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Abstract 

A series of matrix operations is described which enables the following optical data to be calculated for 
plane polarized light perpendicularly incident on a section of a transparent or opaque mineral: 1. vibration 
directions and refractive indices of anisotropic transparent minerals: 2. reflectivities and the state of 
polarization of light reflected from anisotropic opaque minerals. The data needed are the dielectric tensor, 
its orientation with respect to the crystal axes, the unit cell parameters and the direction of the incident 
light. The mathematical techniques involve the manipulation of matrices, the determination of eigenvalues 
and eigenvectors and, for opaque minerals, the manipulation of complex numbers. All operations can be 
carried out with the aid of some of the recent electronic calculators which have built-in matrix algebra 
procedures and complex arithmetic. 
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Introduction 

T H~ Biot-Fresnel construction has long been used 
in teaching optical mineralogy for finding vibration 
directions in sections of anisotropic transparent 
minerals. It forms a useful teaching aid in demon- 
strating the variation in extinction angles with 
composition in solid-solution series such as the 
plagioclase feldspars. However, the construction 
does not directly provide information as to the 
refractive indices of the vibrations, nor is it applic- 
able to opaque minerals, since they have no optic 
axes. Some examples of calculations based on 
geometry and the Fletcher Indicatrix are to be 
found in the literature such as by Phemister (1954) 
dealing with transparent minerals and Berek (1937) 
for opaque minerals. But the equations are long, 
complicated and prone to blunder during calcula- 
tion. 

The procedures outlined in this paper are matrix 
methods. The complications of the analytical geo- 
metric methods are replaced by the complications 
of matrix algebra. They too would be rather tedious 
to apply by hand calculation, but modern elec- 
tronic calculators have built-in matrix handling 
facilities. Several electronic calculators also have 
built-in complex arithmetic functions and can be 
programmed, so there is a natural extension of the 
matrix method to deal with opaque minerals. All 
the examples in this paper have been calculated 
initially with a Hewlett Packard HP15c calculator, 

diopside, covelline, stibnite 

although for a hard copy a Pascal program was 
written for an Apricot microcomputer. 

Matrix methods for the calculations of reflec- 
tivities have been made by Cervelle et al. (1970) for 
hexagonal pyrrhotite with experimental evidence 
to confirm the calculation method. The principle 
was also used by Rath and Ansorge (1983) in 
a paper on the complex indicatrix. A pictorial 
approach to the complex indicatrix was attempted 
in Galopin and Henry (1972) and they also used the 
Poincar6 sphere for a graphical representation of 
the polarization state of reflected waves. 

The theory of tensors and their use in crystallo- 
graphy has been given by Nye (1985). Readers 
unfamiliar with matrices and complex numbers 
are referred in the first instance to the Appen- 
dices. 

This article has been written in the form of a 
series of worked examples, starting with a relatively 
easy problem and introducing additional aspects of 
theory as they become necessary. The four principal  
examples are olivine, to deal with an orthorhombic 
transparent mineral; diopside to deal with a mono- 
clinic mineral and to show how extinction angles 
are calculated; covelline and then stibnite are used 
to show how reflectivities and the polarization 
states of reflected light are calculated. Optical 
activity is not specifically dealt with since 
few minerals--quartz and cinnabar being notable 
exceptions--have sufficient optical activity to affect 
their more dominant anisotropy. 
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Example 1: Olivine 

We will consider firstly the orthorhombic, trans- 
parent and not optically active mineral olivine. The 
relative dielectric tensor is T. The elements of this 
tensor at optical frequencies are the squares of the 
refractive indices, g, 8, ~. The tensor we require in 
optical mineralogy is the inverse of this tensor, 
called the relative impermeability tensor T- 1 (Nye, 
1985, p. 237). In olivine, the principal crystal axes 
are orthogonal and the relationships between the 
axes of the dielectric tensor and the axes of the 
crystal are such that: 

is parallel to [010], with RI = 1.635; 
fl is parallel to [001], with RI = 1.651; 
Y is parallel to [100], with RI = 1.670. 

Data are from Deer et al., 1962. 
Hence the relative dielectric tensor, written as 

a matrix with the columns representing respectively 
the [100], [010], and [t301] crystal axes, is 

[;90 0 1 T = 2.673 0 
0 2.726 

and the inverse T-1 = diag{0.3586, 0.3741, 0.3668}. 
The unit cell constants of olivine are a = 4.76, 
b = 10.2, c = 5.98 A (Deer et al., 1962). 

