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Abstract 

We use an approach based upon the atomistic or Born model of solids, in which potential functions 
represent the interactions between atoms in a structure, to calculate the infrared and Raman vibrational 
frequencies of forsterite. We investigate a variety of interatomic potentials, and find that although all the 
potentials used reproduce the structural and elastic behaviour of forsterite, only one potential (THB1) 
accurately predicts its lattice dynamics. This potential includes 'bond-bending' terms, that model the 
directionality of the Si-O bond, which we suggest plays a major role in determining the structural and 
physical properties of silicates. The potential was derived empirically from the structural and physical data 
of simple oxides, and its ability to model the lattice dynamics of forsterite is a significant advance over 
previous, force-constant models, which have been simply derived by fitting to the spectroscopic data that 
they aim to model. The success that we have had in predicting the lattice dynamics of forsterite indicates 
that the potential provides the previously elusive yet fundamental, quantitative link between the 
microscopic or atomistic behaviour of a mineral and its macroscopic or bulk thermodynamic properties. 

KEYWORDS: atomistic model, Born model, lattice dynamics, forsterite. 

Introduction 

ONE of the fundamental aims of mineralogical 
research is to determine which minerals exist under 
given pressure, temperature, and compositional 
conditions, and to understand why those specific 
minerals are more stable than any others. In an 
attempt to assess how close mineralogical research 
is to achieving this ultimate goal, Kieffer and 
Navrotsky (1985) presented a volume which stressed 
that the full understanding of the macroscopic 
behaviour of minerals, and eventually rocks, can 
only be obtained from a detailed knowledge of their 
microscopic or atomistic nature. This microscopic 
understanding is required because it is the response 
at the atomic level to changes in pressure and 
temperature that eventually determines the bulk 
properties of a material. The link between the 
microscopic properties of materials and their 
macroscopic behaviour is best made via their 
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vibrational spectra, because such spectra are both 
determined by interatomic interactions, and are 
directly related to many bulk thermodynamic 
properties such as heat capacity, entropy, etc. (see 
for example McMillan, 1985; Kieffer, 1985). If, 
therefore, we wish to understand from first prin- 
ciples the behaviour and properties of Earth- 
forming minerals, we must be able to predict and 
rationalise their lattice vibrat ions--or equivalently 
their infrared and Raman spectra and phonon 
dispersion curves. 

The frequencies of atomic vibrations within a 
crystal are determined by the strength and nature of 
the bonding which holds the atoms in that crystal 
together. More generally, these bonding forces can 
be described in terms of interatomic potentials, 
which not only determine the vibrational charac- 
teristics of a crystal but also its structure and 
physical properties, such as its elastic and dielectric 
behaviour. Because the vibrational behaviour of a 
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material provides this vital link between its internal 
bonding and thermodynamic behaviour, consider- 
able effort has been put into the study of the 
vibrational behaviour and lattice dynamics of the 
major Earth-forming minerals (e.g. Kieffer, 1979a, 
b, c). In addition, attempts have been made to 
develop models which reproduce not only the 
vibrational behaviour of silicates but also their 
structural and physical properites (e.g. Devarajen 
and Funck 1974; Iishi, 1978). However, none of 
these previous efforts have been fully successful, 
and the quantitative link between the atomic forces 
which determine silicate structures and their vibra- 
tional and bulk properties has not been made. This 
shortcoming led McMillan (1985) to conclude that 
the lack of suitable models for the internal inter- 
actions in silicates represents one of the major 
obstacles to our achieving a full understanding of 
their macroscopic behaviour. In this paper we 
present results obtained from computer simula- 
tions of the lattice dynamics of the major mantle 
mineral forsterite (Mg2SiO 4 olivine), in which, for 
the first time, the vibrational behaviour of a silicate 
is successfully predicted by using a model which 
describes the atomic interactions that determine 
the structural and elastic behaviour of that phase. 
The potentials used in this study were derived 
purely from the known structural and physical 
properties of simple oxides or silicates, and their 
ability to predict correctly the lattice dynamics of 
forsterite represents a fundamental advance over 
previous, force-constant models (e.g. Iishi, 1978), 
which were simply derived by fitting to the spectro- 
scopic data that they aimed to model. The work 
described in this paper, therefore, establishes the 
previously elusive path between the microscopic or 
atomistic description of forsterite and its vibra- 
tional and hence thermodynamic behaviour. 

The computer model adopted in this study of the 
lattice dynamics of forsterite uses an atomistic 
approach based upon the classical Born model of 
solids, in which potential functions represent the 
interactions between ions or atoms in the structure. 
It has been widely shown that this type of computer 
simulation may successfully predict both the struc- 
tures of minerals and their elastic, dielectric and 
defect properties (e.g. Price and Parker, 1984; Price 
et at., 1985; Catlow et  al., 1986). Early studies 
concentrated upon the use of pair-wise additive 
interatomic potentials, and ignored the role of 
many-body interactions. Recent successes, how- 
ever, in modelling more complex silicates by using 
bond-bending terms to simulate some aspects of 
three-body interactions (Matsui and Busing, 1984; 
Sanders et al., 1984; Catlow et al., 1986) have 
provided the impetus for this study of forsterite, in 
which we have included O-S i -O  bond-bending 

terms within our potential model to simulate the 
directional bonding thought to be important in 
silicate phases. In the following sections we describe 
in detail the potentials used in this study, and 
outline how they were used to calculate the Brillouin 
zone centre vibrational behaviour (infrared and 
Raman spectra) of forsterite. In subsequent sec- 
tions, we compare the calculated vibrational be- 
haviour of forsterite with its observed spectra, and 
discuss the significance of our model. 

