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Abstract 

In convergent-beam electron diffraction (CBED) a highly convergent electron beam is focussed on to a 
small (~< 50 nm) area of the sample. Instead of the diffraction spots that are obtained in the back focal plane 
of the objective lens with parallel illumination in conventional selected-area electron diffraction, CBED 
produces discs of intensity. The point group can be determined uniquely from the symmetry within the 
individual discs and the overall pattern. In order to determine the point group, it is usually necessary to 
record a number of CBED patterns with the electron beam aligned along different zone axes, but 
sometimes only one, high-symmetry pattern is required. The positions of reflections in higher-order Laue 
zones can be used to identify the crystal system and lattice type and to detect the presence of certain glide 
planes. The repeat along the zone axis that is parallel to the beam c~n be calculated from the diameters of 
the Laue zones. Hence the presence ofpolymorphs can be detected. Doubly-diffracted discs in CBED often 
contain a 'line of dynamic absence', the orientation of this line with respect to the symmetry seen in the 
bright field disc allows the symmetry element responsible for it (glide plane or screw diad) to be identified. 
This allows 191 of the 230 space groups to be uniquely identified. The measurement of specimen thickness, 
extinction distance and ceil parameters are also briefly discussed. 

K E Y WORD S: convergent beam electron diffraction, electron microscopy, electron diffraction. 

Introduction 

CONVERGENT beam electron diffraction (CBED) 
was first described in 1939 by Kossel and M611en- 
stedt. However, it was not until the advent of 
transmission electron microscopes with STEM 
(scanning-transmission electron microscope) pole 
pieces and 'clean' vacuum systems in the 1970s that 
the technique became more widely used in materials 
science. Its use in mineralogy so far has been 
minimal, although in 1975 Goodman used CBED 
to show that the space group of 2M biotite was C2 
and not C2/c, as had been previously assumed. In 
1977 Goodman and Johnson also indicated how 
the technique could be used to distinguish between 
enantiomorphous space groups and specifically 
those of quartz. In this paper I will describe in some 
detail how CBED can be used to determine the 
point group and space group of a crystalline 
material and how the polytype of a member of a 
polytypic series can be determined from a CBED 
pattern taken with the electron beam perpendicular 
to the layers. Other applications of CBED patterns 
will also be mentioned. 

i For CBED large illumination angles are required. 
This results in a disc of confusion due to spherical 
aberration (Cliff and Kenway, 1982). Thus, although a 
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Instrumental and specimen conditions for CBED 

In conventional, selected-area electron-diffrac- 
tion a parallel beam is used to illuminate the 
specimen and the diffraction pattern that is formed 
in the back focal plane consists of sharp spots (Fig. 
1 a). In this method the region of interest is selected 
by inserting an aperture in the first image plane of 
the objective lens (the selected-area aperture). Be- 
cause of the inherent spherical aberration of the 
objective lens, a slightly different area is selected for 
each diffracted beam, the error increasing with the 
diffracting vector g. Thus the smallest area that can 
be selected in this way is limited to ~ 0'5 pm at 
100 kV. 

When a focussed, convergent beam illuminates 
the specimen the diffraction pattern consists of 
discs, the diameters of which depend upon the 
convergent angle 2~ (Fig. ib). The area from which 
the diffraction information comes is (neglecting 
beam broadening in the specimen) that illuminated 
by the electron beam. In modern TEMs the spatial 
resolution for CBED is about 50-100 nm 1. Clearly 
one application of CBED is in the acquisition of 

probe may have a nominal size of 2 nm, the disc of 
confusion, and hence the area from which a CBED 
pattern is obtained, is typically 50-100 nm. 
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FIG. 1. The formation of (a) a conventional (selected-area) electron diffraction pattern and (b) a convergent-beam 
electron diffraction (CBED) pattern. In (a) the area AA' is selected by means of an aperture in the first image plane of the 
objective lens (not shown), whereas in (b) the area, BB', selected is determined by the probe size. The diameter of the discs 

in the CBED pattern depends upon the convergence angle, 2ct. 

conventional diffraction information (lattice type, 
crystal system, interplanar spacings and angles) 
from very small areas. When used in this way the 
technique is often known as 'microdiffraction' 
(Steeds, 1981). 

If the specimen is very thin, kinematic conditions 
prevail and the discs show uniform contrast 1 (Fig. 
2a). In thicker samples dynamical interactions 
become important. Provided that the area of the 
specimen selected by the beam is undeformed, 
contrast appears in the discs (Fig. 2b). It is from this 
dynamical contrast that point-group and space- 
group information is derived. 

In order to ensure that the area from which the 
C B E D  pattern comes is undeformed, the nominal 
probe size should generally be ~< 40 nm. Such 
probe sizes require a highly convergent objective- 
lens system; TEMs fitted with STEM pole pieces 

i The limit for purely kinematic scattering is around 
10% of the shortest (many-beam) extinction distance, {g, 
on a particular zone axis. (R. Vincent, pers. comm.). In a 
typical silicate the shortest (g would be about 50/am. 

provide the probe sizes and convergence angles 
required. 

Other important  instrumental requirements for 
the full exploitation of the information available 
from CBED are: a range of camera lengths from 
about 250 to about 1000 mm, a field of view of at 
least 15 ~ in the diffraction plane, a eucentric, 
high-angle tilting stage 2 and a high vacuum with a 
very low partial-pressure of hydrocarbons. When 
this latter requirement is not met, contamination 
spots form rapidly where the electron beam is 
focussed on the specimen and the dynamical detail 
in the CB pattern is obliterated. Steeds (1979) 
describes ways of minimising the contamination 
rate. 