We consider plane polarized light perpendicularly 
incident on the ( l i d  section. A stereogram to 
illustrate this problem is given in Fig. 1 with the 
complete Biot-Fresnel solution. We can specify the 
location of the pole of the section by the vector p 
which has the direction cosines [Pl P2 Pal where Pl 
etc. are the cosines of the angles between the normal 
to the section and the three principal crystal axes 
[100], [010], [001] respectively. These are calcula- 
ted from the axial constants and are in the propor- 
tions I/a, I/b, 1/c and found to be [0.7352, 0.3430, 
0.5846]. Such a vector is normalized, i.e. the sum of 
the squares of the elements equals 1. The data in this 
and all subsequent examples are displayed to three 
or four significant figures, but it is important in the 
manipulation of matrices to avoid rounding error, 
and so the data are stored to more places. 

We wish to locate the vibration directions of the 
two plane polarized waves which travel through the 
olivine section and their refractive indices. 

The first calculation is to generate a matrix R1 
which has as its third row, the direction cosines of 
the pole of the section, p. The first and second rows 
of the matrix are guesses as to the position of the 
vibration directions u and v. Such directions are 
necessarily orthogonal to the incident direction of 
light. One first guess for the vector u is the direction 
[-0.423,  0.906, 0.0] which plots at the end of the 
trace of the section in Fig. 1. The values of these 
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FIG. 1. Stereogram of olivine to show the Biot-Fresnel 
construction for the (111) section. The positions of the two 
vibration directions n and v are also calculated in the text 

using the matrix method. 

direction cosines are simply the normalized values 
of the direction I - P 2  Pl 0]. The second vibration 
direction v is necessarily orthogonal to the incident 
light direction and the vector u and this is deter- 
mined from the vector cross product p ^ u, 
[P2 u3 - P3 u2, P3 ut - Pl u3, Pl u 2 -  P2 ul]  which in 
this case is [-0.530,  -0.247, 0.811]. 

The three rows of the matrix R1 are thus the 
direction cosines of a new X', U', Z'-orthogonal 
axial system. We use the matrix R1 as a rotation 
matrix and transform the relative impermeability 
tensor from the crystal axes to the new axial system 
which has its Z'-axis lying along the line of incident 
light, and with its X'- and Y'-axes lying along the 
quessed vibration directions. The matrix trans- 
formation for tensors is (Nye, 1985, Chapter 9) R1 
T-1 R1 t = M. The results of this calculation yields 
a new tensor M which has the numerical values 

0.3713 -0.0035 0.0048] 
M =  -0.0035 0.3650 0.0026/. 

0.0048 0.0026 0.3632J 

In this case, it is observed that the element m21 is 
not zero. This means that the first guess as to the 
vibration directions was incorrect. 

We must, therefore, make a further rotation R2 
of the tensor M about the new Z'-axis by an angle 
such that R2/I~R2 t = N, where the elements n21 = 

n12 = 0. This rotation matrix R2 is discovered by 
determining the eigenvalues and eigenvectors of the 
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2 x 2 matrix that forms the upper left part of the 
matrix M (Appendix B). These eigenvectors form 
the upper left part of the matrix R2 t, and hence the 
matrix R2 is determined and found in this case to be 

--0.9147 -0.4041 0.0000] 
R2 = 0.4041 --0.9147 0.0000 . |  

0.0000 0.0000 1.0000 J 
The two rotations can be multiplied in the order 
R2 R1 to yield a single rotation matrix R3 which in 
this case is 

[ 0.1726 -0.9288 0.3279] 
R3 = |0.6555 -0.1401 --0.7421| 

L 0.7352 0.3430 0.5846 J 

and the matrix N has the values 

I" 0.3728 0.0000 --0.0034] 
N =  | 0.0000 0.3634 -0.0043/.  

L -0.0034 -0.0043 0.3632J 

The first row of the matrix R3 has the direction 
cosines of the u vibration direction, the second row 
has the vibration direction v and the third row has 
not changed and is still the direction of incident 
light. The reader can verify the location of these 
vibration directions in Fig. 1 with the points from 
the Biot-Fresnel construction. 

But the matrix method yields an important extra 
factor. The refractive indices for these two waves 
are given from the first two diagonal elements of the 
matrix N, which are also the eigenvalues At and 
22 determined earlier. These eigenvalues are the 
reciprocals of the square-roots of the refractive 
indices and hence for this section, the refractive 
indices are 1.638 and 1.659 for u and v respectively. 

