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Abstract 

Recent advances in the use of time-dependent order parameter theory to describe the kinetics of 
order/disorder transitions are reviewed. The time dependence of a macroscopic order parameter, 
Q, follows, to a good approximation: 

dt - 2 ~  [ 1  - ?exp - - ~  /J ~-~ 

For systems in which the order parameter has a long correlation length (large ~) and is not conserved 
(small ~c), the Ginzburg-Landau equation provides a general kinetic solution: 

dQ y(a 2) OG 

dt 2RT OQ 

Specific rate laws can be derived from this general solution depending on whether the crystals remain 
homogeneous with respect to the order parameter, Q. The advantages of the overall approach are, 
firstly, that it does not depend on the detailed structure of the material being examined; secondly, 
that the order parameter can be followed experimentally through its relationship with other properties, 
such as spontaneous strain, excess entropy, intensities of superlattice reflections, etc.; and, finally, 
that conventional Landau expansions in Q may be used to describe the thermodynamic driving forces. 

For a simple second-order transition in crystals which remain homogeneous in Q the rate law is: 

f~ C ) 
t - to = 3Qo yAexp( -AG*/RT)  \a(T - Tc)e + b e  3 dQ 

If the free energy of activation varies with the state of order of the crystal, this becomes: 

(Q - 2 R T  [ exp(eQZ/RT) \ d  
t -  t o = JQo yAexp( -AG*/RT)  ~a(T- Tc) Q + bQ 3) Q 

Simplifying assumptions can be introduced into the mathematics, or the integrals can be solved numeri- 
cally. For crystals which remain homogeneous, the simplest solution valid only over small deviations 
from equilibrium is: 

ln(Q - Qeq) oc t 

For crystals which develop heterogeneities in Q, the rate laws change significantly and we find 
as an extreme case: 

AH* 
Q2 oc ARTInt  + B - -  

R T  

where the A coefficient may be temperature dependent. 
Experimental data available for a limited number of minerals (omphacite, anorthite, albite, cordier- 

ite and nepheline) are used to demonstrate the practical implications of the overall approach. As 
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anticipated from the theory, modulated structures commonly develop during kinetic experiments, 
the observed rate laws depend on whether the critical point of the ordering is located at the centre 
or boundary of the Brillouin zone, and the rate laws for ordering and disordering can be quite 
different. The importance of different length scales, not only in the different techniques for characteriz- 
ing states of order (IR, NMR, calorimetry, X-ray diffraction, etc.) hut also for interpreting observed 
mechanisms and rate laws, is also outlined. 

Use of the order parameter  in Landau expansions and in Ginzburg-Landau rate laws provides, in 
principle, a means of predicting the equilibrium and non-equilibrium evolution of minerals in nature. 

K E Y w o 1~ D s: t ime-dependent Landau theory, order/disorder  processes. 

Introduction 

TRE application of classical equilibrium thermo- 
dynamics has proved to be highly effective in cali- 
brating the stability ranges of different mineral 
assemblages in nature. It is widely recognized, 
however, that many of the processes involved in 
the crystallization and sub-solidus evolution of 
rocks occur under non-equilibrium conditions, 
and that the constraints of kinetics are not nearly 
so well defined. These observations reflect the 
general experience of petrologists that the factors 
which determine non-equilibrium pathways tend 
to be diverse and elusive in comparison with the 
straight minimization of free energy that deter- 
mines equilibrium. There is, therefore, a real 
need for general thermodynamic and kinetic 
theories which depend upon the same key para- 
meters to establish links between equilibrium and 
non-equilibrium behaviour. The purpose of the 
present paper is to outline a new approach to the 
kinetics of structural phase transitions in minerals 
which goes some way towards fulfilling this need. 
We review some recent developments in the appli- 
cation of Landau theory and the associated 
Ginzburg-Landau kinetic theory and then 
demonstrate that these ideas have practical impli- 
cations for the treatment of cation ordering transi- 
tions. Fundamental  to the whole approach is the 
use of a macroscopic order parameter,  Q, to mea- 
sure the progress of phase transitions as a function 
of both time and temperature. 

The paper is divided into four sections. In the 
first section, the basic ideas of t ime-dependent 
order parameter  theory are introduced. Rather 
than presenting the full mathematical basis of the 
master equation, emphasis is placed on qualitative 
aspects of the approach and the physical insights 
which the resulting macroscopic rate laws can pro- 
vide. In the second section, alternative rate laws 
derived from the Cahn continuum equation and 
the Ginzburg-Landau equation are compared. 
Again, the intention is to summarize and amplify 
experimentally verifiable aspects of formal theory 
which is presented elsewhere. The origin of 'kine- 
tic' modulated structures is briefly reviewed and, 
finally, the proposed rate laws are tested for a 

number of minerals for which kinetic data are 
available. The specific examples are of A1/Si 
ordering and disordering in feldspars and cordier- 
ite, Na /Ca /Mg/A1 disordering in omphacite and 
the decay of the incommensurate structure of 
nepheline. 

Readers who are not familiar with the concepts 
of Landau theory, or of order parameter  theory 
in general, may wish to read the experimental 
section first in order to get a feel for the practical 
direction of the whole approach. 

Time-dependent order parameter theory 

General background. A crystal in an unstable 
or metastable state will tend to lower its free 
energy by undergoing structural changes. Its final 
equilibrium state is at some minimum in free 
energy, whereas the rate at which it approaches 
this minimum is determined by the particular 
pathway it follows. For any set of external vari- 
ables (P, T, etc.) there is only one true minimum 
in the free energy but there may be an infinite 
number of possible reaction pathways. Not sur- 
prisingly, the problem of predicting which path- 
way will actually be followed, and hence of 
defining the probable rate of transformation, may 
be more complex than merely characterizing the 
equilibrium state. 

In order to identify the most probable pathway 
for a phase transition in a crystal it is first necess- 
ary to examine the statistics of structural changes, 
or steps on a microscopic scale, within that crystal. 
The most probable of these microscopic steps will, 
of course, determine the direction of change on 
a macroscopic level and it is then necessary only 
to sum the individual steps according to their 
assigned probabilities. Glauber (1963), Metiu et 
al. (1976a,b) and Salje (1988a) have shown that, 
by a judicious selection of parameters,  kinetic 
expressions which describe the t ime-dependence 
of the order parameter,  Q, for the transition can 
be obtained. Since Q may be the same order para- 
meter as used in Landau free energy expansions, 
the rate laws effectively chart the passage of a 
system over a well-defined free energy surface 
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towards the minimum point. The close relation- 
ship between kinetic and equilibrium behaviour 
is thus established through the use of a macro- 
scopic parameter which can, in turn, be related 
to other experimentally accessible macroscopic 
parameters, such as spontaneous strain, excess 
entropy and enthalpy, birefringence, intensities 
of superlattice reflections, etc. 