Atomistic simulation techniques 

In principle, the bonding and related physical 
properties of any silicate can be studied by quan- 
tum mechanical methods, which directly describe 
the interactions of electrons and nuclei within a 
given system. However, because of the complexity 
of most silicates, such quantum mechanical studies 
are currently of limited utility. In contrast, the 
atomistic approach to modelling the behaviour of 
crystals is somewhat more simple and approximate, 
as it attempts only to describe the interactions 
between individual atoms or ions in the structure, 
rather than explicitly describing the interactions 
between each electron in the solid. This simplicity, 
however, allows the atomistic approach to be used 
to predict the physical and defect properties of 
crystals, while still providing useful insights into the 
nature of bonding within solids. In the atomistic 
approach, sets of interatomic potentials (usually 
assumed to be pair-wise additive) are developed to 
describe the effective net forces acting upon atoms 
within a structure. The forms of the model poten- 
tials used are designed to describe relatively simple, 
yet useful concepts of chemical bonding, such as 
ionic interactions, van der Waals bonding, and 
covalency (Born and Huang, 1954). 

In ionic or semi-ionic solids such as silicates, it 
appears that the electrostatic or Coulombic energy 
terms, which result from the ionic charges of the 
atomic species, are the most important component 
of the cohesive energy. For an infinite, periodic 
array of atoms, the Coulombic energy can be 
written as 

Uc = ~e2q iqT i j  1, (1) 
ij 

where e is the charge of the electron, q~ and q1 are the 
point charges associated with ions i and j, and ri~ is 
the distance between them. Ions are obviously not 
point charges, as assumed when calculating the 
Coulombic energy, but instead are composed of a 
nucleus and an associated electron cloud of finite 
size. It is necessary, therefore, to include a term in 
the potential which models the energetic effect of 
the overlap of the electron clouds, that results in a 
short-range repulsion which is most strongly felt by 
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nearest-neighbour ions. This short-range com- 
ponent of the two-body potential is well repre- 
sented by the so-called Buckingham form 

U R  = ~ ' A i j e x p (  _ r i j / B i j )  _ C i j r i ~  6, (2)  
i j  

where A~j, B~i and C~j are parameters which must be 
derived for each pair-wise interaction. 

For  fully ionic, rigid-ion models, the above terms 
are generally the only components of the potential 
to be considered. However, it is well established 
that bonding in a silicate, such as olivine, is not 
expected to be fully ionic, and in particular a degree 
of directional, covalent bonding between silicon 
and its coordinating oxygens is to be expected. In 
recent studies of silicates two approaches have been 
used in an attempt to model this more complex type 
of bonding. Price and Parker (1984) used non- 
integral or partial ionic charges, either alone or 
with a Morse potential function to model the 
covalent Si-O bond. The Morse potential has the 
form 

U M = ~~Dij[1--exp{E~j(r~j--ro)}]2--Dij,  (3) 
ij  

where Do, E o and r o are parameters to be deter- 
mined either empirically or from spectroscopic 
data. In contrast, Sanders et al. (1984) retained a 
fully ionic description of the charges, but modelled 
the directionality of the Si O bond by introducing a 
bond-bending term into the potential, of the type 

UB = EkBijk(Oijk-- 00) 2, (4) 
ijk 

w h e r e  kiSjk is a derivable spring constant, Oqk is the 
O-S i -O  bond angle, and 0 o is the tetrahedral angle. 
A similar approach to the problem of modelling the 
Si-O bond has been adopted with some consider- 
able success by Matsui and co-workers (Matsui and 
Busing, 1984; Matsui and Matsumoto, 1985) in 
their elegant studies ofbeta-Mg2SiO 4 and diopside. 
The inclusion of bond-bending terms into silicate 
potentials is a major development, as they appear 
successfully to model the effective three-body inter- 
actions and bond directionality that has long been 
recognized to play a significant role in determining 
the structure and properties of silicates. 

In order to model the dielectric properties of a 
crystal correctly, it is often found to be necessary to 
develop a so-called shell model, as an alternative to 
the rigid-ion models so far described. A shell model 
provides a simple mechanical description of ionic 
polarizability, and its use is therefore essential if the 
defect and high-frequency dielectric behaviour of a 
material are to be studied. In this model, the atom 
or ion (it is frequently assumed that oxygen is the 
only polarizable atom in the structure) is described 
as having a core containing all the mass, surrounded 
by a massless shell of charge Y, representing the 
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outer valence electron cloud. The core and shell are 
coupled by a harmonic spring, so that their inter- 
action (Us) can be described by the equation 

Us = ZkSr  2, (5) 
i 

where k s is the shell spring constant and ri is the 
core shell separation. In such a description the 
equation 

ai = ~(re)2/(kSi + rl), (6) 
i 

describes the resulting polarizibility (~i) of the ion i. 
The derivable parameters of any potential may 

be determined empirically by using programs such 
as METAPOCS or WMIN (Catlow and Mack- 
rodt, 1982; Busing, 1981), that fit the potential 
parameters to experimental data. Alternatively, 
they may be found by non-empirical methods, 
either by using Hartree-Fock molecular orbital 
calculations or by the computationally more eco- 
nomic electron gas methods, which are based on a 
statistical atom model (see Burnham, 1985). Once 
determined the interatomic potentials can be used 
with programs like METAPOCS to predict the 
structural, elastic and dielectric properties of a 
material. Normally, these perfect-lattice simula- 
tions are performed at an effective temperature of 
OK, as they do not consider the vibrational energy 
of the system. However, in this investigation of 
forsterite, we have extended this usual approach to 
the study of perfect-lattice silicates to include the 
calculation of the normal modes of the lattice 
vibrations of olivine. 