If the exercise is repeated but with light per- 
pendicularly incident on the (120) section, the 
reader will find that the elements of the diagonal 
of matrix N are almost exactly equal and the 
refractive indices are near to ft. This means that the 
pole to the section (120) is close to an optic axis and 
the section is almost isotropic, a feature shown 
on the stereogram Fig. 1 by the locations of the 
optic axes. 

Example 2: Diol~ide 
The principal axes of a dielectric tensor are 

necessarily orthogonal but most crystals belong to 
systems with non-orthogonal axial systems. A 
well-known procedure is available, most recently 
described by Boisen and Gibbs (1985), which shows 
how to transform data from any axial system to a 
Cartesian axial system, i.e. having orthogonal equal 
a x e s .  

Diopside is monoelinic with axial constants of 
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a = 9.73, b = 8.91, c = 5.25 ~,, and fl = 105.83 ~ 
(Deer et al., 1962). The covariant metric tensor, G, is 
the tensor whose elements are 

[a.a a.b a.c] 
G-- b a b.b b.c 

c~a c.b c.c 
a 2 abcos? a c c o s t ]  

G =  abcos7 b 2 bccosct/. 
Lacc~ bccos= c 2 J 

Boisen and Gibbs (1985) refer to this as the 
metrical matrix. The determinant of G, det G is V 2, 
the square of the volume of the unit cell. From the 
metric tensor, the contravariant metric tensor, G*, 
can be found by inversion or otherwise and is 

[ a .2 a 'b* COST* a* c* cos fl* ] 
G* = [ a ' b ' c o s T *  b* b* c* cos ct* l .  

=La*c* cos/~ * b'c* cos=* c*' J 

The terms a*, etc., are the reciprocal lattice con- 
stants. Two matrices are derived from the direct 
and reciprocal lattice constants, called Matrix A 
and Matrix B by Boisen and Gibbs (1985) 

[ a s i n f l - b s i n ~ t c o s T *  ! ]  
A = 0 b sin at sin 7" 

a cos fl b cos ~t 

"a*sinT* 0 -c*cosfls inct*]  
B = (.4- xy = a* cos  7* b* c* cos =* /" 

0 0 c* sin ct* sin fl J 

These matrices are used to transform data from the 
crystal axial system to a Cartesian axial system. 
Matrix A is used to convert zone axes and direction 
cosines. Matrix B is used to convert the Miller 
Indices of crystal faces or cleavage planes. The 
Cartesian Z-axis is parallel to the [001] axis of the 
crystal, and the Cartesian Y-axis is parallel to the 
b*-axis of the crystal. For our diopside example, 
the covariant and contravariant tensors are 

F 94.67 0.00 -13 .94]  
0.00 

G = [_10:90~4 79.390.00 27.56 J 

I- 0.0114 0.0000 0.0058 ] 
G* = ] 0.0000 0.0126 0.0000 ] t 0.0058 0.00~ 0.0392 

and hence 

[ 9.3609 0.0000 0.0000] 
A =  0.0000 8.9100 0.0000 

-2.6547 0.0000 0.0392 
[0.1068 0.0000 0.0540] 

B = [ 0 . 0 1 ~  0.1122 0.0t~0 . 
0.0000 0.0000 0.1905 

The stereogram in Fig. 2 shows the poles of the 
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faces (100), (011), (110) and (111) which are located 
using Matrix B. For example, the location of the 
face (111) is in the direction B . ( l l l )=  [0.1608, 
0.1122, 0.1905] and the direction cosines are this 
vector normalized, i.e. [0.5883, 0.4105, 0.6967]. By 
similar multiplication using matrix A, the plotting 
points [001], [100] and [010] are shown. The result 
is the conventional orientation of stereograms for 
monoclinic crystals. 

(100) 

FIG. 2. Stereogram of diopside to show the Biot-Fresnel 
construction for the (111) section. The positions of the two 
vibration directions u and v, the position of the trace of the 
(I~0) cleavage on the section, and the extinction angle are 

also calculated in the text using the matrix method. 

The dielectric tensor for a monoelinic crystal is 
required to have one of its principal axes parallel to 
the direction [010] of the crystal. The directions of 
the other two orthogonal tensor axes have to be 
determined by measurement and specified by direc- 
tion cosines from the Cartesian axial system. The 
optical data (Deer et  al., 1962) show that for 
diopside, the vibration Y is situated in obtuse ~ with 
the angle ~: [001] of 38.5 ~ The direction cosines of 
the 7 vibration in the Cartesian axis system are 
therefore [cos 51.5 ~ cos 90 ~ cos 38.5 ~ = [0.6225, 
0.0, 0.7826]. Similar calculations for the other 
two vibration directions yield the columns of an 
orientation matrix O for the transformation of the 
dielectric tensor to the Cartesian axial system 

0.7826 0.0000 0.62250 
o = 0.0000 1.0000 0.0000 / 

-0.6225 0.0000 0.7826J 
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The refractive indices lead to the tensor T = diag 
{2.7689, 2.7939, 2.8696}. The relative imper- 
meability tensor on the Cartesian axial system is 

[ 0.3562 0.0000 -0.00621 
S = O T - 1 Q t =  ] 0.0000 0.3579 0.0000|. 