Mathematical background. The starting point 
for time-dependent order parameter theory is a 
Markovian master equation. Over a given small 
volume of a crystal there is a probability, P, that 
some physical parameter will have the value n 
at time t. This probability will change with time 
according to the statistics of small changes, of 
magnitude a, occurring in the value of the local 
parameter n as: 

1 oe(n,t) 
Y at - - ~ W ( n - - - ~ n + a ) P ( n , t ) +  

12 

~ W ( n - a - - ~ n ) P ( n - a , t )  (1) 
a 

(Glauber, 1963; Metiu et al., 1976a,b; Salje, 
1988a). W(n --~ n + a) is the probability that the 
local parameter will jump from n to n + a in a 
unit of time given by l /y ,  where 3' is a characteris- 
tic frequency of the system. W(n - a ~ n) is 
the probability for the reverse, jump, etc. It is 
then assumed that the jump probabilities follow 
Boltzmann statistics and that the most probable 
macroscopic pathway is given by integration of 
the most probable microscopic steps along the 
reaction pathway. In the macroscopic solution 
given by Salje (1988a), after Metiu et al. 
(1976a,b), Q is eventually identified with n giving: 

dQ - y(ae)[ 1 (,~2V2)]OG 
d t -  2 R T /  - e x P \ 2  / J ~ -  (2) 

where R is the gas constant and V is the gradient 
operator. The term (a e) is a correlation function 
which should be regarded as a material constant. 
The original physical significance of the a para- 
meter is lost in the integration procedure but, 
since it is related to the jump size for a given 
unit of time, it can be used to account for the 
temperature dependence of individual steps. The 
size of jump in a fixed time at high temperatures 
will be greater than at low temperatures for an 
activated state model. Thus: 

(a 2) = h exp ( -AG*/RT)  (3) 

where h is a material constant and AG* is the 
free energy of activation. 

The term s introduced in the statistical analy- 
sis in order to define the extent to which individual 
steps in the order parameter locally in a crystal 
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will influence or induce changes in the same para- 
meter elsewhere in the crystal. Formally, r is the 
correlation length of individual microscopic steps 
and it plays a crucial role in determining the over- 
all kinetic behaviour. 

Salje (1988a) finally rescaled equation 2 by 
introducing a second important length parameter, 
~r which represents the local length scale over 
which conservation occurs. (This concept is 
explained in detail in the following section). The 
final rate equation is: 

dQ -y(a2)[1 ~ [ ~2,.,2~]0G 
dt ~ 1_ - -~exp ~5  v )j  0O (4) 

Three solutions can be readily envisaged. 
Firstly, if the correlation length of Q is the same 
as the length scale over which conservation 
occurs, i.e. ~= ~c, equation 4 becomes (after 
expanding the exponential and considering only 
the lowest order term--for small values of the 
exponent): 

d Q  "y(a 2) ~:2 ~20G 
dt 4 ~  s c -  ~ -  (5) 

This is referred to as the Cahn (or C) equation 
(Metiu et al., 1976a,b; Salje, 1988a) since it cor- 
responds to the description of spinodal decompo- 
sition developed by Cahn (1961, 1962, 1968) and 
Hilliard (1970), (see also Langer, 1971). For 
spinodal decomposition, Q can be regarded as the 
amplitude of the composition modulation. 

Secondly, in the limit that the correlation length 
of Q is large relative to the conservation length, 
i.e. ~c/~---~ 0, equation 4 becomes: 

dQ - 7 ( a  2) OG 
- - -  ( 6 )  

dt 2RT oQ 

which is referred to as the Ginzburg-Landau* (or 
GL) equation (Metiu et al., 1976a,b; Lifshitz and 
Pitaevski, 1981; Salje, 1988a). The third solution 
is for 1 < ~c/~ < 0 and represents the general 
case as expressed by equation 4 itself. 

An essential implication of this overall rate law 
is that, except in the limiting case of r162 ~ 0, 
modulated structures should invariably develop, 
although they need not necessarily have large 
amplitudes or well defined wavelengths. This 
striking conclusion arises simply from the fact that 
the general solution of an equation of the form: 

- ~ o c  Q (7) 72 

* Salje (1988a) has used the term Ginzburg-Landau 
to describe this kinetic equation to distinguish it from 
the Landau-Ginzburg equation which describes equili- 
brium behaviour. 
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is a modulation in Q with wave vector k and ampli- 
tude A(k,t) after time t. The amplitude, A(k,O , 
will evolve as: 

A(k,t)  = Ao(k,o ) exp [cffk) �9 t] (8) 

where Ao(k,o ) is the initial amplitude and a(k) 
is an amplification factor. In place of the amplifi- 
cation factor, a time constant, r(k), is commonly 
used, though the relation between them is simply 
�9 (k) = [2,~(k)] -1. 

For most natural materials the behaviour of Q 
falls between the two limiting cases and the 
general solution applies. Mathematical com- 
plexities prevent this from being of practical value 
at present, however, but the properties of real 
systems can be approached successfully from both 
ends as r 1 (C) or r 1 6 2  0 (GL). 

Physical insights: the significance of  different 
length scales. From equation 4 it is immediately 
clear that the correlation length of the order para- 
meter Q can have a profound influence on the 
kinetics of order/disorder  processes. (The corre- 
lation length Q also has a pronounced effect on 
equilibrium behaviour, of course). There are 
other length scales involved, however, which can 
also significantly alter the way in which a system 
will evolve. For  example, transition mechanisms 
may depend on individual atomic exchanges 
between neighbouring crystallographic sites in a 
crystal, i.e. on a microscopic scale. These may 
be associated with the development of modula- 
tions over tens to hundreds of unit cells, i.e. on 
a mesoscopic scale, which in turn are associated 
with free energy reductions of the crystal as a 
whole, i.e. on a macroscopic scale. In addition, 
the experimental techniques used to follow these 
changes will have their own intrinsic length scales 
so that microscopic, mesoscopic and macroscopic 
contributions can be examined separately. 
Nuclear magnetic resonance spectroscopy will 
give insights into the microscopic behaviour 
whereas the spontaneous strain will indicate the 
net macroscopic effect, and so on. 

