MgO 8 and S i O  6 polyhedra, so it is important that 
these are modelled well. The calculated SiO 6 
polyhedral bulk modulus in perovskite may be 
compared with that of stishovite (made up of SiO6 
polyhedra) provided that the polyhedral bulk 
modulus is independent of the structure (Hazen and 
Finger, 1982). To calculate the polyhedral bulk 
modulus, the SiO6 octahedra are assumed to be 
regular, allowing the mean bond length to be used. 
The calculated bulk modulus values are 7.4 Mbar 
from Wl,  2.1 Mbar from W2 and 3.0 Mbar from 
W3. The experimentally determined value for SiO 6 
in stishovite is 3.5 + 1.5 Mbar (Hazen and Finger, 
1982), again demonstrating that W l  predicts a bulk 
modulus value that is much too high, whereas W2 
gives one which is too low, but just on the limit of 
the estimated error. W3 produces the best model of 
the SiO6 polyhedra, particularly as it has been 
shown above to reproduce the Si-O bond lengths 
well. The linear compressibilities of the six Mg-O 
bonds in the trigonal prism and of the two longer 
bonds outside the prism have also been calculated. 
As would be expected, the shorter bonds are 
less compressible than the longer ones. Potential 
W2 generates the least compressible short bonds 
and the most compressible long ones; their com- 
pressibilities differ by a factor of thirty-one. This 
would contribute to the increased regularity in 
bond lengths predicted at high pressures. W l  has 
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the opposite effect, giving the most compressible 
short bonds and the most rigid long bonds differing 
by a factor of two only. The shape of the MgO8 
polyhedron is, therefore, less likely to vary with 
increasing pressure. W3 lies between the other two, 
the long bonds being five times more compressible 
than the short ones. 

Using the relationship between cell volume and 
q0 given by O'Keeffe et al. (1979), we have developed 
the following relationship between the change in q9 
with pressure, the bulk modulus of the SiO 6 
polyhedra,  Ksio6 , and the total bulk modulus Kpv: 

dgo/dP = �89 cot (p(1/Kpv-- 1/Ksio6), 

and hence avoided direct consideration of the 
compressibility of the ill-defined Mg-O polyhedra. 
With 18 ~ as the value of~o at I bar (Yagi et al., 1978), 
2.6 Mbar for Kpv (Yagi et al., 1982) and 3.5 Mbar for 
Ksio6 derived from stishovite, dg0/dP is found to be 
8.7 ~ M b a r -  1. However, the errors in the determina- 
tion of both bulk moduli are such that this value 
could be positive or negative the degree of distor- 
tion at 1 bar may be increasing or decreasing. Using 
the (p values and bulk moduli predicted by 
potentials W1, W2, and W3 results in dgo/dP values 
of 8.0 ~ Mbar -  a, _ 0.4 ~ M b a r -  1, and 4.5 ~ Mbar -  a 
respectively. This relationship predicts a positive 
change in (p if Kvv is smaller than Ksio6 and, there- 
fore, the pressure dependence of the bulk moduli is 
important in determining d~o/dP at high pressure. 
For example, at 1 Mbar the simulated Kvv is 8.8 
Mbar, 6.0 Mbar, and 7.06 Mbar and Ksio6 about 9.5 
Mbar, 4.8 Mbar, and 6.1 Mbar using W1, W2, and 
W3 respectively and results in dtp/dP values of 0.7 ~ 
Mbar -1, - 9 .3  ~ Mbar -1, and - 3 . 0  ~ Mbar -1. 
Hence it is possible that, although the distor- 
tion is predicted to increase at low pressure, it 
actually decreases at high pressure as the relative 
magnitudes of the polyhedral bulk moduli alter. 
Obviously more extensive experimental studies are 
required to investigate this possibility. 

In conclusion, the experimental results on other 
perovskites and the results from computer simula- 
tion of the metastable tetragonal to cubic phase 
transition agree well; the transition is predicted to 
have a negative dP/dT slope and would probably 
be of second order at high pressure. The results for 
the orthorhombic to cubic transition are not so 
clear. Some of the experimental results, including 
those of Yagi et al. (1982), and the prediction of 
O'Keeffe et al. (1979) based on crystal chemical 
relationships, suggest that the transition has a 
positive dP/dT slope (assuming that the effect of 
increasing the temperature is to increase the 
structural symmetry), but computer simulations 
using W2 and W3 predict a negative dP/dT slope. 
However, the experimental results and the relation- 