L -  0.0062 0.0000 0.3534J 

For light perpendicularly incident on a (111) 
section of diopside, the vibration directions are 
given by exactly the same procedure outlined in 
the olivine example. The direction cosines of the 
incident light are [0.5883, 0.4105, 0.6967], which 
leads to the first rotation matrix R1 being 

[--0.5722 0.8201 0.0000 ] 
R1 = ] -0 .5713 --0.3986 0.7174]. 

L 0.5883 0.4105 0.6967_1 

The rotation of the re-oriented relative imper- 
meability tensor S to the new axial system leads 
to a new tensor IV/ 

�9 0.3574 0.0020 0.0030.] 
M = R I S R 1  t = 0.0020 0.3610 --0.0018|. 

0.0030 --0.0018 0.3501J 

This does not have the element m21 equal to zero 
and so a second rotation R2 is needed using the 
eigenvalucs and eigenvectors of the upper left 2 x 2 
sub-matrix. This leads to 

[ 0.4654 0.8851 0.0000 
R2 = ]-0.8851 0.4654 0.0000 

k 0.0000 0.0000 1.0000 

and hence the overall double rotation, 

F-0.7720 0.0288 0.63491 
R 3 = R 2 R I =  ] 0.2405 -0.9114 0.3339 / . 

L 0.5883 0.4105 0.6967_1 

The direction cosines of the two vibrations u and v 
are the first two rows of the matrix R3. The 
eigenvalues are respectively 0.3611 and 0.3563 and 
so the refractive indices are 1.664 and 1:675. The 
stereogram in Fig. 2 confirms the orientation of 
these vibration directions using the Biot-Fresnel 
construction. 

It is frequently necessary to relate vibration 
directions to cleavages visible in sections. In the 
case of diopside, there are two cleavages { 110}. The 
poles of these cleavages and the traces of the 
cleavages are given in Fig. 2. A cleavage is only 
clearly visible in a section if it intersects the section 
at a high angle. In other words, the angle between 
the pole of the section and the pole of a cleavage 
plane must be greater than, say, 70 ~ . The angle 
between two vectors p and q is given by the dot 
product p. q which is in any axial system pq cos 0. 
For Cartesian axes, all vectors which are direction 
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cosines have the same unit length, so the angle 
between the pole of the section (111) and the pole of 
the cleavage (110), which has the direction cosines 
[0.689, 0.724, 0], is given by cos 0 = Pl qt +P2 q2 + 
P3 q3 = 0.703, and hence 0 = 45 ~ for this example. 
The cleavage (110) would therefore not be seen 
clearly in the (111) section. However, the (150) 
cleavage is clearly visible because the correspond- 
ing angle 0 is 84 ~ The trace of the cleavage (150) in 
the plane of the section is a direction given by the 
vector cross product p ^ q. In this case, the direc- 
tion cosines of the trace of the cleavage (1 IF0) on the 
plane (111) are [ -0 .508 ,  -0.483, 0.713]. The angle 
between the vibration direction u and this cleavage 
trace is then the dot product of the direction cosines 
for u and the just calculated cleavage trace, which is 
33.8 ~ . 

E x a m p l e  3: Covel l ine  

The mineral covelline, CuS, is hexagonal with 
axial constants of a = 3.8, c = 16.36 A (Vaughan 
and Craig, 1978). Covelline is opaque and the 
elements of its relative dielectric tensor T are 
complex numbers, which carry information con- 
cerning the refractive index and the absorption of 
light. The tensor elements are the squares of the 
complex refractive indices (n+ik), where n still 
represents the refractive index (although in opaque 
minerals it can be less than 1) and k is an absorption 
coefficient. The tensor in red light (650 nm) is 

0.674 + 0.975i 0 
T = 0 0.674 + 0.975i 

0 0 

6.327 ! 3.679i]" 

Two axes are identical, and the third axis is for light 
vibrating parallel to the hexad axis. These values 
were calculated from the reflectivity data in the 
IMA/COM Quantitative Data File (Henry, 1977), 
using the equations in Galopin and Henry (1972) 
p. 265. The relative impermeability tensor is thus 
diag{0.4797-0.6940i, 0.4797-0.6940i, 0.1181- 
0.0687i}. 