The order parameter,  Q, is used here as a 
macroscopic thermodynamic quantity. It can also 
be understood in structural terms as, for example, 
the amqunt of displacement of atoms from their 
equilibrium positions in a high symmetry phase 
when it distorts to a low symmetry form by a dis- 
placive transition. If the translational symmetry 
is preserved in this example and the crystal is 
homogeneous, every atom moves in the same dir- 
ectional sense. The displacement of an individual 
atom is as representative of Q as the distortion 
of the crystal as a whole. For  displacive transitions 
in which translational symmetry is lost (doubling 

or tripling of the unit cell, etc.),  however, or for 
order/disorder  transitions, a number of atoms 
must be examined before the order parameter  can 
be defined in an analogous geometrical manner. 
Even if the crystal is homogeneous on a macro- 
scopic scale, it must be inhomogeneous on some 
atomic scale; a given structural site must contain 
either an A atom or a B atom although the average 
occupancy for that site across the whole crystal 
is fully defined as some intermediate value. In 
this case a local atomic scale order parameter,  
such as the number of 'correct '  neighbours round 
a given site need not correspond directly with the 
macroscopic order parameter.  

The length scales over which different order  
parameters operate effectively determine what is 
meant by a 'homogeneous'  or ' inhomogeneous'  
crystal. On an atomistic scale a short range order 
parameter,  ~, may be defined in terms of numbers 
of 'correct '  or ' incorrect'  bonds present, with 
respect to some ordered structure (i.e. in terms 
of pair correlations). On a mesoscopic scale the 
local order parameter,  Q1, may be defined in 
terms of site occupanies, lattice distortions, etc. 
In contrast with tr, Ql has a thermodynamic mean- 
ing because it involves a large number of atoms 
(~>105). For order/disorder  systems these micro- 
scopic and mesoscopic order parameters are 
related, to a first approximation, by Q2 = (tr), 
where the brackets signify the mean value, as may 
be shown by a Bragg-Williams type of approach, 
e.g. see Christian (1975) or Becket  (1978). The 
macroscopic order parameter,  Q, is then given 
by the average value of Ql throughout the whole 
crystal (Q = (Ql)). The value of trmay vary locally 
within a mesoscopic domain to which a value of 
Q1 is assigned. Ql can in turn vary between meso- 
scopic domains within a crystal without losing its 
thermodynamic significance. From a macro- 
scopic, thermodynamic point of view, the crystal 
may be regarded as being homogeneous if Ql = 
Q in all the mesoscopic regions and inhomo- 
geneous otherwise. 

The correlation length, r of Q may be under- 
stood physically in terms of the distance over 
which a change in the value of Q in one area 
of a crystal will produce correlated changes in 
other areas. Of course, ~: will vary according to 
the restoring forces which operate and, if the res- 
toring force for a small perturbation in Q goes 
to zero, the influence of the perturbation can 
extend to the whole crystal. r fact diverges when 
T approaches a critical temperature,  Tc, as: 

/ T -  Tc'~ -~ 
r = rc~ ~ - - ~ c  ) (v > O) (9) 
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where rco is the correlation length of Q at T = 
OK. For a second order transition T c is the equili- 
brium transition temperature and v = ~. 

The magnitude of ~ can be determined experi- 
mentally by making use of the Ginzburg criterion, 
which states that Landau theory fails if sponta- 
neous local fluctuations in Q become so large that 
they exceed the mean value of Q for the crystal 
(e.g. see Ginzburg et al., 1987). The temperature 
interval near T c over which this occurs (where 
Q is small) is known as the Ginzburg interval, 
A T  e , and can be estimated from: 

(kB~2(lt6 
AT G = A \ ~ - ~ }  �9 \r--~o ] (10) 

where AC is the jump in specific heat at Tc, l 
is the interatomic length scale (e.g. a unit cell 
dimension), A is a constant on the order of 
10 -2 - 10 -3, k B is the Boltzmann constant and 
( k B / A C  �9 l 3) is of the order of ~1 (Ginzburg et 
al., 1987; Salje, 1988b). The important point is 
that, for the structural phase transitions in miner- 
als which have so far been investigated, AT G 
appears to be very small, i.e. less than a few Kel- 
vins. rco is probably on a mesoscopic to macro- 
scopic scale, therefore, and no serious limitations 
to the applicability of Landau theory are antici- 
pated in this context. 

Loosely speaking, rco measures the length scale 
of the interactions which actually drive a particu- 
lar phase transition. In framework silicates an 
important mechanism for producing long-range 
interactions is via elastic strains (Carpenter, 
1988). One area of a crystal is influenced by the 
configuration adopted in neighbouring areas 
through the bending of the semi-flexible network 
of T-O-Tbonds,  where Tis A1 or Si in tetrahedral 
co-ordination and O is oxygen. More generally, 
transitions which involve large spontaneous 
strains appear to conform to this behaviour 
(Cowley, 1976; Folk et al., 1976; Als-Nielsen and 
Birgeneau, 1977). Examples are provided by 
As205 (Salje et al.,  1987; Redfem and Salje, 
1988), NaNO 3 (Poon and Salje, 1988; Reeder et 
al.,  1988) and CaCO 3 (Redfern et al., 1989). On 
the other hand, magnetic phase transitions and 
transitions in related pseudo-spin systems show 
short correlation lengths (small rco), large Ginz- 
burg intervals, significant deviations from Landau 
theory and, consequently, different kinetic behav- 
iour than would be predicted purely on the basis 
of the GL rate equation. They will still conform 
to the generalized rate law (equation 6), however, 
with solutions as discussed by Binder (1987) for 
first order transitions. 

In the case of time-dependent Landau theory 

there is one final length scale which plays a critical 
role in controlling which rate law will apply for 
a given system, the length scale of conservation, 
~c- This concept is most easily explained with con- 
crete examples. Take, first of all, a spinodal ex- 
solution process. An increase in one component 
at a given position in the spinodal modulation is 
compensated exactly by a decrease in that com- 
ponent in adjacent areas. The length scale over 
which this conservation occurs is the length scale 
of the modulations themselves, typically - 1 0 0 -  
1000A in silicates (Buseck et al.,  1980; Yund, 
1983, 1984). On the other hand, in an order/dis- 
order process the net balance of exchange is only 
between neighbouring crystallographic sites in the 
structure and this interatomic distance, therefore, 
represents the conservation length. For the limit- 
ing case of a purely displacive transition, a displa- 
cement of one atom from its position in the high 
symmetry structure need not be accompanied by 
any compensatory movement of atoms in an 
opposite sense and the conservation length is 
strictly zero. 

During spinodal exsolution, the effective corre- 
lation length of Q is on the order of the wave- 
length of the modulation, so that the ratio ~c/~ 
tends to 1. For order/disorder and displacive pro- 
cesses in silicate minerals we have argued that 
the correlation length of Q can be on a mesoscopic 
scale so that the ratio ~c/~ tends to zero. The 
C equation should, therefore, provide a correct 
description of the kinetics of spinodal decompo- 
sition but the GL equation should be used to 
describe the kinetics of order/disorder transi- 
tions. Very little is known about cases where the 
ratio ~c/~ is between zero and one, such as might 
occur if ordering is accompanied by a degree of 
mass transport. Solutions for such processes must 
be derived from the full rate equation (equation 
4) and will be mathematically complex. 