The relationship between the interatomic poten- 
tial (U) and the normal modes of vibration of a 
structure has been described in detail in a variety of 
standard texts (e.g. Born and Huang, 1954; Ziman, 
1964; Cochran, 1973). In brief however, the vibra- 
tions of atoms in a crystal consisting of N unit cells, 
each containing n atoms, can be described by 3nN 
Newtonian equations of motion. If U is the inter- 
atomic potential, then if any atom i in the crystal is 
displaced by an amount u, from its equilibrium 
position, it will experience a restoring force F~, 
where 

Fi = OU/Oui.  (7) 
Thus the equation of motion for each atom i, of 
mass mi, can be expressed as 

~2U i O U  
(8) 

m i  6~t2 - -  t;3U i �9 

From the theory of small displacements (e.g. Ziman, 
1964) it can be shown that 

8 U  _ O 2 U  
- > , ~ - - .  uj (9) 

T cu ~au ~ 
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which can be interpreted as meaning that the sum 
on the right-hand side of equation (9) is the force 
acting on the ith atom due to the displacement uj of 
all the other j atoms in the crystal. In accordance 
with Block's theorem (e.g. Ziman, 1964) however, 
equations (8) and (9) must be translationally in- 
variant, so we may write 

u = e(q)exp(iq. R -  w(q)t), (10) 

where q is the reciprocal lattice wave-vector for 
lattice waves, w(q) is the frequency of the vibrational 
mode, R is the interatomic separation, and e(q) is 
the polarization vector describing the atomic dis- 
placements involved in the vibration. This treat- 
ment reduces the number of equations that now 
need to be considered from 3 n N  to 3n, as the 
equivalence of all unit cells means that we need only 
consider one of them in order to calculate the 
dynamics of the whole assembly. Substitution of 
equations (9) and (10) into equation (8) yields 

rnwZ(q)e(q) = D(q)e(q), (11) 

where D(q) is the dynamical matrix, 

K-~ 02U 
D(q) = ? , ~ e x p ( i q ' R ) .  (12) 

i j  

For a given value of q, solution of equation (11) 
yields 3n eigenvalues which are the squared fre- 
quencies (wZ(q)) of each of the normal modes of the 
crystal, and 3n sets of eigenvectors (ex(q), er(q) and 
e=(q)) which describe the pattern of atomic displace- 
ments for each normal mode. 

In our study, we used the program CASCADE 
(Catlow and Mackrodt, 1982) which was written to 
solve such eigenvalue equations for a variety of 
potential forms. In the following sections we outline 
in greater detail the potentials used in our investiga- 
tions, and present the eigenvalues and eigenvectors 
that these potentials predict for the normal modes 
of forsterite at values close to q = 0, which corre- 
spond to the modes excited by the relatively long 
wavelength radiation used in infrared and Raman 
spectroscopy. 

Potential models for forsterite 

In this study of the lattice dynamics of forsterite 
we used the best examples of each of the three 
principle types of potential most commonly em- 
ployed to model silicates, namely fully ionic 
pair-potential models, the partially ionic models, 
and potential models which include bond-bending 
terms (so called 'three-body potentials'). The fully 
ionic, pair-potential model used in this investiga- 
tion was the potential P1 (Table 1), originally 
described by Price and Parker (1984). In this 

rigid-ion model, the values used for the short-range 
O O interaction parameters were those originally 
derived by Catlow (1977) using Hartree-Fock 
methods. The Mg O short-range term used was 
that derived by Lewis (1985) by fitting to the 
structural and elastic data of MgO, while the Si-O 
interaction term was obtained by fitting the poten- 
tial to the observed structural data of forsterite. 
This potential was, therefore, largely developed 
on the assumption that potential parameters are 
transferable from one structure to another. In 
contrast, the partially ionic potentials P3 and P4 
(Price and Parker, 1984) used in this investigation 
were derived purely empirically. The potential P3 
was obtained using the program WMIN (Busing, 
1981) to optimise the ionic charges and short-range 
terms with respect to the structural data of olivine. 
The potential P4 was similarly derived, however it 
also included a Morse function intended to model 
the local effect of Si-O covalent bonding. 

Table I. Parameters of potentials used to model forsterite 

P1 P3 P4 THBI 

qMg 
qsi 
qo 

~ Mg-O eV 
Si-O eV 

AO_ 0 eV 

~Mg-O A 
A 

Si-O A 
BO_ 0 

Si-O eVA 

DSi_O eV 

ESi_O 

k S eVA -2 

k B eVrad -2 

+2.0 +1.6 +1.726 +2.0 
+4.0 +2.0 +1.380 +4.0 
-2.0 -1.3 -1.208 -2.848* 

1428.5 13991.0 2269.7  1428.5 
473.2 4170.810 734.78 1283.9 

22764.3 1.36x10 9.27x10 22764.3 

0.2945 0.2005 0 .2537  0,2945 
0.4157 0.2000 0 .2274  0.3205 
0.1490 0.1010 0 .1136 0.1490 

60.08 27.88 
10.66 

4.46 

1,97 

74.92 

2.09 

*This is the shell charge. The oxygen core charge 
used was +0.848. 

The three-body potential, THB1, considered in 
this investigation was constructed using the same 
philosophy of potential transferability that was 
adopted in the development of potential P1. The 
same O-O and Mg-O short-range repulsion 
terms were used in the THB1 potential as were 
used in potential P1. The Si-O short-range para- 
meters and the O Si O bond-bending spring con- 
stant, however, were taken from Sanders et al. 
(1984), who derived these terms by fitting them to 
the structural and elastic properties of quartz. In 
addition to a bond-bending term, the quartz poten- 
tial of Sanders et al. (1984) included a shell model 
potential to describe the oxygen polarizability; this 
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feature was also incorporated into the potential 
THB1. 