We will consider red light perpendicularly inci- 
dent on the 0 0 i l )  section. The procedure is the 
same as in the previous examples, although the 
arithmetic requires manipulation of complex 
numbers (Appendix D). The orientation matrices A 
and B for the hexagonal crystal data to the 
Cartesian axial system are 

"3.8000 -1.9000 0.0000] 
A =  0.0000 3.2909 0.0000| 

0.0000 0.0000 0.0037 J 
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[0.2632 0.0000 0.0000] 
B = | 0 . 1 5 1 9  0.3039 0.0000 . 

L0.0000 0.0000 0.0611 

From these the direction cosines for the face normal 
(1051) are calculated as [0.8490, 0.4902, 0.1972]. 

The orientation matrix Q for the relative im- 
permeability tensor to the Cartesian axis system is 
the identity matrix. Uniaxial minerals have two 
tensor axes orthogonal to the unique axis which are 
not in otherwise defined directions unlike ortho- 
rhombic minerals. It is a matter simply of com- 
puting convenience to set these axes parallel to two 
directions such as [2iT0] and [01i0] at right angles 
to the unique axis. 

The first rotation matrix R1 for the section (1051) 
is 

[ -0 .5000  0.8660 0.0000] 
R1 = /-0.1708 -0.0986 0.9804 

[ 0.8490 0.4902 0.1972_1 

and when the matrix multiplications R1 T -1 R1 t 
are made, the tensor after this rotation is 

"0.4797- 0.6940i 0 
M = 0 0.1322- 0.0930i 

0 - 0.0699 + 0.1209i 

0 ] 

-- 0.0699 + 0.1209i|. 
0.4657-- 0.6697ij 

/ 

It is seen that the element m21 is zero so the 
vibration directions, u and v, are the first two rows 
of matrix R1 respectively. The complex refractive 
indices for these vibrations are derived from the 
diagonal elements mr1 and m22 as before and 
hence the refractive indices nu, nv and absorption 
coefficients ku,/q, can be determined. In this case 

Vibration u, direction cosines [-0.500,  0.866, 0.000] 
Complex relative impermeability = 0.4797- 

0.6940i, 
Complex refractive indices, n~ = 0.9642, 

k u = 0.5056 
Vibration v, direction cosines [ -0 .1708,  

-0.0986, 0.9804] 
Complex relative impermeability = 0.1322- 

0.0930i, 
Complex refractive indices, n~ = 2.372, 

kv = 0.7507. 

The mineral has such high absorption, that there 
is effectively no transmitted wave, but instead we 
can study the reflected waves. The Fresnel equation 
states that the reflectivity of an opaque mineral 
with complex refractive index N = (n+ik) and 
for light perpendicularly incident is given by 

( N -  1) (N*-  I)/(N + 1)(N* + 1) = 
(n --  1) 2 + k2/(n + 1) 2 + k 2. 
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For this section, viewed in (EW) plane polarized 
light, when the vibration direction u is parallel to 
the EW axis of the microscope, the reflectivity is 
0.063, i.e. 6.3%, and when the section is turned 
through 90 ~ the reflectivity is 0.205 or 20.5~o. The 
amplitudes of the reflected waves are the square 
roots of these values, i.e. 0.250 and 0.453 respec- 
tively and relative to a unit value for input light 
intensity. In addition to suffering a loss of ampli- 
tude upon reflection, the incident light also suffers a 
phase lag ~ at the surface of the mineral, and this lag 
is given by the expression tan 6 = - 2 k / ( n  2 + k 2 - 1) 
(Ditchburn, 1952, p. 433). For these two waves, the 
phase lags are - 1.390 and -0.282 radians respec- 
tively. The information of the amplitude and phase 
lag of these waves may be written in complex polar 
form as Auexp(i6u) and Avexp(it~,) respectively, 
or more conveniently converted into complex 
rectangular form for use in subsequent calculations. 

H S  
\ 

E W  

e r  

" I \ v  

FIG. 3. Covelline (t011) section to show the ellipticity of 
the reflected red light for the section oriented in the 30 ~ 
position. The principal axis of the ellipse is inclined at 

-20 ~ to the incident EW polarized light. 