Fig. 3 shows the experimental conditions for 
acquiring a convergent beam in the T E M  and 
STEM modes. When the instrument is operated in 
the STEM mode, the second condenser lens is 

z However Eades et  al. (1983) urge caution in inter- 
preting CBED patterns from specimens tilted by more 
than 40 ~ . 
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FIG. 2. (a) [100] 'microdiffraction' pattern from olivine, space group Pbnm. The specimen is sufficiently thin that 
reflections 00l are genuinely absent for I = 2n + 1. They are forbidden by both the n glide parallel to (010) and the screw 
diad parallel to z. Note that all reflections for which k = 2n + 1 are absent in this section due to the b-glide parallel to 
(100). (b) [100] CBED pattern from a thicker area of the same sample showing 'zero-order' detail in the discs. Note that 

the 'forbidden' reflections 001, l = 2n + 1 are present, but contain lines of dynamic absence. 

switched off. The convergence angle in STEM is 
typically about  four times larger than that obtained 
in the TEM mode for the same C2 aperture. The 
Philips EM 400 series of electron microscopes has a 
very useful TEM mode known as the 'nanoprobe 
mode'  (Fig. 4) in which, in contrast to the 'micro- 
probe'  mode, the auxiliary lens is switched off. 
This results in a range of convergence angles 
intermediate between the 'microprobe' and STEM 
modes, and nominal  probe sizes down to ~ 5 nm. 

It is apparent from Figs. 3 and 4 that the 
convergence angle is varied, not only by the second 
condenser and objective lens configuration, but  
also by the size of the C 2 aperture. For  most 
applications it is desirable that the diffraction discs 
do not  overlap: ideally they should just touch. A 
range of C2 aperture sizes is therefore needed if 
specimens with different cell parameters are to be 
studied in a variety of crystallographic orienta- 
tions. 

The spot size in CBED is a function of the 
operational mode (TEM [microprobe or nano- 

probe], STEM) and of the excitation of the C1 lens, 
with appropriate adjustment of the C2 lens. For  
further details of experimental procedures, the 
reader is referred to Williams (1984), Chapter 6 or 
Steeds (1979, 1981). 

Steeds (1979) describes in detail the adjustments 
that need to be made to the electron microscope in 
both TEM and STEM modes in order to ensure the 
desired quality of the CBED pattern. Only the two 
most important  adjustments will be described here. 
Firstly one must ensure that the beam is accurately 
focussed on the specimen. This is most easily done 
by moving the spot to an edge or other prominent  
feature. At exact focus, no spatial information will 
be present in the CB discs. The presence of a 
shadow image in the discs indicates the need to 
adjust the objective (in STEM mode) or second 
condenser (in TEM) lens. Focus is at the point of 
inversion of the shadow image (see Steeds, 1979, 
Fig. 15.4). 

For  most of the applications described in this 
paper, the electron beam must be exactly along a 
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FIG. 3. Ray diagrams for CBED in the TEM and STEM 
operating modes. In STEM the C 2 lens is switched off, 
resulting in a larger convergence angle, 2c~, than in TEM. 
2c~ can also be varied by changing the size of the C 2 

aperture. 

zone axis. The specimen should be tilted as near as 
possible to this condition using the goniometer 
stage, preferably in the CB mode, but final adjust- 
ment is best performed by a slight displacement of 
the C2 aperture. However, it should be noted that 
displacement of the C z aperture introduces addi- 
tional spherical aberration and hence increases the 
disc of confusion and the true probe size. 

Geometry of CBED patterns from higher-order 
Laue zones 

The structure factors for reflections in higher- 
order Laue zones (HOLZs) are far smaller than for 
reflections in the zero-order Laue zone (ZOLZ) 
because the atomic scattering factor for electrons 
drops off very rapidly as the Bragg angle increases 
(far more rapidly than for X-rays). However, the 
effect is generally less for minerals than for metals 
because the former generally have smaller recipro- 
cal lattice spacings parallel to the electron beam. In 
addition, with a parallel electron beam, only the 
Z O L Z  reflections are strongly excited because their 
9 vectors are normal to the electron beam direction, 
/~, whereas the reflections in the HOLZs  only have a 
small component  of g normal to /L When a 
convergent beam is used, the range of incident 
angles (2~) leads to significant excitation of the 
H O L Z  reflections as well as causing the reciprocal 
lattice points to become discs (Figs. 5, 6). (Because of 

C, lens ~, ~ ~ 

C= lens ~ < ~  ~ . ~  
/ 

C= aper ture~  ~ 

specimen MICROPROBE 

TEM 

r 

NANOPROSE 

STEM 

FIG. 4. CBED in the microprobe, nanoprobe and STEM 
modes in the Philips EM 400 series of electron micro- 
scopes. In the 'nanoprobe' mode the auxiliary lens is 
switched off, but C 2 is on, giving a 2a value intermediate 
between those in the other modes for the same size of Cz 

aperture. 

Incident beam 
Thin specimen 

A,~ 2cJr 

wald sphere 

FIG. 5. The interception of the reflecting sphere with zero-, 
first- and second-order Laue zones. Because of the thin 
nature of the specimen and the convergence of the 
electron beam, the reciprocal lattice points can be con- 
sidered to be cylinders, the diameters of which are 
proportional to 2c~ and the lengths of which are inversely 
proportional to the sample thickness. A pattern such as 

that in fig. 6a and b results. 

the additional effect of the finite thickness of the 
specimen, the discs can be thought of as cylinders in 
reciprocal space as shown in Fig. 5.) 

A low camera length and wide angular view of 
reciprocal space is generally necessary to record the 
HOLZ.  The position of the H O L Z  reflections can 
be used to index them as described in detail by Ecob 
et  al. (1981), Williams (1984) and Loretto (1984). 
This can lead to the determination of the crystal 
system and lattice type. If there are absences in the 
ZOLZ,  but not  in the HOLZ,  the presence of a glide 
plane perpendicular to the electron beam is indi- 
cated. 
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FIG. 6. (a) [010] 'microdiffraction' pattern of MgGeO 3 clinopyroxene taken at a camera length of 290 mm with a 
divergence angle of 1.4 x 10- 3 radians, 120 kV. Individual reflections can be seen in the zero- and first-order Laue zones. 
(b) Diagram of the pattern in (a). The extension of c* into the FOLZ shows that the FOLZ reflections are displaced by 

a*/2 with respect to the ZOLZ. 