Alternative rate laws for order/disorder 
transitions 

In the previous discussion of the significance 
of correlation lengths it was intimated that the 
GL equation should provide a valid description 
of the kinetics of order/disorder transitions in 
framework silicates. Attempts have been made 
to use the Cahn equation to describe order/dis- 
order kinetics in metals, however, by extrapo- 
lating it to progressively smaller wavelengths in 
a largely empirical manner (Cook, 1969; Cook 
and Hilliard, 1969; Cook et al., 1969; de Fontaine 
and Cook, 1971). A fundamental problem with 
the latter approach is that the continuum model, 
i.e. effectively Fick's second law, is not strictly 
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appropriate for diffusion distances on an indivi- 
dual unit cell scale. The approach is nevertheless 
illuminating of some of the important physical 
parameters involved and it is briefly summarized 
in this section before dealing at length with GL 
solutions. 

Cahn equation for short wavelengths 
Langer (1971) showed that a general equation 

in the form of equation 5 can be reduced to the 
more familiar diffusion equation of  Cahn by 
choosing a simple macroscopic free energy func- 
tion and using a parabolic approximation for the 
variation of free energy with composition. The 
Cahn/Hill iard expression for spinodal decompo- 
sition (see Hilliard, 1970) results as one possible 
solution from equation 4 using s = ~. 

Oc D" 2r/2yV2c 2KDVnc 
- D "  VZc + 

at g" g" (11) 

where c is the concentration of a given atomic 
species, D is an effective interdiffusion coefficient, 
~7 is the linear strain per unit volume, Y is a func- 
tion of the elastic constants of the material, g" 
is the second derivative of the local free energy 
with respect to c, and K is the gradient energy 
coefficient. The first term on the right hand side 
of equation 11 effectively represents Fick's second 
law. The second term arises from the strain energy 
due to variations in lattice parameters in a com- 
positionally modulated crystal, and the final term 
arises from the energy contributions due to the 
presence of steep concentration gradients. Solu- 
tions are of the form of equation 8 with the ampli- 
fication factor, a(k), given by: 

a(k)= -Dlkl2 (l +2~g,Y+2---~K. Ikl2 (12) 

Now, since it is possible to describe ordered 
structures in terms of composition modulations 
with wavelengths which are some fraction of the 
unit cell size, equations 11 and 12 might be used 
as a basis for treating the kinetics of ordering or 
disordering. For  exsolution processes, steep con- 
centration gradients are energetically unfavour- 
able (K > 0) and g" is negative. In systems with 
g" > 0 and K < 0, steep concentration gradients 
will be energetically favourable and ordering may 
occur. Because of the simplifications introduced 
into the modified diffusion equation, particularly 
in linearizing the gradient term and the local 
energy term (g" is assumed to be constant), how- 
ever, the rate law strictly applies only for wave- 
lengths which are considerably larger than the 
atomic spacings and for small amplitudes. Cook 
et al. (1969) were nevertheless able to derive a 

M. A. C A R P E N T E R  AND E. SALJE 

discrete solution for short wavelengths in a cubic 
lattice which required a relatively minor modifica- 
tion of the original continuum expression to 
include the contributions of higher order terms 
in k; Ikl 2 is replaced by Be(k) where: 

B2(k) = ~ "  re(r) {1 - cos [~-Y(r)]} (13) 
r 

The term re(r) takes into account different jump 
frequencies for atoms moving into different neigh- 
bouring sites and r is the nearest neighbour site 
reached by vector ~(r). Further adjustments can 
be made to the elastic energy in order to account 
for atomic scale anisotropies in elastic energies, 
or to the gradient energy in order to include the 
effects of higher-order terms, but these are 
increasingly complex. 

From an experimental point of view the inten- 
sity of a satellite reflection, I(k,t), is proportional 
to the square of the amplitude of the composition 
modulation, A(k,t), and it is expected that: 

l(k,t) = I(k,o) exp [2a(k)t] (14) 

A plot of ln[I(k,t)/l(k,o)] against t for the decay 
of a modulated phase should, therefore, be linear 
and for a disordering reaction this would give 
ln(Q 2) oct. 

Paulson and Hilliard (1977) have shown that 
the modified rate equation gives adequate agree- 
ment between experiment and theory for the 
decay of synthetically modulated Cu-Au alloys 
at least down to wavelengths of ~10 lk. Although 
the overall approach can be questioned in that 
it is based on the assumption that Fick's law 
remains approximately adequate for diffusion dis- 
tances on a unit cell or interatomic scale, rate 
laws of the form lnI(k,t) oct are indeed observed 
for some disordering processes. Some of the 
phenomenological parameters could, in principle, 
be investigated experimentally to establish 
whether they have any real physical meaning. 
However,  the same exponential decay of l(k,t) 
may also occur in the GL limit and the observation 
of a particular rate law cannot of itself be taken 
as proof that a particular mechanism is operating. 
The nature of the length parameters,  ~ and ~c, 
for a given system of interest should be considered 
before distinguishing between kinetic behaviour 
governed by the GL or C equations. 

It is also of interest to note the k dependence 
of ~x(k) predicted by the modified version of the 
Cahn equation, with B2(k) replacing Ikl 2 and 
g" > 0, K < 0. The amplification factor is expected 
to have a maximum at the Brillouin zone bound- 
ary, to have minima between the zone centre and 
zone boundary and to extrapolate to zero at the 
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(b) 

I 
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a (k )  o . . . . . . . . . . . . . . . . . . .  

- v e  
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FIc. 1. Schematic variation of amplification factor, a(k), 
as a function of position in the Brillouin zone (shown 
along a* for simplicity in this case). Positive a(k) implies 
that the modulation grows in amplitude and negative 
a(k) implies that it decays. (a) For spinodal decompo- 
sition: g" < 0, K > 0. (b) For order/disorder: g" > 0, 
K < 0. (N.B. the value of k at which o~(k) is a maximum 
can vary with time during spinodal decomposition but 
remains constant during ordering or disordering.) After: 
Cook et al. (1969), Yamauchi and de Fontaine (1974). 

zone centre (Fig. 1, after: Cook et al., 1969; 
Yamauchi and de Fontaine, 1974; Paulson and 
Hilliard, 1977). 

For a recent review of the application of the 
Cahn equation see Hono and Hirano (1987). 