Details of how successful potentials P1, P3 and 
P4 are in describing the structural and elastic 
behaviour of forsterite are discussed in detail by 
Price and Parker (1984). However, in brief, all 
of these potentials satisfactorily reproduce the 
observed forsterite cell parameters to within c. 1.5~o, 
and represent the best potentials so far developed to 
describe the elastic behaviour of forsterite, predict- 
ing bulk (K) and shear (/~) moduli of 1.25-1.41 
Mbars and 0.79-1.0 Mbars respectively, which 
compare favourably with the experimentally deter- 
mined values of 1.25 and 0.81 Mbars. It is most 
encouraging and impressive that the potential 
THB1, derived purely by fitting to the properties of 
binary oxides, is as successful at predicting the 
structural, elastic and dielectric (e 0 and e~) con- 
stants of the ternary oxide forsterite as the empiri- 
cally derived potentials P3 and P4. The predicted 
forsterite cell parameters (Table 2) are accurate to 
within 1~, and the agreement between the observed 
and calculated elastic constants is highly satis- 
factory, with predicted bulk and shear moduli of 
1.38 and 0.97 Mbars respectively. 

It was pointed out by Price and Parker (1984) 
that the accurate prediction of the lattice para- 
meters and the elastic properties of a crystal 
provided a stringent test of any potential model, 
since they required the accurate modelling of both 
the first and second derivatives of the potential 
function. As discussed above, the vibrational be- 
haviour of a crystal is also dependent upon the 
second derivative of the interatomic potential. 
Consequently, we had confidence that these poten- 
tials (P1, P3, P4 and THB1) would reproduce the 
major features of the lattice vibrational behaviour 
of forsterite. The extent to which these expectations 
were fulfilled is outlined in the following section. 

The symmetry and frequencies of  the q = 0 lattice 
vibrations of  forsterite 

Forsterite has four formula units, and conse- 
quently 28 atoms per unit cell, which give rise to 84 
normal modes of vibration. Detailed analysis of the 
symmetry of these modes has been presented in a 
variety of works (see McMillan, 1985), but in brief 
the sum of the irreducible representation of the 
forsterite space group (Pbnm) can be written as 

F t ~  = 1 lAg + 11Big + 7B2g + 7B39 + 
IOA u + 10B~. + 14B2.+ 14B3.. (13) 

At the centre of the Brillouin zone (q = 0), three of 
these 84 modes are purely translational; 

Ft . . . .  = Blu + B2u + B3u. (14) 

The remaining 81 modes, however, are truly vibra- 
tional in nature. Of these, those which are sym- 
metric with respect to inversion (grade or g) are 
Raman active, 10 with A, symmetry are spectro- 
scopically inactive, and the remaining 35 modes 
with BI,,, B2, and B3u symmetry are infrared active. 

Table 2. The structural and physical properties of  

forster~te predicted by potential THBI. 

Observed TH81 

a A 4,754 4. 784 
b A 10,194 10. 261 
c A 5.981 5.991 

K Mbar 1.25 1.38 
Mbar 0.81 0.97 

e o 7.32 6.50 
~. 2.72 2. i0 

The infrared and Raman Spectra of forsterite 
have been extensively studied (e.g. Servoin and 
Piriou, 1973; Paques-Ledent and Tarte, 1973; Iishi, 
1978), and there is general agreement on the 
frequencies of the characteristic vibrations (Table 
3). Most infrared and Raman bands have been 
unambiguously identified, but there is still some 
controversy over some of the weaker or more 
poorly resolved peaks (see McMillan, 1985). The 
spectroscopically active vibrational modes have 
frequencies that lie in the range between 1100 cm 1 
and 150 cm ~, but modes with frequencies greater 
than 800 cm-  1 are clearly separated by a 150 cm-  1 
wide gap from those with frequencies below c.650 
cm ~. It is generally agreed that the high frequency 
modes are the result of Si-O stretching motions, 
while modes with frequencies below 650 cm-  a are 
thought to be the result of vibrations involving 
more complex displacements of Si, O and Mg. 
Considerable uncertainty remains, however, con- 
cerning the detailed nature of the atomic motions in 
many vibrational modes, despite the efforts which 
have been made to elucidate them by using isotopic 
substitution techniques (e.g. Paques-Ledent and 
Tarte, 1973). This aspect of the lattice dynamics of 
forsterite will be discussed in greater detail in the 
following section. 

In addition to these experimental studies, 
attempts have been made to model empirically the 
lattice dynamics of forsterite. These studies by 
Devarajan and Funck (1974) and by Iishi (1978) 
involved the development of force-constant models 
to describe the vibrational behaviour of Mg2SiO4. 
In such an approach, interactions between atoms 
are described by a simple harmonic spring con- 
stant, and occasionally include Coulombic effects. 
The numerical values of the spring constants are 
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Table 3. Observed and calculated q=O vibration frequencies of forster i te.  

RAMAN ACTIVE MODES 

Obs" PI 
Ag 960-965 926* 

854-855 788* 
822-826 729* 
606-609 603 
541-545 471" 
420-424 383* 
334-340 347 
325-329 318 
304-305 306 
221-227 233 
181-183 170 

819 972-976 1080" 
863-866 875 
835-839 842 
626-632 654 
577-583 476* 
428-434 427 
418 + 409 
314-318 344 
260-265+ 306* 
215-224 262* 
149-192+ 212 

B2g 880-884 965* 
583-588 528* 
436-441 464 
354-368 378 
324 + 335 
237-244 224 
142-150 175 

838 937-982 1048" 
588-595 580 
407-412 400 
371-376 368 
332-318 335 
272 + 272 
226 + 116" 

INACTIVE MODE 

Au 793 
553 
476 
437 
374 
325 
285 
256 
174 

8 

P3 
1022" 
850 
777* 
650* 
583* 
462* 
403* 
386* 
342* 
2O8 
197 

1066" 
850 
777* 
705* 
642* 
471" 
429 
401" 
350* 
276* 
229* 

816" 
680* 
476* 
434* 
374* 
238 
I68 

798* 
742* 
463* 
437* 
355* 
267 
188" 

TUBE 
943 
851 
807 
630 
580* 
427 
360 
344 
312 
221 
184 

963 
864 
821 
667 
617" 
454 
428 
337 
325* 
269* 
231" 