ship of O'Keeffe et al. (1979) are only derived at 
relatively low pressures (all less than 100 kbars). As 
argued above, it is possible that the distortion of the 
perovskite structure with increasing pressure could 
reach some maximum value before the structure 
starts to become closer to that of the ideal cubic 
perovskite. Potential W3, which best models 
MgSiO3 perovskite, predicts such behaviour with 
d~o/dP being greater than 0 at low pressures, but 
less than 0 at high pressures of the order of I Mbar. 
However, this potential predicts that the cubic 
perovskite phase becomes stable with respect to the 
orthorhombic phase before ~o reaches 0, therefore, 
suggesting that at 0 K at least, any phase transi- 
tion between these phases would be of first order. 
These results highlight the need for more experi- 
mental studies to determine the existence and 
nature of any phase transitions between different 
perovskite structures in the Earth's mantle. 

Simulation of perovskite polytypes and the 
calculation of stacking fault energies 

The perovskite structure is highly versatile 
because, besides the various distortions described 
above, it can also give rise to a number of stacking 
variants resulting in perovskite polytypes. Most 
notable of these are the hexagonal perovskites (see 
for example, Muller and Roy, 1974) in which 
variations in the stacking of the close-packed A X  a 
layers produce a hexagonal rather than a cubic call. 
It is also possible to define layers on {110} of the 
cubic perovskite which can be stacked in one of two 
ways to produce a series of hypothetical perovskite 
polytypes. Isolated defects related to these poly- 
typic modifications may feature in the deformation 
of mantle-forming perovskite, or they may even 
occur as high-pressure stable modifications of the 
known perovskite structures. We have used some of 
the potentials developed in the previous sections to 
investigate these possibilities and to estimate the 
energetics of isolated (110) planar defects in cubic 
perovskite. 

Hexagonal polytypes. Hexagonal perovskites 
form equilibrium phases for several transition- 
metal-bearing perovskites, including for example 
BaNiO a, BaMnO3, and BaTiO3 (Muller and Roy, 
1974). The ideal cubic perovskite can be considered 
as being composed of close packed A X  3 layers 
arranged in a cubic close packed sequence repeat- 
ing every three layers. In contrast, the completely 
hexagonally close packed structure, based on 
BaNiO3, has a two layer repeat. In the hexagonal 
form, each BX 6 octahedron shares two opposite 
faces with its neighbours, giving a one dimensional 
octahedral chain along the hexagonal c axis. In our 
simulation we modelled the four relatively common 
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Table IV Free energies (kJmo1-1) of the hexagonal 

and cubic polytypes of MgSiO 3 perovskite. 

[SrTiO 3] [BaTiO 3] [BaMnO 3] [BaNiO 3] 

P(kbar) 

O* -9995,5 -10028.8 -9889.9 -9647.8 

500 -8885.2 -8839.8 -8711.1 -8380.0 

i000 -789~.i -7811.7 -7689.4 -7298.7 

2000 -6113.8  -5992.8 -5873.4 -5402.1 

*The orthorhombic phase has the lowest energy 
of -10109.6kdmo1-1. 

polytypes, the ideal cubic structure (as in SrTiO3 at 
ambient conditions), the hexagonal structure (ex- 
hibited by BaNiO3), and two structures with mixed 
cubic and hexagonal packing sequences based on 
BaMnO 3 and hexagonal BaTiO3. These hypo- 
thetical MgSiO3 perovskite polytypes were simu- 
lated at pressures of 0 to 2000 kbars using potential 
W2, and their flee energies calculated (see Table IV) 
to provide a measure of their relative stabilities. We 
found that the introduction of hexagonal packing 
destabilizes the perovskite structure, particularly at 
high pressure, and that polytypes with the most 
hexagonal stacking sequences were the least stable 

([BANJO3] < [BaMnO s] < 
[BaTiO3] < [SrTiO3]). 

Therefore, hexagonal MgSiO3 perovskites seem 
unlikely to occur as mantle-forming phases. 

{ 110} poIytypes. After an experimental study of 

KZnF 3 (which has the cubic perovskite structure), 
Poirier et al. (1983) suggested that one of the active 
slip systems may have had dislocations with a 
Burgers vector [110] able to glide on (110) planes. 
In this case, splitting of the type: 

[ 1 1 0 ]  = � 8 9  + �89  

would result in a stacking fault on the (110) plane. 
The fault leaves the anion sublattice unaltered, 
but forms edge-sharing octahedra in which the 
distances between both the A and B cations is 
shortened to a/~/2. 