The (1011) section thus shows bireflectance, 
analogous to the birefringence seen inthin sections 
of transparent minerals. In the two extinction 
positions, the reflected wave is plane polarized. 
However, in intermediate positions the reflected 
light wave is elliptically polarized. We can explain 
this by modelling the behaviour of the section as if 
there were two reflected light waves with their 
orientations in the directions of the permitted 
vibrations of the admittedly absent transmitted 
waves. These two model waves are orthogonal and 
plane polarized, but they are out of phase with each 
other because of the differential phase lags that 
occurred when the light was reflected. The reader is 
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referred to the excellent diagrams which illustrate 
elliptically polarized light in texts s u c h  as Bloss 
(1961). Fig. 3 shows the ellipticity (ratio of minor to 
major axis) and the inclination angle ~o of the 
principal axis of the ellipse wave and these depend 
on the angle 0 that the section has been rotated 
from an extinction position. These parameters may 
now be calculated. In fig. 4 the section of covelline 
has been rotated by an angle = 30 ~ with the 
direction of original u vibration now in the NE 
quadrant. The amplitudes of the two model waves 
are reduced to A, exp(i6u) cos 0 and Av exp(i6v) sin 0 
due to the rotation of the section. The two model 
waves can each be written as if they were formed by 
the linear combination of two orthogonal waves 
each parallel to the crosswires NS and EW. The 
corresponding NS components of each wave can 
therefore be added, and similarly the EW com- 
ponents. The rotation matrix performs this de- 
composition and addition, with the minus sign of 
the v wave arising from the geometry of fig. 4. 

[ E : I  = [cos0 - - s in0]  

[sin 0 cos 0J 

- A, exp(i60 sin 0 ]" 

The equation is derived from ideas in Azzam and 
Bashara (1977). Like other minerals with a unique 
axis, covelline has the matrix/-/2 in this equation as 
the identity matrix; its use as a Hermitian matrix 
becomes apparent in the next example. The Jones 
vector, [Ex, Ey], shows the polarization state of 
the reflected light wave. The numerical values 
calculated for the covelline example written 
in polar form are 0.259exp(-0.988i), 0.1767 
exp(-  2.844i). 

It is more useful to describe the reflected light 
wave by means of the four Stokes parameters, a 
four element vector. These parameters are calcula- 
ted by the four matrix multiplications of the type 

[E X,Ey] Pn Er 

where the matrices Pn are the four Pauli spin 
matrices (Gerrard and Burch, 1975), 

P 2 =  [01 10] P 3 =  [~ O ]  

and E* is the complex conjugate of Ex etc. The 
four Stokes parameters [SO, S1, $2, $3] for this 
covelline example with 0 = 30 ~ are [0.0981, 0.0357, 
-0.0257, -0.0877]. The interpretation of these 
parameters is that SO is the intensity of the reflected 
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wave, which in this case is 9.8%, the ellipticity is 
given by tan(�89 -0.617, with the 
negative sign indicating that the ellipse is left- 
handed. The inclination co of the principal axis to 
the EW axis is given by �89 = -17 .9  ~ 
and the negative sign indicates that the axis is in the 
south-east quadrant, as shown in Fig. 4. 

The data of Cervelle e t  al. (1970) for oriented 
sections of hexagonal pyrrhotite have been pro- 
cessed through this procedure. The results for the 
complex refractive indices are identical to those 
obtained by CerveUe e t  al. and by Rath and 
Ansorge (1983) who used the same data as a 
justification of their matrix methods. 

NS 

\ 
\ 

\ 

f 
/ \ \  

\ \  
\ \  

\ ,  

Avsin=e 

U f  
J 

Aucos2 e / 
/ / ~T/Au c~176 

. -  / iAucosO sine 

Av sin O cosO 

Av sin O 

~v 

EW 
Polarizer 

FiG. 4. Covelline (1(3il) section to show the directions of 
the permitted vibration directions u and v for the section 
in the 30 ~ position. The NS and EW components of the 
reflected waves are shown, to justify the rotation matrix R 
in the text. The relative amplitudes have been drawn to 

scale for red light. 

Example 4: Stibnite 

Stibnite is orthorhombic and opaque. Its axial 
constants are a = 11.20, b = 11.28, c = 3.83 A. 
The relative dielectric tensor T referred to the 
crystal axes is, for green light 520 nm, T = 
diag{8.485 - 14.69i, 10.714- 5.120i, 3 .002- 
18.286i}. The direction cosines for the (111) section 
are [0.3081, 0.3059, 0.9009] and the vibration 
directions are calculated in the same manner as in 
previous examples. The first rotation matrix is 

[ -0 .7046  0.7096 0.0000 ] 
R1 = /--0.6393 -0.6347 0.4341 . 