901 
611 
433 
365 
345 
207 
149 

968* 
606 
417 
390 
327 
250 
133" 

814 938 
563 519 
544 479 
494 452 
424 391 
383 340 
317 271 
270 250 
168 166 
95 58 

962 
886 
839 
606 
537 
430 
350 
318 
269* 
213 
165 

962 
888 
839 
616 
519" 
418 
394 
333 
287 
217 
205 

894 
553 
467 
373 
312 
268 
157 

894 
5a8. 
42q 
362 
323 
259 
242 

INFRARED ACTIVE M0DES 

9 "D[bz Obs" PI 03 THB1 I DF 

867 TO-LO TO-LO TO-LO TO-LO FO-LO 
827 B1u 885-994 630-631" 788-781" 8 7 9 - 1 0 2 8  893-903 884 
525 502-585 551 -552  5 6 0 - 6 6 8  5 1 3 - 5 9 8  512-512" 544 
556 483-489 504-505 536 546* 476-502 482-494 506 
435 423-459 435-437 456 458 450-475 439-444 456 
347 365-371 427-435* 446-455* 375-390 391-391 404* 
329 296-318 350-374* 352 353* 347-362* 336-350* 366* 
289 274-278 319-319" 348 349* 313-321" 240-244* 237* 
208 224 + 278-279* 315-316" 250-251 209-209 229 
167 201 + 158-159" 198 199 126-177 185-186 170" 

965 
870 B2u 987-993 872-873* 1026-1027" 995 -1008  958-959" 988 
826 882-979 829-830* 834-842" 8 7 4 - 9 8 O  900-906* 863 
626 838-843 717-750" 791-826" 815-817 834-834 825 
526* . . . . . . .  6 6 9 - 6 7 2  6 5 7 - 6 5 8  671-672 622 
423 537-597 654-651" 548 550 558-605 581-581 559 
378" 510-516 500-514 519 524 538-547 542-543 587 
334 465-493 4 8 3 - 4 8 4  5 0 9 - 5 1 1  488-524 467-479 450 
294 421-446 439-445 467 483 448-488 427-430 418 
231 400-432 390-398 458 488* 431-444 364-364" 355* 
192 352-376 3 2 9 - 3 5 0  3 9 4 - 4 0 3  355-390 338-354 333 

294-313 2 7 5 - 2 7 7  327-344" 298-308 280-284 265 
887 280-283 234-244* 323-324* 265-290 250-250* 
570 244 + 219 
457 144 + 147-148 151 152 146-146 137-138 128 
383 
306 
276* 03u 980-1086 1246-1261" 1014 1015 995-i084 957-967* 954 
153 957-963 1169-1170" 898-985" 960-991 901-901" 873* 

838-845 794 -824  853-873 812-815 832-835 823 
893 601-645 597-708* 744 760* 657-658 569-577* 617 
586" 562-566 565 -623  667-679" 573-638" 529-528" 545 
426 498-544 553-554 579 608* 520-571 473-473" 503 
351 438-469 512-514" 531-536" 482-516" 448 
334 403-438 436-439 485 509* 437-471" 421-421 434 
276 378-386 413 -427  456-467* 376-394 359-376 342* 
240 320-323 347-368 365 366* 349-349 327-332 312 

293-298 288 -304  3 2 0 - 3 2 2  307-313 280-280 
274-276 259 -260  2 9 5 - 2 9 6  2 9 3 - 2 9 3  242-241" 258 
224 + 218-219 212 
201 + 184-185 198-199 193-197 190-191 189 890 

552 
496 
435 
392 
346 
252 
233 
178 
112 

Range of observed values taken from Devarajan and Funck(1975), l i sh i  
(1978) and Servoin and Piriou (E973). The frequencies chosen do not include 
those now thought to be the result of the leakage of strong LO modes of one 
symmetry into spectra of another (Piriou and McMillan, 1983). 
+ Weak bands, or those infrquently experimentally determined. 
* Calculated frequencies which are in error by more than 30 wave,umbers. 

determined purely by fitting to the observed vibra- 
tional frequencies, and are therefore in no w a y  
predictive. Neither are they able to be used in other 
atomistic studies, such as point defect or diffusion 
modelling. Devarajan and Funck (1974) fitted 24 
parameters to 62 observed vibrational frequencies, 
while Iishi (1978) developed models with up to 14 
parameters fitted to forsterite spectra. The success 
and accuracy of these fitting exercises can be 
determined by inspection of Table 3. Devarajan 
and Funck (1974) calculated frequencies (column 
DF in Table 3) that are in excellent accord with 
their set of observed values, with only 11 frequences 
in error by more than 30 cm -1. Their model 
included no Coulombic effects, so that they were 
not able to reproduce the TO-LO splitting of the 
infrared active modes. In contrast, Iishi's (1978) 
most successful model did contain a Coulombic 
component, but as it has fewer overall parameters 
than that of Devarajan and Funck (1974) it is not 
surprising that the fit that Iishi achieved with his 
model is slightly inferior to that of Devarajan and 
Funck. Nevertheless, of the calculated values ob- 
tained by Iishi (column I in Table 3) only 16 are in 

error by more than 30 cm 1. It should be noted, 
however, that there are some minor differences 
between the sets of frequencies used by these 
workers in deriving their force-constant models, 
which makes it difficult to compare them directly. 