Ginzburg-Landau solutions 
Even though specific values for the two length 

parameters, ~c and ~, are not usually known for 
order/disorder  transitions in silicate minerals, 
there is sufficient evidence, as discussed above, 
to suggest that the ratio ~c/~ is much closer to 
zero (GL) than to unity (C). If no chemical trans- 
port occurs, the GL equation (equation 6) is 
expected to provide a more valid description of 
cation order/disorder  processes than the C equa- 
tion, notwithstanding the adjustments which have 
been made to the latter for small wavelengths. 
Different specific rate laws can be obtained from 
the GL equation, however, depending on the pre- 
cise nature of the physical processes which oper- 

ate at the microscopic and macroscopic levels. 
The solutions can be as diverse as Q2 oc lnt and 
lnQ oct. 

An important and valuable aspect of the GL 
equation, in practical terms, is that the depen- 
dence of G on Q may be given explicitly using 
the conventional Landau free energy expansions 
derived for equilibrium conditions. Thus, for a 
second order transition in a material for which 
only a single, scalar order parameter  is required: 

G = �89 Tc)Q 2 + �88 4 (15) 

This may be substituted directly into the GL equa- 
tion to give: 

dQ -rXexp(-aG*/RT) 
dt 2RT 

[a(T-  To) Q + bQ 3] (16) 

f Q - 2 R T  
~ t  - t o = yAexp(-AG*/RT) Qo 

(a (T-  Tc) Q1 + bQ3)dQ (17) 

which may be solved easily for some isothermal 
annealing sequence at temperature T. The Lan- 
dau coefficients and the value of T c are identical, 
in this case, to those used to describe equilibrium 
behaviour as a function of T, and AG* is the nor- 
mal free energy of activation. The coefficients 3' 
and A have to be treated numerically as proportio- 
nality constants; they cannot easily be determined 
from first principle calculations. 

Of course, tricritical, first-order or more com- 
plex formulations of the free energy may lead to 
differential equations which require either 
numerical solution or further simplifying assump- 
tions. Nevertheless, the resulting rate laws have 
immediate practical applications in interpreting 
experimental data for wide ranges of t, T and Q. 
Before demonstrating these applications for spe- 
cific minerals, it is necessary to summarize the 
most important situations envisaged by Salje 
(1988a). 

Q remaining homogeneous. If crystals remain 
homogeneous in Q through an ordering or disor- 
dering experiment, i.e. Q increases or decreases 
continuously and homogeneously, solutions of the 
form given in equation 16 apply. These complete 
solutions are valid for long time intervals and large 
variations in Q; they also apply to ordering or 
disordering below T c and to disordering above 
T c (Fig. 2). The implication is that the sequence 
of structural states through which the crystals pass 
as a function of time at constant temperature is 
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Fro. 2. Free energy (G)-order parameter (Q)-temperature (7) surface for a second-order transition showing 
the variation of Q during equilibrium cooling (dashed line), and during isothermal kinetic experiments for crystals 
which remain homogeneous in Q (heavy lines). Pathway 1: disordering above To; pathway 2: disordering below 

To; pathway 3: ordering below T e. 

identical with the sequence which would develop 
as a function of changing temperature under equi- 
librium conditions (Salje, 1988a). 

Simpler solutions may be derived for small dis- 
placements, 6Q, from the equilibrium value of  
Q, QCq, at a given annealing temperature. For 
the second-order case (equation 15), Salje (1988a) 
expanded OG/OrQ about Qeq and truncated the 
expansion after (8Q)2 to give: 

- R T  
t -  t o y A e x p ( _ A G , / R r ) b Q 2  q 

( 3bQeqA Q + 2bQ~q ~7 
| l n - -  - I n  (18) 
L AQo \3bQeqAQo + 2bQ2qJj 

where AQ = Q -  Qe.q and AQo = Q o -  Qeq. 
Truncating the expression after terms in 6Q (i.e. 
using a harmonic approximation, (aG/c?rQ) 
6Q) gives a simpler form valid for only a limited 
change of Q: 

- R T  . ( ~ Q )  
t -  to - y X e x p ( - A G * / R T ) b Q ~ q  In ~ (19) 

i.e. lnAQ 0= t (20) 

At temperatures close to T c, equation 15 reduces 
to: 

G ~- �88 4 (21) 

which, when substituted into the GL equation 
gives: 

t - t o = TAexp ( -AG*/RT) .  b - 

i.e. 

1 
- -  ~ t ( 2 3 )  Q2 

Fluctuations in Q. Within a crystal at equili- 
brium there will necessarily be local dynamical 
fluctuations in Q. The amplitudes of these fluctua- 
tions, from the dissipation-fluctuation theorem in 
the high-temperature limit (Salje, 1988a), are 
given by: 

((8Q)2) = kBT X (24) 
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where ( ( rQ) 2) is the mean  value of the amplitude 
squared, k B is the Boltzman constant;  )6 is the 
order parameter  susceptibility defined as: 

OZG 
X -1 = (25) oQZ 

where the susceptibility varies with temperature  
a s :  

X ~ ( T -  Tc) -~ (26) 

with 2/= 1 in Landau theory of a second-order 
phase transition. A t  equil ibrium there is a restor- 
ing force for any fluctuation from Qeq since, by 
definition, the crystal is at a min imum in G. Once 
the crystal has been rapidly heated (or cooled) 
to the temperature  at which a kinetic experiment  where 
is performed, this restoring force no longer exists 
and the fluctuations may become significantly 
amplified. Their  presence will obviously influence 
the excess free energy and the effect can be 
accounted for by including a gradient  term in the 
Landau expression: 

aG = f[�89 - Tc)Q 2 + 

]bQ 4 + ~g(AO)2]dV (27) 

where the integration over volume V is necessary 
to make AG independent  of composition. This 
is the simplest form of a Landau-Ginzburg  poten-  
tial in which the gradient energy coefficient g (a 
positive quantity) describes the contr ibut ion to 
the free energy of gradients in Q on a mesoscopic 
scale. (This term should not  be confused with 
gradient term, K, from spinodal theory; the 
nomencla ture  is usually that g refers to gradients 
in Q whereas K refers to gradients in compo- 
sition). 

Salje (1988a) substituted equat ion 27 directly 
into the GL equat ion and obta ined,  for small devi- 
ations from Qeq: + v e  

dQ _ AQ ~ 1  

dt r o 

7Aexp(-AG* / RT)gA 2Q 
(28) -v, 

2RT 

where r is a time constant: 

RT 
r = (29) 

TAexp(- A G* / R T)bQZq 

This is the same as equat ion 19 but  with the 
additional term in gV2Q to account for the pres- 
ence of the fluctuations. 