Fig. 4a shows a CBED pattern taken at low 
camera length along [010] of a synthetic mag- 
nesium germanate. This phase was detected in 
samples of MgzGeO 4 composition synthesised at 
high pressure, but selected-area diffraction patterns 
did not fit the olivine, spinel or #-phase structures. 
Quantitative X-ray microanalysis was impossible 
due to the overlap of the Mg-K and Ge-L peaks in 
the energy-dispersive spectrum, although it did 
suggest that the Mg:Fe  ratio was considerably 
lower in the phase than in the bulk starting 
material. 

Tilting experiments in reciprocal space suggested 
that the lattice was C-face centred monoclinic. The 
microdiffraction pattern in Fig. 6a was taken with 
the electron beam travelling along the direction 
which was thought to be the unique axis [010]. 
FOLZ reflections are clearly visible. Careful study 
of their relationship with the ZOLZ, as shown in 
Fig. 6b shows that the FOLZ stacks vertically 
above the ZOLZ, except that it is displaced by a*/2. 
This confirms that the unit cell is monoelinic and 
C-face centred (in the ZOLZ, for reflections hOl, 
h = 2n; in the FOLZ, for reflections hll, h = 2n+ 1). 
The doubled spacing along c* in the FOLZ results 
from a c-glide plane parallel to (010) (for reflections 
hOl, l = 2n; for reflections hll, there are no ab- 
sences). Hence the space group is either C2/c or Cc. 
We will see in the next section that the symmetry of 
the dynamical information in convergent beam 
patterns taken along [010] allows these two space 
groups to be distinguished. 

Symmetry of CBED patterns 

Because of the strong dynamical scattering of 
electrons by crystals Friedel's law, (which states 
that the intensity of the reflection hkl is equal to the 
intensity of hkl, whether the crystal contains a 
centre of symmetry or not) fails and the 32 crystal 
point groups are not reduced to the 11 Laue groups 
as occurs for X-ray and neutron diffraction, except 
under 'anomalous' scattering conditions. The 
CBED patterns contain three-dimensional crystal- 
lographic information, despite being viewed and 
recorded in two dimensions. The symmetry of a 
CBED pattern that has been recorded with the 
electron beam travelling exactly along a zone axis 
belongs to one of 31 diffraction groups that are 
isomorphic with the crystallographic point groups 
of two-dimensional plane figures (the Shubnikov 
groups of coloured, plane figures) (Buxton et al., 
1976). The symmetry elements of the point group 
that are 'seen' by the electron beam, and thus 
determine the diffraction group for the zone axis, 
are those that leave the beam direction, but not 
necessarily its sense, unchanged (Eades et al., 1983). 
These are 1, the vertical symmetry elements 2, 3, 3, 
4, 4, 6, 6, m and the horizontal symmetry elements 
2, ], 4, 7~, 6, 6, m. The relationship between the 
diffraction groups and crystal point groups is 
shown in Table 1 which is taken from Buxton et al. 
(1976). It is not necessary, for the purposes of this 
paper, to explain the symbols used by Buxton et al. 
for the diffraction groups. 
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FIG. 7. CBED patterns taken at different camera lengths and divergence angles along (100) of gahnite, ZnAl204, spinel, 
120 kV. (a) Pattern taken at a camera length of 1150 mm and divergence angle of 4.9 x 10- 3 radians. Diffuse, zero-order 
information is visible in all reflections and sharp HOLZ lines are visible in the bright-field, 000, spot. The line that arises 
from the 21,7,1 reflection in the FOLZ is indicated. (b) Pattern taken at a camera length of 210 ram, 2ct = 2.3 x 10 .3 
radians. The 21,7,1 excess HOLZ line that is parallel to the defect HOLZ line indicated in (a) is arrowed. (c) Pattern 
taken at a camera length of 210 mm, 2c~ = 16.2 x 10 - 3 radians. Because the FOLZ reflections overlap, the excess HOLZ 
lines form a continuous ring that clearly outlines the FOLZ (labelled 1). HOLZ Kikuchi lines are also clearly visible in 

the pattern as is the second-order Laue zone (labelled 2). The third-order Laue zone (labelled 3) is faint. 

The detail seen in CBED patterns is of two basic 
kinds; diffuse I scattering within the discs (Fig. 2b, 
7a, 8a) and sharp lines which are visible both within 
the discs and outside them (Fig. 7, 8). The diffuse 
contrast arises from dynamic interactions within 
the zero layer (I will henceforth call it zero-order 
information). Because it is often associated with 
quite short extinction distances, it is sensitive to 
thickness and can, in favourable circumstances, be 
used to determine the thickness of the specimen (see 
later). The symmetry of the zero-order information 
in a zone axis pattern (ZAP) is the projected, 
two-dimensional symmetry of the crystal along the 
zone axis and belongs to one of the ten two- 
dimensional point groups (Table 2). 

The sharp lines within the discs arise from 
three-dimensional diffraction. They are equivalent 
to Kossel lines in X-ray diffraction and are the 
result of elastic scattering by the planes in higher- 
order Laue zones (HOLZs). These ' H O L Z  lines' 
are sensitive to very small changes in lattice 
parameters (and can, in principle, be used to 
measure the latter) and are thus degraded by small 
lattice strains. The H O L Z  lines occur in pairs (like 
Kikuchi lines) with a bright (excess) line associated 
with the H O L Z  disc responsible for it (Fig. 7b) and 
a parallel, dark line present in the bright field disc 

1 This diffuse scattering arises from amplitude addition 
of zero-layer Bloch states and should not be confused with 
diffuse scattering that occurs outside the reciprocal lattice 
points and arises from disorder in the crystal. 