The detailed experimental and theoretical studies 
that have already been performed on forsterite 
make it, therefore, an ideal material to be used to 
test the strengths and weaknesses of the recently 
developed atomistic models of silicates. In Table 3, 
we present the vibrational frequencies of the normal 
modes of forsterite predicted by three of the 
potential models considered in this study. The 
two-body potentials P1 and P3 predict vibrational 
frequencies which are in poor overall agreement 
with those observed experimentally. Typically the 
predicted and observed frequencies differ by 40-60 
cm 1, and significantly the gap in the vibrational 
spectra between 800 and 650 cm 1, characteristic 
of forsterite, is not reproduced. It was found that 
the partially ionic potential P4 gave even worse 
predicted frequencies than did P1 and P3. In 
particular, the predicted Si-O stretching frequen- 
cies were up to 1000 cm- 1 too large, and the overall 
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agreement was so poor as not to merit inclusion in 
Table 3. In contrast, however, the potential THB1, 
derived purely from MgO (periclase) and SiOz 
(quartz), predicts vibrational frequencies for 
forsterite which are in excellent agreement with 
those observed, and have accuracies which com- 
pare favourably with those achieved by the models 
of Devarajan and Funck (1974) and Iishi (1978). Of 
the 71 infrared and Raman active vibrational 
modes predicted by the THB1 potential, 61 had 
frequencies within 30 cm -1 of unambiguously 
observed modes, and only 4 were in error by 
more than 50 cm-1. There appears to be some 
experimental uncertainty over the exact frequencies 
of some of the infrared active modes, which makes 
the exact quality of the prediction of these modes 
difficult to assess. More detailed experimental 
studies are required to resolve these problems. The 
average error in the predicted Raman frequencies is 
only 20 cm-  1, and the predicted magnitudes of the 
TO-LO splittings of the infrared active modes are 
generally comparable with those observed, in con- 
trast to those calculated by Iishi (1978). Currently, 
there is no way to assess the accuracy of the 
predicted frequencies of the 10 spectroscopically 
inactive Au modes, however it appears that the 
values predicted by the potential THB1 and those 
calculated by Devarajan and Funck (1974) are 
broadly in agreement. 

As was suggested above, it appears that the 
prediction of vibrational frequencies provides a 
most stringent test of any silicate potential. 
Although potentials P1, P3 and P4 all adequately 
reproduce the structural and elastic properties of 
forsterite, they fail to predict its vibrational be- 
haviour correctly. It appears that these potentials 
are particularly poor in modelling the interactions 
between Si and O, as potentials P1 and P3 do not 
predict the 650-800 cm-1 frequency gap between 
Si-O stretching modes and other lower frequency 
modes, and potential P4 predicts unreasonably 
high Si O stretching frequencies. It must be con- 
cluded, therefore, that Si-O interactions play a 
relatively insignificant role in determining the 
structural and elastic properties of forsterite, and 
that inadequacies in those parts of the potential 
that describe their interaction are only revealed in 
attempts to calculate their vibrational behaviour. 
The success of the potential THB1 in correctly 
predicting the vibrational frequencies of forsterite 
suggests that the O-S i -O  bond bending term, 
unique to this potential, reflects a major and 
significant feature of Si-O bonding, and that any 
future modelling of silicates must take into account 
the directionality of the Si-O bond. 

We conclude, therefore, that of all the potentials 
considered only THB1 satisfactorily reproduces the 

vibrational behaviour of forsterite, and that despite 
having been derived from MgO and SiO2, it is at 
least as successful in predicting the frequencies of 
the normal vibrational modes of forsterite as are the 
force-constant models obtained by fitting to its 
vibrational spectra. In the next section we consider 
in more detail some of the outstanding problems Of 
the lattice dynamics of forsterite, and assess how the 
predictions made by the potential THB1 can be 
used to resolve some of these ambiguities. 

The crystal dynamics of forsterite 

As discussed in the previous section, the frequen- 
cies of both the infrared and Raman spectra of 
forsterite are relatively well known. In contrast 
however, the actual vibrations or atomic displace- 
ments which give rise to the adsorption bands in 
these spectra of forsterite are far less well deter- 
mined. It was briefly mentioned that the general 
principles of spectroscopy and studies of molecular 
vibrational spectra have led to the deduction that 
the high frequency bands (t 100-800 cm-  1) are the 
result of Si-O stretching motions. Indeed, the 
interpretation of the general vibrational behaviour 
of forsterite can be greatly simplified by consider- 
ing, in the first instance, the constituent SiO4 
groups to be dynamically isolated. Under these 
circumstances, it would be expected that the higher 
frequency vibrational modes in forsterite would be 
associated with internal vibrations within the SiO4 
tetrahedron, while the lower frequency modes 
would be the result of external or lattice vibrations, 
involving rotation or libration of the SiO4 tetra- 
hedra as well as the translation of the SiO4 group 
and the Mg cations. It should be noted, however, 
that both the classification of crystal vibrations as 
internal or external, and the subdivision of these 
latter into rotational and translational vibrations 
should be viewed with considerable caution. In the 
general case, lattice vibrations are not purely 
translational or rotational, and the separation of 
internal vibrations from lattice vibrations is only 
approximate, even in molecular crystals (Lazarev, 
1974). Nevertheless, as will be shown below, signifi- 
cant progress towards understanding the lattice 
dynamics of forsterite can be made if this simple 
view of its vibrational behaviour is adopted. 

An isolated tetrahedral molecule is known to 
have four distinct vibrational modes. The higher 
frequency modes involve symmetric (vl) and anti- 
symmetric (v3) stretching, while the symmetric (v2) 
and anti-symmetric (v4) bending modes are generally 
of lower frequency (Fig. 1). Conventional symmetry 
analysis (e.g. McMillan, 1985) has shown that the 
simple vl and v 3 modes of the isolated tetrahedron 
would give rise to 15 active modes in forsterite, 
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FIG. l. The four independent vibrational modes of an isolated tetrahedral molecule. 

which correspond exactly to the number of bands 
identified in the high frequency (1100-800 cm -1) 
region of its infrared and Raman spectra. The 
inference that these high frequency modes are 
essentially due to internal Si-O stretching is sup- 
ported by the unpolarised infrared and Raman 
studies performed by Paques Ledent and Tarte 
(1973) on forsterites containing varying 28Si/3~ 
and Z4Mg/26Mg isotope ratios. These workers 
noted that bands in the range 1100-800 cm-  1 were 
unaffected by the Mg isotope content, indicating 
that little or no Mg translations were involved in 
these high frequency modes. They found, however, 
that bands in the range 991 cm-1, 960-950 cm-1 
and 900-885 cm 1 were sensitive to variations in 
the Si isotope content, and inferred that they were 
related to v3, anti-symmetric stretching modes, in 
which significant Si displacement is to be expected. 

