MINERALOGICAL MAGAZINE, JUNE 1989, VOL. 53, PP. 380-382

Thermal decomposition of Li₈(Al₆Si₆O₂₄)Cl₂

Li₈(Al₆Si₆O₂₄)Cl₂, a synthetic member of the sodalite family (Henderson and Taylor, 1977), was prepared by heating natural sodalite, Na₈(Al- $_{6}Si_{6}O_{24}$)Cl₂ (from Låven, Norway), in molten LiCl at 800 °C for 2h, washing uncombined LiCl from the product and drying at 110 °C. Chemical analyses of the natural sodalite and the Li-sodalite are given in Table 1. The cell edge of the Lisodalite was 8.4476(9) Å (Si as internal standard: a = 5.43065 Å at 25 °C) in good agreement with literature values (Henderson and Taylor, 1977). Simultaneous TG and DTA analyses were carried out on the Li-sodalite by British Ceramic Research Ltd. using a Linseis thermal analyser (experimental conditions: sample weight 102 mg, heating rate 10 °C/min in static air, corundum as reference). The DTA curve (Fig. 1) shows three endothermic peaks; the second at 914 °C occurs at the start of the weight loss, whilst the third occurs at 1104 °C at the point of maximum weight loss (9.4×10^{-3} mg/s). Samples of Li-sodalite were heated in crimped platinum tubes to 950 and 1150 °C at a heating rate of 30 °C/min. No weight loss was observed after the 950 °C heating exper-

TABLE 1. Chemical analyses of: natural sodalite (A), Li-sodalite (B), the theoretical composition of Li-sodalite (C), the thermal decomposition product of Li-sodalite (D), the theoretical composition of LiAlSiO₄ (E), and the

			on or binibio	4	 ~
heoretical	composition	of	Li8A16Si6025	(F).	

	(A) ⁺ wt.%	(B)* wt.%	(C) wt.%	(D)* wt.%	(E) wt.%	(F) wt.ቼ
······································						
SiO2	36.6	41.7	42.88	46.8	47.69	45.87
TiO2	0.08	<0.01		<0.01		
A1203	30.3	34.9	36.38	38.9	40.46	38.92
Fe ₂ O ₃	0.38	0.46		0.59		
MgŐ	0.09	0.13		0.19		
CaO	0.54	0.04		0.05		
Li ₂ 0		13.9	14.21	12.6	11.86	15.21
Na ₂ O	24.7	0.11		0.13		
K20	0.03	<0.01		<0.01		
รถิ่ง	<0.01					
C1	6.69	8.34+	8.43	<0.05		
P205		0.49		0.55		
Mn ₃ O ₄		0.04		0.05		
Loss (800°C)	1.28	0.50+		0.34*	*	
Total	100.69	100.63	101.90	100.20	100.00	100.00
Less O = Cl	1.51	1.88	1.90			
	99.18	98.75	100.00			

* Analysed by H.B. Dixon, Fairey Tecramics; * analysed by British Ceramic Research Limited; ** loss on ignition at 1025^oC.

TABLE 2. Cell parameters of beta-eucryptite obtained from the products of the decomposition of Li-sodalite at $950^{\circ}C$ (1) and $1150^{\circ}C$ (2), and for pure beta-LiAlSiO₄ (3) after Pillars and Peacor (1973).

	a, Å	c, Å	v, Å ³	c/a
1.	10.495(1)	11.204(2)	1068.8(3)	1.0675
2.	10.500(2)	11.205(5)	1069.9(5)	1.0671
3.	10.497(3)	11.200(5)	1068.8	1.0669

FIG. 1. Thermogravimetric and DTA curves for Lisodalite.

iment, but a 10.8% weight loss was observed after the 1150 °C treatment. Powder X-ray diffraction patterns showed both products to be beta-eucryptite, ideal formula LiAlSiO₄. The hexagonal cell parameters, calculated by the method of least squares from 9 reflections in the range 34 to 75° 2θ Cu-K α are given in Table 2. The cell parameters are virtually identical and are in good agreement with literature data for pure beta-LiAl-SiO₄ (Pillars and Peacor, 1973). The TG curve (Fig. 1) shows that weight loss begins at 880 °C and is complete by 1125 °C. The loss between 850 and 1150 °C was calculated to be 9.9 wt.%.

A 4.0g sample of Li-sodalite was heated at 30° C/min to 1150° C and had a weight loss of

10.0%. The chemical analysis of the product, beta-eucryptite, is given in Table 1.

The endotherm at 914 °C on heating is attributed to the reconstructive transformation of Li-sodalite to beta-eucryptite (the transformation of hydroxysodalite to carnegieite is accompanied by an endotherm at 740 °C, Schipper et al., 1973). The endotherm at 1104 °C on heating and the exotherm at 1067 °C on cooling are assumed to be due to eutectic melting of the impure beta-eucryptite formed from the Li-sodalite. The difference between the two temperatures is most likely due to a slight change in composition (e.g. loss of further LiCl) during the time the temperature was taken to 1300 °C. Note that a eutectic at 1070 °C has been reported on the Li-rich side of betaeucryptite in the system Li₂SiO₃-LiAlSiO₄ (Murthy and Hummel, 1954). The exotherm at 490 °C on cooling is attributed to a displacive transformation to a structure of lower symmetry, which is accompanied by the appearance of superstructure reflections (Schultz, 1974).