The behaviour of Q and its spatial variations 
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in the crystal can be treated as the sum of Fourier  
components:  

Q = ~_~ Q~kr (30) 

where Qk is the amplitude of a Four ier  component  
with wave vector k, and r is distance in the crysial. 
If it is assumed that the Fourier  components  are 
totally uncorrelated,  the ampli tude of each com- 
ponent  follows equat ion 19, but  with a different 
t ime constant,  depending  on  its wave vector: 

t - to  
In AQ oc - -  (31) 

rk 

yA(-AG*/ RT)gk 2 
r~ -1 = r -1 -t (32) 

RT 

This k-dependence of the t ime constant,  rk, is 
illustrated in Fig. 3. The rate of change of Q will 
be fastest (smallest time constant) for waves with 
large k, i.e. at the Bril louin zone boundary.  
Changes in Q will occur most slowly for waves 
with small k, i.e. at, or near,  the zone centre. 
It should be noted that this k-dependence is signi- 
ficantly different from that predicted by the modi- 
fied C equation (compare Figs 1 and 3). (In order  
to produce a smooth variation in 'rk 1 a t  the zone 
boundary,  it would actually be necessary to 
include a fourth order  gradient  term in equat ion 
27). 

I 

0 0 0  1/200 100 

Fro. 3. Schematic variation of the k-dependent part of 
the time constant (i.e. z~ -1 - T -1) as a function of wave- 
length (shown as position in the Brillouin zone along 
a*) from a GL solution with fluctuation terms. The rate 
of amplification is a maximum (r k = minimum, ~.1 = 
maximum) at the Brillouin zone boundary and has the 
same sign for all waves. Note that in order to achieve 
a smooth variation at ~0,  higher order terms than are 

given in equation 32 would be needed. 
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There will also be an effect on the spread of 
k-vectors of Q which develops that is analogous 
to the development of fluctuations in a system 
at equilibrium. Fluctuations with long wave- 
lengths do not consume much gradient energy 
[i. e. ~g(VQ) a] and are consequently more common 
than those with short wavelengths. They also 
decay more slowly. A crystal in equilibrium at 
high temperatures contains more fluctuation 
waves at k = 0 than at k corresponding to a zone 
boundary point. If this crystal is quenched into 
the stability field of a differently ordered phase, 
the build up of the new ordered state can take 
advantage of these fluctuations. If the critical 
point for the ordering happens to be at the zone 
centre, many fluctuations with the correct k wiU 
already be present, but, in addition, there will 
be many with k close to zero and a rather broad 
k distribution of Q will develop at intermediate 
stages in the kinetic experiment. Zone boundary 
transitions, on the other hand, 'see' fewer fluctua- 
tions with approximately the correct k-vector and 
a sharper k dependence of Q can be expected. 
Since the different components have different 
time constants, a spread in the magnitudes of the 

Q 

I t 

Qo 

Qeq 

to tn 
t 

Fro. 4. Schematic variation of Q with annealing time, 
t, for a disordering transition in a crystal which is homo- 
geneous at the start (Q = Qo) and at equilibrium (Q 
= Qeq). Inhomogeneities in Q develop throughout the 
crystal during the disordering process in this example 
due to the variation in the time constant, ~'k, with k 
for different Fourier components of Q. Pathways for 
the mean values of Q and for two limiting Fourier com- 
ponents (k 2 > kx) are shown. At any given time the 
crystal has a range of values of Q given by the envelope 
of Qkl and Qk2" At a time, t,, some regions of crystal 
may reach their equilibrium state of order ahead of 
others. These regions can act as nuclei and may grow 
at the expense of neighbouring regions which have 
lagged behind. For an ordering reaction QeqiS greater 
than Qo but the general behaviour would otherwise be 

the same. 

order parameter on a mesoscopic scale may deve- 
lop with time, as illustrated for a disordering 
sequence in Fig. 4. 

The circumstances in which fluctuations are 
likely to have the least impact on experimental 
observations occur for disordering of a crystal 
which is ordered on the basis of a zone boundary 
wave vector (superlattice reflection at Brillouin 
zone boundary). Such a crystal starts with a spec- 
trum of Fourier components with a spread of 
amplitudes which has a sharp maximum at the 
zone boundary position in k-space. The Fourier 
component which decays fastest is that which pre- 
dominates in the crystal, therefore, and other 
components have little chance of developing signi- 
ficant amplitudes. In other words, most of the 
disordering is achieved through the decay of a 
single Fourier component uniformly throughout 
the crystal, which remains homogeneous. Disor- 
dering of a crystal which is ordered on the basis 
of a zone centre wave vector, on the other hand, 
is more likely to involve the development of in- 
homogeneous variations in Q because of the slow 
decay of fluctuations with small k-vectors and the 
broader spread of the k-vector spectrum. 

Ordering in a crystal which was perfectly homo- 
geneous in Q on a mesoscopic scale, whether on 
the basis of a zone centre or zone boundary wave 
vector, would follow a GL rate law of the form 
given in equation 17. If any fluctuations were pres- 
ent, however, these would lead to increasing vari- 
ations in Q because each component of the 
fluctuations would be amplified at a different rate. 
This, of course, corresponds to the normal picture 
of an ordering transition in which a range of Four- 
ier components is amplified; nucleation may occur 
if different components become highly correlated 
such that individual ordered regions exceed the 
critical radius, e.g. in a first-order phase transi- 
tion. 

In all cases where heterogeneities develop, the 
spread of values of Q locally within the crystal 
initially increases. As equilibrium is approached, 
the amplitudes of fluctuations again become con- 
strained by the free energy minimum with respect 
to Q, and the total spread of values about a mean 
value will diminish. Should any local region 
achieve Q = Qeq during the course of the exper- 
iment, e.g. at t, in Fig. 4, these regions might 
act as nuclei which would grow at the expense 
of the remaining areas of crystal. Such nucleation 
can occur even when the transition would be 
thermodynamically continuous under equilibrium 
conditions. Salje (1988a) also showed that the 
heterogeneous spatial variations of Q which deve- 
lop in this way might be sufficiently correlated 
to give a well-defined modulated structure. For 
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example, if there is simply a range of Fourier com- 
ponents present in a crystal which is undergoing 
disordering, the component with largest ~'k (slow- 
est rate of decay) would persist for the longest 
time. As the faster components decay away, this 
'slow' component would remain as a poorly 
defined modulation. In other words, the modu- 
lated phase arises purely as a result of the kinetic 
process itself. In addition, however, the symmetry 
constraints which apply to equilibrium conditions 
no longer operate for an inhomogeneous crystal 
which is out of equilibrium; order parameter  cou- 
pling which would not be allowed under equili- 
brium conditions can develop. Even at the GL 
limit of long correlation lengths, therefore, meta- 
stable modulated structures with rather well- 
defined wavelengths and orientations may 
appear. This general issue of 'kinetic'  modulated 
phases is discussed at greater length in a later sec- 
tion. 