Paques-Ledent and Tarte (1973) also found that 
bands in the range 650-475 cm-1 showed a fre- 
quency dependence on both Si and Mg isotope 
content. They were unable to infer the exact nature 
of the vibrations involved, however it is generally 
accepted that the vibrations in this region of the 
forsterite spectra are associated with internal Si-O 
bending vibrations. Obviously, from the observa- 
tions of Paques-Ledent and Tarte (1973), these 
vibrations must be of significantly mixed nature. 
Below 475 cm-1, these workers found infrared 
peaks at 466, 425, 415, 364, 320, 300 and 277 cm-  1 
which showed large frequency shifts with Mg 
isotope variation, but which had little Si frequency 
dependence (McMillan, 1985). From there observa- 
tions Paques-Ledent and Tarte (1973) inferred that 
the bands were associated with large Mg transla- 
tions and possibly SiO4 rotations. All the remain- 
ing bands observed in their study appeared to 
involve both Mg and Si displacements. 

Various other experimental investigations have 

been performed (see McMillan, 1985) in an attempt 
to elucidate the general features of the atomic 
motions involved in the vibrations which give rise 
to the infrared and Raman spectra of forsterite. 
However, by themselves such studies will be in- 
capable of describing the detailed nature of the 
atomic motions associated with each vibrational 
mode, since these exact considerations can only 
be obtained from atomistic models of the lattice 
dynamics of forsterite. As described above, the 
solution of equation (11) yields not only the eigen- 
values of each of the normal modes, from which the 
frequencies of the vibrations are derived, but also 
the eigenvectors which describe the pattern and 
relative magnitude of the atomic displacements for 
each mode. In their studies, Devarajan and Funck 
(1974) and Iishi (1978) evaluated the eigenvectors 
which resulted from their force-constant models, 
and presented their tentative assignments for the 
vibrational modes of forsterite. In general, their 
assignments were in accord with those inferred 
experimentally. However, as pointed out by 
McMillan (1985) the models of Iishi and of Devara- 
jan and Funck were themselves fitted to a specific 
interpretation of the forsterite spectra, and conse- 
quently it is not surprising that they produce results 
in broad agreement with those from which they 
started. 

In Fig. 2, we present projections of the forsterite 
structure on to which are plotted the eigenvectors 
calculated using potential THB1 for each of the 
forsterite normal modes. In Table 4 we have 
attempted to summarise the dominant vibrational 
components in each of these modes, in terms of the 
internal vibrations of a S i O  4 tetrahedron (vl, ~)2, •3 
and v4), SiO4 group rotations (R) about the x, y and 
z crystallographic axes, and of translations (T) of 
the SiO 4 group and Mgl  (at the centre of symmetry) 
and Mg2 (on the mirror plane) cations parallel to 
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the x, y or z axes. Detailed study of Fig. 2 shows that 
most of the modes involve complex patterns of 
atomic motion, and therefore exhibit evidence of 
considerable mixing of the various simple modes 
discussed above. As a result, Table 4 should be 
viewed only as an approximate description of the 
forsterite lattice vibrations. However, we can con- 
dude that the general features of the lattice dynamics 
of forsterite, which are predicted by potential 
THB1, are in excellent agreement with those pre- 
viously inferred from experiment. Fig. 2 and 
Table 4 show that the high frequency vibrations 
(1100-800 cm-  1) are predicted only to involve S i O  4 

internal v~ and v 3 modes, while the bands in the 
range 650-400 cm-  ~ are largely due to v z and v4 
Si-O stretching modes but also involve significant 
Si and Mg displacements, as suggested by the 
isotopic studies of Paques-Ledent and Tarte (1973). 
Bands with frequencies below c.400 cm -1 are 
predicted to be external modes of generally mixed 
character. 

Table 4, Assignments of the vibrational modes predicted by potential THBI 

Ag 943 v3 Big 963 v3 
851 v3 864 V3 
807 vl  + Ty(Si) 821 vl  + Txy(Si) 
680 V4 + Tx(Si) 667 v4 + Tx(Si) + Py(M9) 
580 v4 + Py(Si,Mg2) 617 v4 + Ty(Si) + Ty(Mg) 
427 V2 + Txy(Si,Mg2) 454 v2 + Tx(Mg2) 
360 gz(SiOa) + Pxy(Mg2) 428 Rz(SiOa) + Ty(Mg2) 
344 8,,2io~,+ Tx~.gg, 887 ~ x ~  
312 Ty(SiO4,Mg2' 325 ~ a , v l * l y k m y L X  ) 
221 Ty(SiO4,Mgg) 269 Txy(Si~m,Mg2) 
184 Rz(SiO 4) + Tx(M82) 231 Ty(SiO 4} + Tx(Mg2) 

B29 901 V3 B3g 960 v3 + Tz(Mg2) 
611 V4 + Tz(Si) 206 V4 + Tz(Si,Mgg) 
433 v2 417 v2 + Tz(Si) 
365 Ry(SiO ) + Tz(Mg2) 390 Ry(SiO 4) + Tz(Mg2) 
345 Tz(SiO~,Mgg) 327 Tz(SiO4,M92) 
207 Rx(SiO 4) + Tz(Mg2) 250 Rx(Si04) + Tz(Si,Mg2) 
149 Rx(SiO 4) + Tz(Mg2) 133 Rx(SiO 4) + Tz(Si,Mg2) 