(Fig. 7a). (The pair of lines indicated in Figs 7a and b 
are the result of scattering from the (21, 7, 1) plane.) 

The sharp lines outside the discs are the result of 
inelastic scattering from the H O L Z  planes. They 
are analogous to the Kikuchi lines that arise from 
Z O L Z  planes in both conventional,  selected-area 
electron diffraction and in C B E D  and are known as 
' H O L Z  Kikuchi lines'. H O L Z  Kikuchi lines are 
continuous with the H O L Z  lines within the discs, 
but are generally less sharp (Steeds, 1979). 

Because extinction distances for H O L Z  reflec- 
tions are long, thick crystals are needed if sharp 
H O L Z  lines are to be obtained. Although the 
crystal in Fig. 2b was thick enough to show 
zero-order (diffuse) information in the CBED 
pattern, it was not  thick enough for H O L Z  lines or 
H O L Z  Kikuchi lines to be produced. In contrast, 
H O L Z  Kikuchi lines, together with (ZOLZ) 
Kikuchi lines and excess H O L Z  lines can be clearly 
seen in Figs. 7c and 8b. Figs. 7c and 8b were taken at 
a short camera length and with a moderate to large 
convergence angle, 2~, the best conditions for 
observing these features. 

Steeds (1979, 1981) discusses the visibility of 
H O L Z  lines at some length. In minerals they are 
usually easy to produce because of the large cell 
dimensions involved and the relative (compared 
with many metals) perfection of minerals. I have not 
found the amorphous layer produced at the surface 
of the specimen by ion-beam thinning to be the 
problem that Steeds (1981) suggests it can be. 

As the H O L Z  detail in the CBED patterns is 
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FIG. 8. [010] CBED patterns of clinopyroxene MgGeO 3 taken at two different camera lengths. (a) Pattern taken at long 
camera length (1150 mm) showing that the bright field and zero-order symmetries are both 2. (b) Pattern taken at a 
camera length of 290 mm and the same 2~ value as in (a). The symmetry of the fine lines shows that the whole-pattern 
symmetry is 2. The excess HOLZ lines define the higher-order Laue zones. The first-, second-, and third-order Laue 

zones are labelled 1, 2, 3 respectively. Measurement of the diameter of the FOLZ gave b ~ 9.2 ~. 

associated with very long extinction distances, 
typically several microns, it is relatively insensitive 
to variations in thickness. Zone axis patterns 
(ZAPs) from high-symmetry directions can there- 
fore be used to aid the identification of phases. An 
atlas of CBED patterns from common alloy phases 
has recently been published (Steeds et al., 1984). 

I will describe below how the possible diffraction 
group of a ZAP may be found from the zero-order 
(ZO) symmetry, the 'whole pattern'  (WP) symmetry 
(that shown by the H O L Z  lines and the H O L Z  
Kikuchi lines) and the 'bright field' (BF) symmetry 
(the symmetry of the H O L Z  lines in the bright-field, 
000, disc), as described by Loret to (1984) and shown 
in Table 2. Possible point groups are then deter- 
mined from Table 1. In favourable cases, only one 
set of ZAPS, taken along a direction of high 
symmetry, is necessary to determine the point 
group. Steeds and Vincent (1983) and Steeds (1984) 
describe the sequence of steps that are necessary to 
locate high-symmetry zone axes. 

The internal symmetry of dark-field reflections 
when they are tilted to the exact Bragg condition 
may also be used to determine the possible diffrac- 
tion group as described by Buxton et al. (1976) and 
Steeds (1979, 1984). However, although the addi- 
tional use of dark-field symmetry will uniquely 
determine the diffraction group for a ZAP, whereas 
use of ZO, WP and BF information alone may 
not, it is often easier and quicker to tilt to another 
zone axis, or to use other available information 

about  the sample in order to determine its point 
group. 

Some examples 
The use of Tables 1 and 2 to determine the point 

group is best illustrated by examples. 
Figs. 8a and b show CBED patterns taken 

exactly along [010] of the magnesium germanate 
phase discussed earlier. Fig. 8a was recorded at a 
camera length of 1150 mm. A moderate  2~ was used 
in order to show the symmetry of the dynamical 
information within the Z O L Z  reflections. Fig. 8b, 
on the other hand, was taken at a camera length of 
290 mm, but with the same 2~ value as in Fig. 8a, in 
order to reveal the whole-pattern symmetry. The 
patterns that show ZO -- BF = WP = 2 and, from 
Table 2, the diffraction group is either 2 or 21R. 
Table 1 shows that these symmetries are consistent 
with point groups 2/m or 2, but not  m. As we saw 
from the last section that the space group is either 
C2/c or Cc, the C B E D  patterns in fig. 8 show that 
the space group is C2/e. 

Unit  cell dimensions were found by electron 
diffraction to be a ~ 9 . 6 ,  b ~ 9 . 2 ,  e ~ 5 . 2 / ~ ,  
/~ = 101 ~ The phase was identified as MgGeO3 
clinopyroxene, which Ozima and Akimoto  (1983) 
found from X-ray diffraction to have a = 9.6010, 
b = 8.9323, c = 5.1592/~, /~ = 101.034 ~ space 
group C2/c. Note  that all the information about  the 
unit cell and space group of the phase could have 
been determined from conventional, selected-area 
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TABLE 1. Relation between the diffraction 9roups and the crystal point groups (after Buxton et al., 
1976; reproduced by permission of the Royal Society) 

and convergent-beam diffraction patterns taken 
along a single axis, [010] (the b repeat could have 
been determined from the radius of the FOLZ ring, 
as described in the next section). 