The effect of 'local fields'. So far it has been 
assumed that, in a crystal which develops fluctua- 
tions in Q during a kinetic experiment, the hetero- 
geneities do not in themselves influence the rate 
of ordering or disordering of individual meso- 
scopic regions. If, however, the local environment 
exerts a significant influence on the kinetics in 
a given region, and that local environment, or 
'local field', is not the same as the average 
environment, or 'mean field', of the crystal as a 
whole, then a quite different result is obtained. 
Salje (1988a) illustrated the effect by using the 
analogy of a spin system in the mean field approxi- 
mation. 

Defining the order parameter ~ for some local 
area of crystal, a possible mean field model yields: 

lncr~t[  1-tanh(Me"]]\RT/I (33) 

In this case Me~ is the effective field which is conju- 
gated to ~ and is seen by all regions of the crystal. 
The effective time constant is given by: 

r-1 ~: [1 - tanh (-~-~)] (34) 

If tr varies locally then Me~ f will also vary locally 
and the probability of having a given local field 
will obviously depend on the probability of finding 
the appropriate configuration of local regions with 
particular values of tT. The mean value of ~r for 
the crystal, (~), then varies with time during a 
kinetic experiment according to the integral of 
all the local ~r pathways, as controlled by their 
local fields. This integration yields, for a suffi- 
ciently broad Gaussian distribution of local confi- 
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gurations, a rate law of the form (over a limited 
time interval): 

(tr) ~ ARTlnt + B (35) 

A and B are constants at constant temperature. 
A similar analysis is achieved with the GL equa- 

tion by describing the contributions of local fields 
in terms of local susceptibilities. In the harmonic 
approximation: 

dG 
- x ~ Q  (36) 

dQ 

where Xr is the effective susceptibility and con- 
sists of two parts: 

X~ 1 = Xff 1 + X~ -1 (37) 

Xff I is the normal susceptibility, as defined for a 
homogeneous crystal and X/-1 is the contribution 
of random fields arising from local inhomo- 
geneities in Q or from any other effects, such as 
the presence of defects or impurities. Note that 
X~ -1 operates on a mesoscopic or larger scale since 
it is defined in terms of Q, which is itself a meso- 
scopic or macroscopic parameter.  

Individual regions which are homogeneous in 
Q follow the rate law given in equation 19 as: 

In AQo ~ re~ / 

though in this case the effective time constant, 
reff, is given by: 

2RT 1 
(39) "reff = yhexp(-AG*/RT) (Xh I + Xr 1) 

The variation with time of the mean value of AQ 
for the whole crystal ((AO)) than depends on the 
probability distribution of Xe 1, P(X~). The math- 
ematical procedure for integrating over all X~ 1 
involves a Laplace transformation (Salje, 1988a; 
Salje and Wruck, 1988). For example, if P(X-~ 1) 
is a delta function (Fig. 5a), i.e. X~ -1 is the same 
throughout the crystal, Q will remain homo- 
geneous and the solution has the form of equa- 
tions 19 and 20 (lnAQ oct). At  the other extreme, 
if P(X~) is a constant, Po, all values of XJ  are 
equally probable (Fig. 5b) and the solution for 
long times and small deviations from equilibrium 
has the form: 

ln[(AO) �9 At] oc At- Xo I (40) 

Xo I is the effective susceptibility of the mean value 
of AQ after the integration over all Xe-~ and At 
= t -- to, AQ = Q - Qeq. As usual, X -1 will vary 
with Tand  may have a singularity as T ~  T c. 

Other P(X~) distributions are also possible and 
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each leads to a slightly different rate law. A Max- 
well distribution (Fig. 5c) gives a rate law of the 
form: 

In (AQ) ~ ~/t (41) 

and Salje and Wruck also discuss the case of a 
Gaussian distribution (Fig. 5d) which gives a com- 
plex rate law involving the error function. 

These rate laws derived from the GL equation 
are all based on a harmonic approximation for 

Xe~ G as a function of AQ and strictly apply only for 
small deviations of Q from Q~q. The important 
general features, however, are firstly that the rate 
law which operates in a given system may depend 
rather sensitively on the nature of inhomo- 
geneities and defects present in the material. 
Secondly, the presence of such inhomogeneities 
in the starting crystals is likely to give rise to in- 
homogeneities in Q during the course of the kine- 
tic experiment even if the final equilibrium state 
is homogeneous. Numerical solutions for wider 
ranges of Q and t can be obtained for individual 
cases if the free energy contribution of the local 

X~f inhomogeneities or defects can be expressed 
formally in the OG/OQ term of the GL equation. 

In contrast with the behaviour of homogeneous 
crystals, the intermediate structural states which 
develop during annealing do not correspond with 
any equilibrium structural states. Each small 
region of crystal follows a path across its own free 
energy surface. This may be quite different from 
the free energy surface defined by Landau expan- 
sions of the usual form for predicting equilibrium, 
although some fluctuations might be close to 
dynamical fluctuations predicted by Landau-  
Ginzburg theory (i.e. including the gradient 

X~,~f energy in equation 27). Because of interactions 
between adjacent regions, the free energy sur- 
faces will also change with time and, unless dis- 
crete nuclei form, the individual regions will have 
continuous variations in Q and no well defined 
boundaries. Salje (1988a) refers to this as 'multi- 
valley' behaviour. 

An  activation energy can always be introduced 
by scaling the time, t, with the time required for 
some elementary step, t'. The temperature depen- 
dence is: 

(c) 

p (x;~,) 

(d) 

F' (X;~I . . ~  

x;~, 
FIG. 5. Different probability distributions, P(X~d), for 
the effective local susceptibility, X~ d, (schematic). (a) 
A delta function; Xe d is the same everywhere in the 
crystal. (b) Every value of X~-~ has an equal probability, 
Po, of occurring somewhere in the crystal. (c) Maxwell 

distribution. (d) Gaussian distribution. 

[AG*~ 
t '  or exp ~ - - ~ j  (42) 

Taking the simple mean field solution (equation 
35): 
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AG* 
(~) o~ R T l n t  - 

R T  

If we equate (or) with Q2 this gives: 

(44) 

AG* 
Q2 cc R T l n t  - (45) 

R T  

Coupling o f  AG* with Q. Further variations in 
the rate laws for order/disorder processes may 
occur if the free energy of activation, z~G*, itself 
varies with Q. This can be understood physically 
if, for example, the energy barrier associated with 
breaking an aluminium-oxygen bond depends on 
whether the oxygen is also bonded to a silicon 
atom or an aluminium atom. The former would 
predominate in a crystal with an ordered distribu- 
tion of A1, Si while the latter might exist in a 
disordered crystal. Other neighbouring atoms 
might also have an influence but, for strong, partly 
covalent bonds, it is unlikely that the overall effect 
could be large. In this case the enthalpy of activa- 
tion, AH*, is expected to remain effectively con- 
stant during an isothermal experiment. On the 
other hand, only a certain proportion of possible 
activated states will lead to a change of order in 
the desired direction, and this proportion may be 
sensitive to the state of order already attained. 
Thus, in a fully ordered state, almost any 
exchange of atoms will lead to a decrease in order, 
but when the crystal is already substantially disor- 
dered, only a small fraction of the total number 
of possible exchanges will lead to a further 
increase in disorder. The entropy of activation, 
AS*, could depend sensitively on Q, with the 
result that AG* will vary systematically during an 
isothermal kinetic experiment. 