L 0.3081 0.3059 0.9009J 
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The relative impermeability tensor on this axial 
system is 

[ 0 .0529- 0.0436i 
M = l -  0 .0209- 0.0066i 

L 0.0101 + 0.0032i 

0.0209- 0.0066i 0.0101 + 0.0032i "] 1 

0.0443--0.0455i --0.0171--0.0037i/. 
--0.0171 -- 0.0037i 0.0170--0.0515i J 

The element m21 is not zero, so as in the pyroxene 
case of Example 2, the upper left 2 x 2 matrix is 
solved for its eigenvalues and eigenvectors. The 
results are 

[--0.7732 + 0.0054i--0.6342--0.0066i i ]  
N = [  0"63420+0"0066i-0"7732+0"0054i0 " 

In this case, the eigenvectors are complex numbers. 
They are thus not immediately interpretable as a 
rotation matrix. The transpose of the complex 
matrix N is further decomposed into two matrices, 
H and R2 where H is a Hermitian matrix and R2 is 
a pure real matrix which is a rotation matrix. 

N t = H R 2 .  

The method is outlined in Appendix C. The results 
are 

1.00004 +0i  
H = 0+0.0086i 

0 

--0.7732 
R2 = -0.6342 

0 

0 -  0.0086i 0]  
1.0(0)04 + 0i 0] 

0 

0.6342 ! 1  
-0.7732 . 

0 

The Hermitian matrix has equal diagonal elements 
which are pure real numbers and the off-diagonal 
elements are pure imaginary numbers. The inter- 
pretation of this matrix is that the light waves 
transmitted and reflected from the surface of the 
section are elliptically polarized. The ellipticity, 
tan e, is the ratio of the imaginary and real com- 
ponents. Both waves have the same ellipticity and 
the same handedness. According to Galopin and 
Henry (1972), it is possible to find sections of 
opaque minerals which have an ellipticity of 1, in 
which case the reflected (and transmitted) waves 
are circularly polarized. 

If the stibnite (111) section is viewed in mono- 
chromatic light, there is no exact extinction 
position, only a very dark minimum. When the 
permitted vibration directions are exactly parallel 
to the polarizer, the reflected wave has both an EW 
and a small NS component. Even under perfectly 
crossed polars, the section will fail to extinguish. 
This is why ilmenite is recommended by Galopin 
and Henry (1972) for the correct setting of the 
microscope analyser. Ilmenite is hexagonal, and so 
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like the covelline example above, all sections have 
permitted vibrations which are plane polarized. In 
hkl sections of lower symmetry crystals, the permit- 
ted vibrations are elliptically polarized. 

The matrix calculations shown in Example 3 for 
the study of the polarization state of sections not in 
extinction are still valid, but require the additional 
matrix H2. The elliptically polarized wave reflected 
from the surface of the mineral has its ellipticity 
formed by a combination of the ellipticity produced 
from the differential phase lags of the two surface 
waves and their own ellipticities. The Hermitian 
matrix H2 is obtained from the ellipticity, ~ (Azzam 
and Bashara, 1977), and is 

= Vcose - i s i n  ~] 
H2 [_i sin e cos ~ _]" 

The ellipticity of the light reflected from the (111) 
surface of stibnite is 0.0086 for the section at angle 
0 = 0 ~ and increases to 0.063 for the section at 
approximately 0 = 40 ~ 

Summary 

This paper has shown that a series of matrix 
manipulations can be applied to the relative 
dielectric tensor of a mineral to enable the permit- 
ted vibrations directions, refractive indices, re- 
flectivities and the polarization state of reflected 
light to be determined. The method has advantages 
over analytical geometric techniques: it can be 
performed with calculators and is readily amenable 
to computer programming. The required data are 
the relative dielectric tensor, its orientation with 
respect to crystal axes, the axial constants of the 
mineral and the specification of the direction of 
incident light. For minerals of low symmetry, 
the data are most conveniently referenced to a 
Cartesian axial system, rather than the crystal axial 
system. 

The summarized matrix calculations are 

1. A = H R 3 Q T - 1 Q t R 3 t H t  

where T is  the relative dielectric tensor, 
Q rotates the tensor to a Cartesian axial 

system, 
R3 rotates the tensor so that the third row 

of R3 is along the direction of the 
incident light, and the first and second 
rows are in the directions of the permit- 
ted vibration directions, 

H is a Hermitian matrix which shows the 
ellipticity of the refracted and reflected 
waves. 

A is a tensor with the first two off-diagonal 
elements zero. 