The (100) patterns from gahnite spinel in fig. 7 
clearly show that ZO = BF = WP = 4mm. 
According to Table 2 the diffraction group is either 
4ram or 4mml n and Table 1 shows that these 
symmetries are consistent with the tetragonal point 
groups 4/mmm and 4ram and the cubic point group 
m3m. Confirmation of the cubic point group could 
be made either by recording patterns along another 
zone axis or by measurement of the diameter of the 
FOLZ (see next section). 

Fig. 9 shows CBED patterns of nigerite, a Sn, Zn, 
A1 oxide that is related to gahnite spinel and occurs 
in a number of polysomatic forms (Bannister et aL, 
1947; Grey and Gatehouse, 1979). Figs. a-c were all 
taken along the same high-symmetry direction. In 
Fig. 9 the zero-order symmetry is 6ram while the BF 
disc in Fig. 9b and the whole pattern in fig. 9c both 
show 3m symmetry. Reference to Table 2 shows 
that the diffraction group is 6Rmma and, from 
Tables 1 and 3, the patterns are either from F001] in 
point group ~m or from (111) in point group m3m. 

Tilting the specimen by approximately 20 ~ about 
the perpendicular to a mirror plane in the BF disc 
produced a zone axis for which ZO = 2ram, BF = 
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FIG. 9. CBED patterns from the 6H polysome of nigerite. (a) [001] pattern at moderate camera length and convergence 
angle showing that the whole-pattern symmetry (sharp lines) is 3m while the zero-order (or projection) symmetry (diffuse 
scattering within the discs) is 6mm. (b) The-bright field disc from a [001] pattern taken at a higher convergence angle 
than (a), showing that the bright-field symmetry is 3m. (c) [001] pattern taken at low camera length with the same 
convergence angle as (a), but at a longer exposure, showing a whole-pattern symmetry of 3m. Measurement of the bright 
HOLZ ring (arrowed) gave c ~ 13.6/~, showing that the polysome is 6H. However, the presence of three faint HOLZ 
rings inside the bright one indicates that the 24H polysome is also present. (d) Pattern taken with the electron beam 
parallel to a zone axis at ~ 20 ~ from [001]. The zero-order symmetry is 2ram and the bright-field and whole-pattern 

symmetries are 2. 
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j r e  

FIG. 10. The information needed to determine the spacing 
between reciprocal lattice planes parallel to the electron 
beam. Reproduced from Williams (1984) with the permis- 

sion of Philips Electronic Instruments, Inc. 

WP = m (Fig. 9d). From Table 2 the diffraction 
group is 2RmmR. Although this diffraction group is 
consistent with a <UOW> zone axis for 3m or 
<UV0> for m3m (Tables 1 and 3), no <UV0> zone 
axis lies at 20 ~ from <I 11>, rotated about <110> in 
the cubic system. Thus the point group must be 3m, 
as found by Bannister et al. (1947) for the 6-layer 
stacking variant of nigerite. We will see in the next 
section that this result could have been derived 
directly from Fig. 9a by measurement of the FOLZ 
ring. 

The two examples cited above underline the 
importance of locating high-symmetry (low-index), 
zone directions for CBED experiments. As is 
apparent from Table 1, the higher the symmetry of 
the diffraction group, and hence the zone axis from 
which it comes (i.e. the higher its position in the 
table), the smaller is the number of possible point 
groups. 

The reader may be wondering how sensitive 
CBED is in detecting small deviations from exact 
point group symmetry. Ecob et al. (1981) described 
a technique for computer simulation of HOLZ lines 
in the BF disc. They used the method to simulate 
small, tetragonal deviations from cubic symmetry 
in < 111 > CBED patterns from nickel-based alloys. 
They showed that the smallest value of the degree of 
tetragonality, expressed as ( c -  a)/(c + a), that could 
be detected in the simulations was approximately 
7 x 10 -s, corresponding to c/a = 1.00014. Ecob et 
al. pointed out, however, that it is the quality of the 
experimental pattern that limits the overall pre- 
cision and they discussed at length the effects that 
give rise to these limitations. In a companion paper 
Porter et al. (1981) detected a tetragonality of 
c/a = 1.0025 in experimental < 111 > patterns. 

P. R. Buseck and co-workers have attempted to 
use CBED to detect the reduction from cubic 
symmetry in granditic garnets that manifests itself 

Table 2. Table showing the relationship between the observed 
symmetries in convergent beam diffraction patterns 
and the 31 diffraction groups. (Modified from 
Loretto, 1984.) 

Zero order 

(2D symmetry) 

Symmetry of high-order (3D) information Possible Diffraction 

Whole pattern Bright field Groups 

1 1 1 1 

1 2 1 R 

2 2 2 2 o r  21 R 
1 I 2 R 

m 1 m m R 
m m m 

m 2 ~  m l  R 

2mm 2 2v~  2mRm R 
2ram 2ram 2ram o r  2nnal R 

m m 2 RmmR 

3 3 3 3 
3 6 31B 

3m 3 3m 3m R 
3m 3m 3m 
3m 6mm 3ml R 

4 4 4 4 or 41R 
2 4 4 R 

4~ 4 4ram 4mRm R 
4ram 4mm 4~ or 4mml R 
2mm 4mm 4Rmm R 

6 6 6 6 or 61R 
3 3 6 R 

6mm 6 6mm 6mRm R 
6ram 6tram 6rmm or 6mml R 
3m 3m 6Rmm R 
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Table 3. The d i f f r a c t i o n  group symmetry seen in convergent  beam d i f f r a c t i o n  p a t t e r n s  
from d i f f e r e n t  zone axes ( a f t e r  Buxton et  a l .  1976, reproduced by 
permiss ion of the Royal Soc ie t y ) .  