Au 938 v3 BIu 279 v3 
519 V4 + Tz(Si,Mg2) 513 v4 + Tz(Si) 
479 v2 + Tz(Si) 476 v2 + Tz(Si) 
452 TXyz(Mgl) + Tz(SiO4,Mg2) 450 Txyz(Mgl) + Ry(SiO 4) 
391 Ry(SiO ) + Tz(Mg2) + 375 Tx(Mgl) + Ry(Si04) 

Tx(Mgl] 
340 TXyz(Mgl) + Ry(Si04) 347 Txy(Mgl) + Rx(SiO 4) + 

Tz(Mg2) 
271 Txz(Mgl) + Rx(Si04) 313 Txyz(Mgl) + Rx(SiO 4) + 

Tz(Mg2) 
250 TXyz(Mgl) + Rx(SiO 4) + 250 Rx(SiO 4) 

Tz(Mg2) 
166 Ty(Mgl) + Rx(SiO A) 176 Ty(Mgl) 

58 TXyz(MI) + Tz(Si~4,Mg2) 0 Tz(Mgl,SiO4,Mg2) 

B2u 995 v3 B3U 1084 v3 
874 V3 991 v3 
815 vl  + Txy(Si) 215 v1 
671 v4 + Tz(MgI,Si,Mg2) 658 ~4 + Tx{Si) 
552 v4 + Ty(Mgl,Si,Mg2) 638 v4 + Tx(Mgl,Si,Mg2) 
538 v2 + Pz(Mgl) 571 v2 + TXy(Mgl,Si,Mg2) 
488 v2 + Txyz(Mgl) 516 Tyz(Mgl) + Ty(SiO4,Mgg) 
448 Tx(Mgl) + Rz(SiO~) 471 V2 + Tz(Mgl) 
431 Txz(Mgl) + Rz(Si~ ) 394 Rz(SiOa) + Txy(Mw 
355 Ty(Mgg) + Rz(Si04~ 350 Txyz(M~I) + Ty(SiO4,Mg2) 
298 Ty(Mgl,SiO 4) + T~(Mg2) 313 Tx(Mg2} + Rz(SiO 4) + 

Txy(Mgl) 
265 Ty(Mgl) + Rz(Si04) + 293 Ty(Mgl,SiO4,Mg2) 

Tx(Mg2) 
14~ Tx(Mgl ,SiO. 4 ) 193 Ty(Mgl,SiO 4 ) 

Ty(Mg1,S~O4,Mgg) 0 Tx(MgI,SiO4,Mg2) 

Some of the more detailed predictions made by 
the potential THB1, support the inferences drawn 
from previous experimental studies carried out into 
the lattice dynamics of forsterite. Thus for example, 

as discussed by McMillan (1985), significant effort 
has been expended in determining which bands in 
the A o and B l o  Raman spectra of forsterite corre- 
spond to vl stretching modes and which to vg-like 
modes. The isotopic studies of PaquesLedent and 
Tarte (1973) showed that all of the high frequency 
A o and B10 Raman modes had frequencies which 
were dependent upon the Si isotope content, and 
concluded that some mixing of vl and v3 modes 
must occur. The prediction of the potential THB1 
are in full agreement with this conclusion, and show 
that the modes which are dominantly vl in character 
also have a significant Si displacement. We would 
suggest that the band with most vl character has a 
lower frequency than the largely v3-1ike mode. This 
is in conflict, however, with the suggestion made by 
Piriou and McMillan (1983), who propose that the 
vl-like band may be of higher frequency than the 
lowest frequency v 3 band. At lower frequencies, we 
find that the potential THB 1 predicts that there are 
eleven infrared bands (Table 4) in which there is 
little or no Si translation. The frequencies of these 
bands are 488, 450, 448, 431, 375, 313, 307, 265, 250 
and 176 cm- 1 and appear to be a good match for 
those bands found by Paques-Ledent and Tarte 
(1973) to have frequencies independent of Si isotope 
content at 466, 425,415, 364, 320, 300 and 277 cm 1 
(McMillan, 1985). It appears, therefore, that the 
potential THB1 not only reproduces the general 
features of the lattice dynamics of forsterite, but 
also models the majority of the known specific 
aspects of its behaviour. Consequently, we feel that 
although it is not possible to test all of the 
predictions made using potential THB 1 concerning 
the details of the atomic vibrations that occur in 
forsterite, and which are shown in Fig. 2, it is highly 
probable that they are essentially correct. 

Conclusion 

In potential THB1, we have a model of the 
effective interatomic interactions in forsterite that is 
of sufficient accuracy as to reproduce not only the 
major structural features of forsterite, but also to 
predict its lattice dynamics as successfully as any 
previously developed model. This capability is 
made even more impressive when it is recalled that 
the empirically derived parts of the potential were 
obtained purely by fitting to the structural and 
physical properties of MgO and SiO2, and that they 
contain no input derived from a previous know- 
ledge of the behaviour of forsterite. Its success is a 
powerful testimony to the philosophy of potential 
transferability, which holds that if a potential is 
presented as being able to describe the real nature 
of effective interatomic interactions within a solid, 
then it should be transferable from one structure 
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FIG. 2. The 84 vibrational modes of forsterite predicted by potential THB1. The modes shown are those calculated for a 
phonon wave-vector of q = (0.0, 0.0, 0.001). 
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to another. We believe that the bond-bending or 
quasi-three-body terms in potential THB1 model 
the real effect of bond directionality in silicates, 
and that the inclusion of such terms in silicate 
potentials is both a major and vital development. 
The fact that the potential THB1 reproduces the 
known q = 0 lattice dynamics of forsterite leads us 
to expect that it will also accurately predict the 
phonon dispersion, heat capacity, Gruneisen 
parameters, thermal expansion coefficients and the 
other bulk thermodynamic properties of forsterite, 
which are currently being investigated. We believe 
that our work has established the previously elusive 
quantitative link between the microscopic and 
macroscopic behaviour of the major Earth-forming 
mineral forsterite. 
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