The cubic perovskite structure of MgSiO3 can be 
considered to be made up of structural units related 
to each other by a glide operator �89 (1113). If 
the basic structural unit (fig. 6) is represented by 1", 
the sequence of units in the <110> direction is 
T & T & T$ or <1>, representing a series of units 
effectively stacked in alternate directions. An in- 
finite number of sequences are possible; for example 
a sequence T 1" ~ 1" 1" ~ would be denoted as <21> and 
can be described as being made up of one band of 
two arrows and one band of one arrow (Fisher and 
Selke, 1981). More generally, <nl, n2 . . . . .  rim> denotes 
a structure made up of m bands of arrows or 
structural units of length nl n~,...,nm. The occur- 
rence of a stacking fault on {110} in the ideal cubic 
(<1>) structure, which places two structural unit 
stacked in the same orientation adjacent to each 
other, will alter the sequence to Y $1" I" ~ 1". 

Now that potential models have been developed 
to describe the MgSiOs perovskite structure, it is 
possible to evaluate the energy of this stacking fault 
using the ANNNI (Axial Next Nearest Neighbour 
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Ising) model, in an approach similar to that em- 
ployed by Price et al. (1985) to compute a stacking 
fault energy in a magnesium silicate spineUoid. The 
ANNNI model is a statistical mechanics model, 
originally developed to describe magnetic systems. 
It was adapted to describe polytypism in minerals 
by Smith et at. (1984), and Price and Yeomans 
(1984) by mapping the basic polytypic structural 
unit on to a magnetic spin variable. The interac- 
tions between units can then be written as a 
Hamiltonian with competing interactions to form 
a model which provides a simple equilibrium 
description of polytypism, and, using short-range 
couplings, can predict the stable polytypes for a 
given compound. 

The internal energy of a particular structure is 
assumed to be made of two components: (i) the 
internal energy of component modules, and (ii) 
the energy of interaction between modules. If the 
internal energy of the components is invariant, the 
difference in calculated lattice energies will reflect 
the difference in the interaction energy between 
modules. In this study of MgSiO 3 perovskite, the 
interaction energy between the first four neighbour- 
ing modules only is considered. 

The ground state energy for the normal stacking 
sequence of MgSiO3 perovskite per N layers is: 

E(1)  = NJ~ +NJ3  + N E ~  

(see Price et al., 1985, for the derivation) where J~ 
and J3 are interaction energies between the first and 
third neighbours having the opposite sense (]" $), 
and E~o the lattice energy of the (oo)  structure. The 
introduction of a stacking fault on {110} changes 
this to: 

E(1)* = (N--  1)J, + 2 J  2 + (N-- 3)J3 +4J ,+NE~o 

where J2 and J4 are the interaction energies between 
the second and fourth neighbours which have the 
opposite sense and are created by the introduction 
of the stacking fault. The energy of the stacking 
fault is, therefore: 

E(fault)  = -- 1J 1 + 2J 2 -- 3J 3 q- 4J 4. 

The interaction energies J1, J2 ,  J3 ,  J4 ,  have been 
evaluated by calculating the lattice energies of 
hypothetical structures with stacking sequences 
(1),  (2) ,  (21),  (31), and (3).  These calculations 
have been made at simulated pressures of 0, 100, 
500, 1000, and 2000 kbars using potentials W2 and 
W3. As we would expect, the cubic phase (1 )  is the 
most stable at all the pressures considered. 

The stacking fault energy at 0 kbars has been 
calculated to be 1.67 J m 2 using W2 and 1.95 J 
m -  2 using W3. The stacking fault energy increases 
with increasing pressure (see Table V), and by 1000 
kbars it is 2.52 J m -2 (W2) and 3.24 J m -2 (W3). 
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The stacking fault energy provides a measure of the 
equilibrium distance of separation (d) between the 
two partial dislocations bounding the stacking 
fault, which can be found using the relationship 
d = #(b 2 �9 b a cos 0)/(2" n" 7) (Hull, 1975) where # is 
the shear modulus, b E and b3 are the Burgers 
vectors of the partial dislocations, 0 the angle 
between them, and ? the stacking fault energy. The 
distance of separation, d, at 1 bar is 8.37 A or 1.7 b l ,  
(where b 1 is the full Burgers vector), using W2 and 
8.41 A or 1.7 bl using W3. By 1 Mbar this distance is 
predicted to increase to 11.5 A or 2.6 bx (W2), and 
9.24 A or 2ba (W3). The distance of separation has 
increased by 1 Mbar because the shear modulus,/~, 
increases by a factor of 3 using W2 or 2.5 using W3, 
whereas the stacking fault energy only increases by 
a factor of 1.7 (W2) and 1.5 (W3). At 1 bar the value 
of the stacking fault energy in MgSiO3 perovskite 
is two orders of magnitude greater than in mag- 
nesium silicate spinelloids (Price et al., 1985) and, 
conversely, the distance of separation of the partial 
dislocations is two orders of magnitude less. 