po in t  group (11 ; )  (100/ (110) <uvo> <uuw> <uvw> 

m3m 6Rmm R 4mml R 2mm]R 2Rmm R 2Rmm R 2 R 
43m 3m 4Rmm R ml R m R m I 
432 3m R 4mRm R 2mRm R m R m R 1 

point group (Ill> <I00> luvo) (uvw> 

m3 6 R 2mml R 2Rmm g 2 R 
23 3 2mRm R m R I 

po in t  group [001] (100) <ITO) <uvo> (uuw) /uuw) (uvw) 

6/mmm 6mml R 2mml R 2mml R 2Rmm R 2Rmm R 2Rmm R 2 R 
6m2 3ml R ml R 2mm m m R m I 
6mm 6mm ml R ml R m R m m ] 
622 6mRm R 2mRm R 2mRm R m R m R m R I 

po in t  group [001] <uvo> <uvw) 

6/m 61R 2Rmm R 2 R 
6 31R m I 
6 6 m R I 

po in t  group [001] (1007 (uuw) <uvw) 

3m 6Rmm R 21R 2RmmR 2R 
I 3m 3m IR m 

]2 3m R 2 m R I 

point group [001] (uvw> 

] 6 R 2R 
3 3 

po i l l t  group [ 00 I ]  <100> <110> (uow> (uvo) (uuw) (uvw) 

4/mmm 4mml R 2mml R 2mml R 2Rmm R 2Rmm R 2Rmm R 2 R 
~2m ~ m R 2mRm R ml R m R m R m I 
4mm ~ ml R ml R m m R m I 
422 4mRm R 2mRm R 2mRm R m R m R m R I 

po in t  group [001] <uvo) (uvw) 

4/m 41R 2Rmm R 2 R 
4R m R 1 

4 4 m R I 

po in t  group [001] [100], [010] (uow) (uvo> (uvw> 

mmm 2mml R 2mml R 2Rmm R 2Rmm R 2 R 
mm2 2mm ml R m m R I 
222 2mRm R 2mRm R m R m R I 

po in t  group I010] [uow] (uvw} 

2/m 21R 2Rmm R 2 R 
1 m 1R m 

2 2 m R ] 

point group luvwl 

[ 2 R 
I i 

in marked optical anisotropy (P. R. Buseck and 
M. T. Otten, pers. comm.). Although IR spectro- 
scopy showed that the OH groups were in a 
non-cubic orientation and single crystal X-ray 
diffraction showed a small degree of positional and 
A1-Fe order (Allen et al., 1986), CBED failed to 
indicate any deviation from cubic symmetry. 

Neder (1985) also attempted to use CBED to 
detect the reduction from mmm symmetry that is 
responsible for the anomalous optical properties of 
topaz (Akizuki et al., 1979). Despite the fact that 
ordering of OH and F could be detected by neutron 
diffraction, the symmetry of the FOLZ ring in 
CBED patterns from three principle zone axes 
showed no deviation from 2mm. Neder concluded 
that CBED is insensitive to the ordering of light 

atoms of similar atomic number in the presence of 
heavier atoms. 

Zonal repeats parallel to the electron beam 
It is clear from fig. 10 that the spacing, H, of the 

reciprocal lattice parallel to the beam (the zone 
axis) can be derived from the diameter of the HOLZ 
rings, G. For the FOLZ, assuming H 2 to be 
negligible: 

2 
82L 2 

. .  [UVW] = D2 

where L is the camera length, D is the measured 
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diameter of the H O L Z  ring and 2 is the wavelength 
(Steeds, 1979). For  accurate measurement of D, the 
H O L Z  lines through the F O L Z  reflections are 
used. If 2ct is large enough for the Bragg discs in the 
F O L Z  to overlap, the H O L Z  lines define a smooth 
ring as in Fig. 7c. There is often more than one ring 
in a given Laue zone (Fig. 7c). Steeds (1984) 
recommends that the innermost ring is used for 
measurement. For  accurate results the exact value 
of 2 and L must be known. In addition, lens 
distortions should be taken into account by the 
construction of a calibration graph that relates real 
and ideal scattering angles (Steeds, 1981). 

One problem where a measurement of the zone 
repeat parallel to the beam is particularly useful is 
in the identification of polytypes and polysomes. 
The nigerite polysome in Fig. 9 can be identified in 
this way. Measurement of the F O L Z  (arrowed) in 
Fig. 9c gives c ~ 13.6/~, confirming the earlier 

identification of the phase as the 6-layer variant 
(Bannister et al., 1947, give c = 13.86/k for this 
phase). Note  that the differentiation between point 
groups 3m and m3m could have been made from 
measurement of the F O L Z  ring (the spacing is 
incorrect for (111)  of a cubic phase). Hence the 
point group and unit cell of the nigerite can be 
derived from the C B E D  patterns in Figs. 9a-c that 
were all taken along a single direction of high 
symmetry. 

The reader will have noticed that there are three 
faint H O L Z  rings between the Z O L Z  and the 
arrowed 'FOLZ' .  This shows that the 24-layer 
structure, as described by Grey and Gatehouse 
(1979), is intergrown with the 6-layer structure. 

Measurement  of the F O L Z  ring in fig. 8b gives a 
value of ~ 9.2A for the repeat parallel to the 
electron beam in the Mg germanate. Ozima and 
Akimoto (1983) found b = 8.9323/k for clino- 
pyroxene, M g G e O  3. Once again patterns taken 
along a single, high-symmetry direction give all the 
information necessary to find the point group and 
unit cell. In this case the space group was found as 
well. 

FIG. 11. [201] CBED pattern from olivine, space group 
Pbnm, showing a line of dynamic absence in the 10E and 
i02 reflections due to the n glide plane parallel to (010). 
There are also less prominent lines of dynamic absence in 
the 0k0 reflections for k r 2n due to the screw diad 
parallel to y. The lines do not pass exactly through the 
centres of the spots because the zone axis was not exactly 

parallel to the electron beam. 