A. PECKETT 

2. The first two diagonal elements of the tensor 
yield the refractive indices of the two permitted 
vibrations. In opaque minerals, these values are 
complex numbers and yield the complex refractive 
indices. Using the Fresnel equation the amplitudes 
and phase lags of each permitted reflected wave can 
be calculated. 

3. For opaque minerals, the polarization state of 
the reflected light can be calculated by the matrix 
operations 

J = R H 2 A  
S = J * P J  

where A is the vector of amplitudes and phase 
lags of the two permitted waves, 

H2 is a Hermitian matrix derived from the 
ellipticity calculated from Hermitian 
matrix H. 

R is a rotation matrix for the angle between 
the permitted vibration directions and 
the EW polarizer, 

J is the Jones vector [Ex, Ey], and J* is its 
complex conjugate, 

P represents the four Pauli spin matrices, 
S represents the four element Stokes 

vector. 

From S, the values of the reflectivity, ellipticity 
and the inclination of the principal axis of the 
elliptically polarized reflected light wave can be 
calculated. 

Appendices 

A. Vector and matrix manipulations. There are many 
texts which deal with matrix algebra more than adequate 
to the needs of this paper. A suitable text is Boas (1983), 
and Boisen and Gibbs (1985) give some mineralogical 
examples. A few modern electronic calculators will 
perform matrix manipulations, and an example is the 
Hewlett Packard HP15c. The matrix operations required 
are multiplication, transpose, determinant and inversion 
with matrices 2 x 2 and 3 x 3 in size. 

B. Eioenvalues and eioenvectors. We need only consider 
2 x 2 matrices and So the eigenvalues and eigenvectors are 
quickly determined, even when the elements of the matrix 
are complex numbers. The eigenvalues of a 2 • 2 matrix M 
are the two values 2 where det IM - ).ll = 0, where I is the 
identity matrix and A is the diagonal matrix 

If the matrix M is written as 

[ ~  b ] = 0  then det d - 2 
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which, upon expansion gives ( a -2 ) (d -2 ) -bc  = 0 and 
hence 22-(a+d)2+(ad-bc)= O. This is a quadratic 
equation with 2=�89 
having the two solutions 21 and 22. Examples are given in 
the text for cases where the matrices are pure real and 
complex. 

The two eigenvectors of the matrix M are given by the 
two values of ( 2 - d ) / c  = p/q. The eigenvectors form the 
columns of a matrix 

In our matrices, the matrix N is required to have a 
determinant of 1, and so the vectors are normalized, i.e. 
p2+q2 = 1. The procedure is correct even where the 
elements of the matrix M are complex numbers. If the 
elements b and c are zero, the eigenvalues are a and d, 
and the eigenvector matrix N is the identity matrix I. 
The eigenvalues and eigenvectors are related such that 
N A N t = M. The matrix N has a determinant of + 1, and 
the matrix A is a diagonal matrix. The matrix M is 
therefore diagonalized by the matrix transformation 
N t M N  = A. Some examples are given in the main 
text with both real and complex cases. For  these examples, 
the 2 x 2 matrix of eigenvectors is expanded to a 3 x 3 
matrix by replacing the upper left part of a 3 x 3 identity 
matrix by N. 

C. Complex eigenvectors. The transpose of the matrix 
of eigenvectors, N', produced for opaque minerals may be 
complex. Such a matrix can be decomposed into the 
product of two matrices H and R, i.e. N t = H R. R is a 
matrix whose elements are the elements of a rotation 
matrix with an angle of rotation a, i.e. 

cosa sinm] 

R =  - s i n a  cosad" 

The matrix H is a Hermitian matrix which in this case has 
diagonal elements which are equal and purely real, and 
the off-diagonal elements which are skew symmetric and 
purely imaginary, i.e. 

[O+Oi  O + p i ]  

H = L 0 - p i  o+0i_J 

where the element hll  = �9 which is equal to x/(1 +p2). 
Both matrices have determinants of + 1. If the element n~ 1 
is written as a + ib and n ~ 2 is c + id then p2 = (b 2 + d 2) and 

hence �9 is calculated. The element rxl is a/O and 
r12 = C/~  and hence the elements of R are calculated. The 
matrix H is calculated by the back-substitution matrix 
calculation N t R t = H in order to ensure the correct signs 
for p. One example is given in the main text for stibnite. 

D. Complex numbers. The arithmetic of complex 
numbers is described in many standard mathematics texts 
such as Boas (1983). Calculators such as the Hewlett 
Packard HP15c (and HP41c with its Maths module) 
perform all the operations required in this paper. 
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