?able v Stacking fault energies (dm-2). 

P(kbar) 0 100 500 I000 2000 

W2 1.67 1 .80  2 .23  2 .52  2.90 

W3 l.g5 2 .08  2 .47  2.81 3.24 

The calculated stacking fault energy is, therefore, 
high, and the distance of separation of the partial 
dislocations small, suggesting that any dislocations 
of the type [110] will tend not to dissociate greatly 
and hence will not have enhanced mobility. The 
small increase in separation with pressure is 
unlikely to influence greatly the ease with which 
this glide system can operate at high pressures. 

Conclusions 

The structure of MgSiO 3 perovskite at 1 bar has 
been successfully simulated using potentials W1, 
W2, and W3 which were derived by fitting to the 
experimentally derived structural data. However, 
potentials W4 and N1, which include terms trans- 
ferred from other compounds, did not reproduce 
the structure quite so well. The elastic properties 
are more difficult to simulate, but good results were 
obtained using potential W3 which was also fitted 
to the bulk and shear moduli and the high- 
frequency dielectric constant. 

Potentials W1, W2, and W3 were used to 
investigate the possible phase changes between the 
orthorhombic, hypothetical cubic and tetragonal 
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perovskite polymorphs. A comparison of the free 
energies of the simulated orthorhombic and ideal 
cubic perovskite polymorphs, calculated using W2 
and W3, leads to the prediction that the ortho- 
rhombic phase is stable at all but the highest 
pressures. With increasing pressure these potentials 
also simulate a decrease in the degree of ortho- 
rhombic distortion, shown by unit cell ratios closer 
to those of the cubic perovskite and a decrease in 
the angle of rotation of the SiO 6 octahedra. 
Therefore, we propose that the temperature of the 
orthorhombic to cubic perovskite transition may 
decrease with increasing pressure, However, when 
potential Wl is used, the orthorhombic phase is 
always predicted to be the more stable. All three 
potentials predict that, should they exist, a phase 
change would occur between the tetragonal and 
cubic perovskite polym0rphs with increasing 
pressure. 

Changes in the structure of orthorhombic perov- 
skite in response to increasing pressure (i.e. whether 
the orthorhombic distortion increases or decreases) 
are probably dependent on the relative com- 
pressibilities of the SiO 6 and MgO12 polyhedra. 
We suggest that it is important to consider, at least, 
the shortest 8 bonds in the MgO12 polyhedron 
because the shorter bonds are much less com- 
pressible than the longer ones. The change 
in distortion of the orthorhombic perovskite, 
measured by go, the angle of rotation of the SiO 6 
octahedra about their threefold axes, may depend 
on the total perovskite bulk modulus (Kvv) and the 
SiO 6 octahedron bulk modulus (KsJo6) such that 
dgo/dP = �89 go(1/Kvv- 1/Ksio6 ). The change in 
distortion will decrease if Kpv is larger than Ksio~ as 
is simulated to be the case at high pressure using 
potentials W2 and W3. 

The relative stabilities of perovskite polytypes 
containing hexagonally close packed as well as 
cubic close packed layers, based on the structures of 
the ideal cubic perovskite, the hexagonal perovskite 
BANJO3, high BaMnO3, and hexagonal BaTiO3 
were investigated at pressures up to 2 Mbar. The 
ideal cubic perovskite was found to have the most 
stable structure. The energy of a stacking fault on 
(110), as proposed by Poirier et al. (1983), was 
estimated using the ANNNI model (Price et al., 
1985) to be between 1.67 J m -2 and 1.95 J m -2 
depending on the interatomic potential used. The 
stacking fault energy is predicted to increase with 
increasing pressure, but the separation distance of 
the partial dislocations actually increases from 8.4 
to 11.5 A (or 8.4 to 9.2 A) because of the greater 
increase in the shear modulus. 

These potentials, particularly W3, may now be 
used in other computer codes which simulate, for 
example, phonon frequencies and defect energies, 
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as well as in molecular dynamics programs that 
include the effect of temperatures above absolute 
zero. It may also be desirable to develop further 
potentials which include three body terms to take 
into account the angular relationships between 
O-Si-O in the SiO 6 octahedron. We believe that 
the progress reported in this paper will enable us 
to investigate the further properties of MgSiO3 
perovskite which determine the behaviour of the 
Earth's mantle and the dynamics of plate tectonics. 
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