Determining space groups from dynamic absences 

In X-ray and neutron diffraction kinematically- 
absent reflections are used to determine crystal 
space groups. In conventional electron diffraction, 
reflections that should be absent due to the presence 
of a glide plane or screw axis reappear by multiple 
diffraction if the crystal is thicker than ~ 5 nm 1. 
This 'problem' can be turned into a positive 
advantage in C B E D  because, when such reflections 
are studied in detail in ZAPs, they frequently show 
a characteristic central line of missing intensity--  
the so-called 'dynamic absences' or 'Gjonnes-  
Moodie  (G M) lines' (Gjonnes and Moodie,  1965). 
The lines of absence occur along a principal axis of 
a ZAP when the crystal is accurately aligned along 
a zone axis direction (Figs. 2b, 11 and 12). The lines 
of absence become wider as the specimen thickness 
decreases and, in the kinematical limit, will fill the 
Bragg disc completely; the reflection will be truly 
absent (Fig. 2a). When a forbidden reflection is 
tilted to be exactly at the Bragg angle, a second, 
perpendicular black line may be seen in the disc, the 

1 Although such spots can be recognised as resulting 
from double diffraction by tilting the specimen about the 
systematic row in which they occur and showing that they 
disappear (see, for instance, Smith, 1978), this procedure 
does not indicate whether the systematic absence is the 
result of a glide plane or a screw axis. Recognition of 
systematic absences by CBED is both simpler to perform 
and the cause of the absences is readily determined, as 
described below. 
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FIG. 12. Schematic diagram of the appearance of lines of dynamic absence in a CBED pattern. The absence is due 
either to a screw axis perpendicular to the zone axis or to a glide plane that is either parallel or perpendicular to the 
zone axis. The glide direction must have a component perpendicular to the zone axis as shown. The cause of the 
dynamic absence may be determined by examination of the bright-field symmetry. If the mirror line ml is present, 

the translational symmetry element is a screw diad, whereas if m z is present the cause is a glide plane. 

'black cross', (Steeds, 1981; Steeds and Vincent, 
1983) if three dimensional diffraction effects (i.e. 
HOLZ lines) are relatively weak. 

Lines of dynamic absence or black crosses indi- 
cate either that there is a glide plane with a 
component of translation perpendicular to the 
beam or a screw diad axis perpendicular to the 
beam (Fig. 12). The 41, 43, 61, 63 and 65 screw axes 
all include the 21 operation. If the sample is thick 
enough to show H O L Z  lines in the BF disc, these 
two possibilities can be easily distinguished (Steeds 
and Vincent, 1983). If the mirror line mz is present 
in the BF disc, the translation symmetry element 
responsible for the dynamic absence is a screw diad; 
if the mirror line ml is present, the symmetry 
responsible is a glide plane. 

In Fig. 2b, the dynamic absences in 001 and 003 
are the result of both an n-glide parallel to (010) and 
a screw diad parallel to [001]; the BF disc from a 
thicker area showed 2mm symmetry. In Fig. 11 the 
dynamic absence in 102 results from the n-glide 
parallel to (010); the BF disc showed a mirror line 
parallel to the line of dynamic absence. 

The dynamic absences described above result 
from dynamic interactions within the zero layer. 
Double diffraction can also occur in the F O L Z  and 
back again to a kinetically forbidden reflection in 
the ZOLZ (Gjonnes and Moodie, 1965; Steeds et 
al., 1978; Steeds and Evans, 1980). In this case 

i The 0k0 reflections also show dynamic absences for 
k ~ 2n due to the screw diad parallel to [010]. Although 
the b-glide parallel to (100) is also responsible for these 
forbidden reflections, it does not produce dynamic 
absences because the glide plane is inclined to the electron 
beam. 

bright H O L Z  lines occur on a dark background at 
the position of the forbidden reflection. Steeds et al., 
(1978) and Steeds and Evans (1980) observed such 
'three dimensional G - M  lines' in 200 and 020 
reflections in spinel in (001)  CBED patterns taken 
at 100 kV. These reflections are forbidden by the d 
glide plane in space group Fd3m and cannot 
reappear by double diffraction within the ZOLZ. 
Double diffraction between reflections such as 1, 
21, 1 and 1, 21, T in the FOLZ,  however, does 
allow reappearance of 200 and 020 (see also Smith, 
1978). 

It is important  to realise that the existence of a 
line of dynamic absence indicates only that a large 
proport ion of the intensity in the reflection con- 
cerned has been derived by multiple scattering. It 
does not  preclude the existence of a small, un- 
detected, kinematic intensity in the reflection. Steed 
and Evans (1980) argued that, because the {200}- 
type reflections in spinel contained three- 
dimensional G - M  lines, the space group was Fd3m 
and not  F743m as had been suggested by Grimes 
(1972) and Hwang et al. (1973). However, De 
Cooman and Carter (1985) showed that, although 
CBED results do not  disagree with the assignment 
of the space group Fd3m to stoichiometric spinel, it 
is not  possible to detect weak, kinematic intensity 
in the {200}-type reflections due to a small 
displacement of A1 along (111).  Heuer and 
Mitchell (1975) had estimated the displacement to 
be 0.002-0.006 A. Such a small displacement would 
also be insufficient to reduce the whole pattern 
symmetry of the (100)  pattern in fig. 7c from 4ram 
to 2mm as would be expected for point group F~t3m 
(see Tables 1-3). 
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Tanaka et al. (1983) give a table of the lines of 
dynamic extinction that occur in CBED patterns 
for all 230 space groups. They conclude that 191 
space groups can be identified from the knowledge 
of the point group, as determined by CBED, the 
lattice type, as determined kinematically, and the 
dynamic absences. The remaining 39 space groups 
are made up of nine pairs of space groups and seven 
sets of three space groups that cannot be distin- 
guished from each other by these means. However, 
they can be distinguished from the intensity change 
of the forbidden reflections when the crystal orien- 
tation is varied. An example is the pair 14 and 141 
which cannot be distinguished by dynamic absences 
because the lattice-type absences prohibit double 
diffraction of the forbidden reflections due to the 41 
axis. However, if the intensity of the 200 reflection 
diminishes appreciably when the orientation is 
varied, the space group is/41 (Tanaka et al., 1983). 