Loss of chlorine as LiCl from Li₈(Al₆Si₆O₂₄)Cl₂ would give a theoretical weight loss of 10.1%, whereas reaction involving loss of chlorine and incorporation of oxygen (to maintain charge balance) would give a theoretical weight loss of 6.5%. Comparison of analyses (D), (E), and (F) in Table 1 and the weight loss data support the view that Li₈(Al₆Si₆)₂₄)Cl₂ decomposes by incongruent volatilization to beta-eucryptite and LiCl vapour. Natural sodalite also decomposes by incongruent volatilization at high temperatures to nepheline or carnegieite and NaCl vapour (Wellman, 1969). Hydroxysodalite decomposes to carnegieite above 680°C (Schipper et al., 1973). Other halide-bearing aluminosilicate-sodalites have been found to decompose at high temperatures in the vacuum of a powder X-ray diffraction furnace (Henderson and Taylor, 1978), probably by a similar mechanism.

References

- Henderson, C. M. B., and Taylor, D. (1977) Acta Spectrochim. Acta, 33A, 283–90.
 - -----(1978) Phys. Chem. Minerals, 2, 337-47.
- Murthy, M. K., and Hummel, F. A. (1954) J. Am. Ceram. Soc. 37, 14–7.
- Pillars, W. W., and Peacor, D. R. (1973) Am. Mineral. 58, 681–90.
- Schipper, D. J., Lathouwers, T. W., and van Doorn, C. Z. (1973) J. Am. Ceram. Soc. 56, 523–5.
- Schultz, H. (1974) Ibid. 57, 313-8.

Wellman, T. R. (1969) Geochim. Cosmochim. Acta, 33, 1302-4.

a, [Manuscript received 3 May 1988; revised 23 June 1988]

© Copyright the Mineralogical Society

KEYWORDS: Li-sodalite, $Li_8(Al_6Si_6O_{24})Cl_2$, DTA, TG, decomposition.

Fairey Tecramics Limited, Filleybrooks, Stone, Staffordshire, ST15 0PU.

D. TAYLOR

MINERALOGICAL MAGAZINE, JUNE 1989, VOL. 53, PP. 382-385

A calcian analcime-bytownite intergrowth in basalt, from Skye, Scotland, and calcian analcime relationships

WITHIN a reyerite-tobermorite (11 Å) amygdale assemblage in olivine basalt blocks, near Drynock, Skye, is a porcellaneous material which either lines or completely fills the amygdales (Livingstone, 1988). Electron-probe microanalysis combined with back-scattered electron imaging identifies individual components of the porcellaneous material as calcian analcime and bytownite, (An_{74-79}) . Back-scattered electron imaging reveals a second generation analcime pervading the calcian analcime-bytownite intergrowth and forming patches and discrete veinlets (Fig. 1A).

Chemistry. Ten electron-probe microanalyses of calcian analcime and eight of bytownite are presented in Table 1 as determined on a Cameca Camibax microprobe. Standards utilised were rutile, iron, manganese, jadeite, corundum, and wollastonite at 20 kV and 20 nA. Considerable variation in analcime Na:Ca ratios is apparent, whereas most Si:Al ratios are close to 2:1.

Analyses 2, 5 and 7 possess balance error values, E(%) (Gottardi and Galli, 1985) of less than 5%, whereas the remaining analyses are greater than 10%. Although the latter are generally unacceptable they are included to present the general picture since this intergrowth material is difficult to analyse:

$$[E\% = 100 \{(Al + Fe) - (Na + K) - 2(Mg + Ca)\}/\{(Na + K) + 2(Mg + Ca)\}].$$

In the infrared O–H stretching region analcime (ss) from a phonolite (RMS GY 450.3) displays two maxima at c. 3620 and 3550 cm^{-1} , features noted by Oinuma and Hayashi (1967) and other authors. Within the analcime–bytownite intergrowth (hereafter referred to as integrowth analcime) analcime exhibits a broad absorption with a featureless maximum at c. 3420 cm^{-1} (Fig. 2). Sharp absorptions in the O–H region are a characteristic feature of wairakite (Harada *et al.*, 1972).

Wairakite water loss occurs in two distinct stages, at 360 and 500 °C (Gottardi and Galli, 1985), the losses being assigned to two symmetrically independent sites within the structure. Magnesian analcime ('doranite') with only 3 wt.% MgO also exhibits two distinct water losses, at 350 and 430 °C (Dyer et al., 1987, Fig. 3). In marked contrast to wairakite and 'doranite', intergrowth analcime thermal analysis reveals only one water loss (TG 438°C and DSC 413°C) with 4.82 wt.% water being expelled. Synthetic Na homoionic analcime loses water at 370 °C (Dyer, pers. comm.) which concurs with DTA and TGA water loss temperatures of 340-370 °C for natural analcime. Differential scanning calorimetry indicates that the intergrowth analcime, with ΔH = 99 Jg⁻¹ for water loss, is not a physical mixture of calcian analcime and analcime (ss) since a synthetic Na analcime has $\Delta H = 403 \text{ Jg}^{-1}$. The limit of detection of Na analcime (ss) in the intergrowth, by this method, is approximately 0.1 wt.% (Dyer, pers. comm.).

Point counting on back-scattered electron image photographs indicates intergrowth analcime forms approximately 49% by volume, or 44 wt.%, assuming an S.G. of 2.22 gm cm⁻³. It follows that intergrowth analcime contains 10.95 wt.% H₂O⁺, a slightly higher than normal value. Cation : water ratios range from 1:1.5 to 2, averaging 1.75.

Significantly, the single water loss at a higher temperature indicates intergrowth analcime is closer to cubic rather than monoclinic symmetry. The intergrowth calcian analcime (60% Na-40% Ca) is thus an intermediate member of a Na analcime-'synthetic Ca analcime' series.

Discussion. From cell parameter data appropriate to the analcime-wairakite series Harada and Sudo (1976) predicted the existence of a monoclinic sodium analogue of wairakite. Additionally,

382