Other information from CBED 

Measurement o f  foil  thickness and extinction 
distance 

If correction is to be made for absorption and 
fluorescence during the X-ray microanalysis of thin 
foils, the foil thickness must be known (see Lorimer, 
this volume). The most accurate method for deter- 
mining the thickness requires the measurement of 
the spacing of the diffuse 'Kossel-M611enstedt' 
fringes that occur in a dark-field disc under two- 
beam conditions (Kelly et al., 1975). The method is 
described in detail by Williams (1984). Although 
accuracies of better than 2% have been claimed, the 
method is time consuming and it has only been 
applied so far to simple structures. In the method of 
Kelly et al., the spacing of the ith minimum is 
converted to the appropriate deviation parameter 
Si, which is related to the thickness t, and extinction 
distance ~g by the equation; 

(s ,  ~ + 1 / ~ )  t :  = n~ 
where n i is an integer and ni+a = n~+ 1. 

If ~, is known, graphs of (Si/ni) 2 versus 1/n~ can 
be plotted for various possible values of nl. The 
straight line which shows a slope of 1/~g 2 is the 
correct one and the thickness is obtained from the 
intercept, 1/t z, on the 1/n 2 axis. 

Unfortunately there are a number of problems 
associated with this method, particularly where 
minerals are concerned. Generally, extinction 
distances are not known for mineral structures. 
Thus knowledge of the extinction distance cannot 
be used to determine which line is the correct one. 
In addition, it is difficult to avoid multiple-beam 
interactions in minerals because of small reciprocal 

lattice spacings. Such effects will introduce a 
systematic error (Allen, 1981). Assessment of the 
effect of anomalous absorption and inelastic 
scattering should also be made (Allen and Hall, 
1982; Castro-Fernandez et al., 1985). Two-beam 
dynamical calculations that take into account 
absorption have been made by Castro-Fernandez 
et al. (1985) for copper samples. Curves for various 
values of t/~g, nl and ~g/~'g (the absorption coeffi- 
cient) were computed and compared with experi- 
mental curves obtained with a densitometer from 
the diffraction patterns. The best fit allowed 
assignment of nl and hence determination of t and 
cg to an accuracy of _+ 5% or better. 

Clearly calculations taking into account multiple- 
beam interactions and anomalous absorption need 
to be carried out in order to assess the applicability 
of the method to minerals. Even then it must be 
borne in mind that the total specimen thickness 
would be underestimated because the amorphous 
layer that is produced on both sides of the specimen 
by ion-beam thinning would not be 'seen' by the 
electrons. A further limitation on the applicability 
of the technique to minerals arises from the fact that 
at least three dark fringes must be visible in the 
Kossel-M611enstedt pattern. Many low-index re- 
flections from minerals may have too small a g 
value for them to show three fringes in non- 
overlapping discs. 

Determination o f  cell parameters 
One of the limitations of selected-area electron 

diffraction is that, unless an internal standard is 
used, accurate lattice parameters cannot be ob- 
tained. However, small changes in lattice para- 
meters of the specimen produce relatively large 
shifts in the HOLZ lines in CBED patterns. 

If the positions of the HOLZ lines in the BF disc 
of a cubic material are compared with the equiva- 
lent pattern taken at exactly the same voltage from 
a standard material with the same crystal structure, 
the lattice parameter can be determined (Steeds, 
1979). Alternatively, the HOLZ patterns can be 
simulated by computer for different values of a once 
the HOLZ lines have been indexed (Ecob et al., 
1981). The best fit will indicate the actual cell 
parameter (Shaw et al., 1981). Lattice parameters 
that vary by _+ 0'005 ~, can easily be distinguished 
by this means. However, any slight variation in the 
accelerating voltage from that assumed in the 
calculations will affect the accuracy. 

Vincent and Pretty (1986) recently extended the 
method to the determination of the cell parameters 
of an orthorhombic phase. NiP1.8Geo. 2 was found 
by convergent-beam methods to have the space 
group Pnnm and measurement of the unit cell 
parameters suggested that the phase has the 
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structure of marcasite, FeS2. [111] C B E D  patterns 
were taken for NiPl.sGeo. 2 and for marcasite. 
Deficiency H O L Z  lines within the BF disc were 
indexed and a set was chosen that were both sen- 
sitive to changes in all three cell parameters and 
showed no visible dynamic coupling at intersections. 
Published values for the cell parameters of 
marcasite were used in a computer  simulation of 
the H O L Z  lines at different excitation voltages. The 
exact voltage having been determined, the cell 
parameters were systematically varied, until a 
match was found with the experimental pattern for 
NiP1.8GeOo. 2. The estimated accuracy of the 
lattice parameters determined by the method 
approached one part in 1000. 

Conclusion 

The recent exploitation of convergent beam 
electron diffraction has transformed electron dif- 
fraction from being considered the 'poor relation' of 
X-ray and neutron diffraction for crystallographic 
studies to being, in many ways, superior to these 
techniques. The breakdown of Friedel's law in 
electron diffraction allows the point group of a 
crystalline material to be determined when a con- 
vergent beam is used. Often the information can be 
obtained from a set of patterns from a single zone 
axis. Even the so-called 'problem' of double diffrac- 
tion can be turned to advantage in identifying 
translational symmetry elements and hence in 
determining the space group. All this information 
can, in principle, be obtained from crystals as small 
as 50 nm. 

CBED can be used, in principle, to determine the 
thickness of the specimen and the extinction 
distance, although the necessary calculations have 
not been carried out for minerals. Accurate cell 
parameters can also be obtained for cubic minerals 
or in cases where a suitable standard is available. 
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