The coupling between Q and AG* may be 
expressed formally as: 

AG* = AG* + eGQ 2 (46) 

and, since: 

2~G* = AH* - TAS* (47) 

the coefficient, e~, can be split into enthalpy and 
entropy contributions: 

AG* = 2~H* + er~Q z - T(AS* + esQ z) (48) 

The GL equation then becomes: 

dO yAexp ( -2~G~/RT) ,  exp( -  e6Q2/RT)  

dt 2 R T  

OG 
"0---Q (49) 
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If Q remains homogeneous, a simple solution for 
small deviations from equilibrium and for a 
limited time interval is obtained by using the har- 
monic approximation (i. e. using 0 G / a Q  = X- 1Q). 
Salje (1988a) showed that this gives: 

ln(AQ]+!E[fe~]n Q2n]Q 
\AQo ] z L~.-~) "n. n-----~.JQo 

- 2 R T x  
= y A e x p ( - A G * / R T )  (t- to) (50) 

If the coupling energy is small relative to the ther- 
mal energy (co ~ R T )  the series can be truncated 
to give: 

AQ e G 2_  Q2o) 
In AQo + ~-~(Q = 

- 2 R T x  
yAexp( -AG*o/RT)  ( t -  to) (51) 

Numerical solutions of equation 49 may be 
required if the simplifying assumptions needed to 
reach equation 51 are considered undesirable. 
Since AG* is just a phenomenological parameter, 
its physical origin may not always be obvious. In 
most cases of order/disorder transitions in miner- 
als, however, it is likely to correspond to micro- 
scopic activated states involving exchange of ions 
between neighbouring crystallographic sites. 

Origin of modulated phases during kinetic 
experiments 

One mechanism for producing incommensurate 
structures under equilibrium conditions is by the 
direct coupling of one order parameter, Q1, with 
gradient terms of a second order parameter, Q2 
(Landau and Lifshitz, 1980). The simplest Landau 
expansion to describe this behaviour for equili- 
brium conditions has the form: 

G = �89 - Tc) (Q2 + Q2) + �88 + Q4) + 

. . .  + d[QI(VQ2) - Q2(VQ1)] 

+ e[(VQ1) 2 + (VQ2) 2] (52) 

A solution of this expansion at ( d G / d Q )  = 0 has 
Q1 and Q2 as sinusoidal functions of distance in 
the crystal. Alternatively, the coupling might 
occur indirectly via the spontaneous strain (Salje 
and Devarajan, 1986). In either case, the appro- 
priate Landau free energy function may be substi- 
tuted into the GL equation to predict time- 
dependent behaviour. By implication, an incom- 
mensurate phase could occur during a kinetic 
experiment if the kinetic pathway is across the 
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same free energy-order parameter  surface as 
defined by the equilibrium expansion. This incom- 
mensurate phase need not be the equilibrium state 
at the particular annealing pressure and tempera- 
ture. 

Under  non-equilibrium conditions there are 
additional possibilities for producing modulated 
structures, either because of the effects of in- 
homogeneities in Q or because the relaxation of 
symmetry constraints allows other forms of 
coupling. A simple variation in the time constants 
of independent Fourier components of a single 
order parameter  in an inhomogeneous crystal, as 
discussed above, will tend to leave only a poorly 
defined k-vector, however. More clearly defined 
modulations are likely to develop when coupling 
effects give preferred wavelengths and orien- 
tations. 

Given that framework silicates often appear to 
require more than one order parameter  to 
describe their structural states, it is to be expected 
that modulated structures will frequently develop 
during kinetic experiments. A particularly 
important class of coupling mechanisms involves 
separate displacive, Q, and order/disorder ,  QOD, 
contributions, as in cordierite (Salje, 1987a; Put- 
nis etal . ,  1987)and feldspars (Salje, 1985, 1987b; 
Salje et al., 1985; Redfern and Salje, 1987; Car- 
penter, 1988). Also, since many phase transitions 
in nature occur under non-equilibrium conditions, 
these 'kinetic' modulated phases must play a role 
in determining the structural and thermodynamic 
evolution of some important rock-forming miner- 
als. This brief discussion only touches on the more 
general issue of the stability of incommensurate 
superstructures, however. For a fuller description 
of the origin of incommensurate structures in 
minerals, readers are referred to the work of 
McConnell and H e i n e  (Heine and McConnell, 
1984; McConnell and Heine, 1985; McConnell,  
1988; and references therein). 

Experimental analysis 
Experimental verification of these rate laws is, 

in principle, relatively straightforward. Two para- 
meters must be measured as a function of time 
and temperature, the mean value of Q and the 
spread of Q within each sample. The order para- 
meter is not measured directly but, as in studies 
of equilibrium behaviour, indirectly through any 
physical property which varies in a definable way 
with Q. Measurements can be made of lattice par- 
ameters, to give the variation of Q through the 
spontaneous strain, intensities and broadening of 
superlattice reflections, birefringence, frequen- 
cies and line widths of selected modes in vibra- 
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tional spectra, nuclear magnetic resonance 
spectral peak intensities, etc. Given the variability 
of possible rate laws for ordering and disordering 
processes, it is often advisable to plot data on 
T I T  diagrams initially. This does not involve the 
assumption of any particular rate law and will 
highlight changes in mechanisms or systematic 
variations in AH* as a function of temperature 
or reaction progress (Putnis and McConnell, 
1980). 

Appropriate  kinetic data which may be used 
to follow the evolution of the order parameter  
in a cation ordering or disordering reaction exist 
only for a limited number of mineral systems. 
These are used to illustrate practical implications 
of the overall approach reviewed above. 

Zone  boundary disordering (omphacite). 
Ordering of Mg/A1 and Na /Ca  on M1 and M l l  
and M2 and M21 sites in the pyroxene structure 
leads to a symmetry reduction from C2/c  to P2/n  
in natural omphacite with compositions close to 

-Nao.sCao.sMgo.sAlo.sSi206 

(see recent reviews by: Cameron and Papike, 
1981; Carpenter, 1983; Rossi et al., 1983). Disor- 
dering above T c can be followed by observing 
changes in the intensities, Ik, of superlattice 
reflections in crystals which have been annealed 
and then quenched. These reflections appear to 
decrease continuously with annealing time at a 
given temperature,  while remaining sharp (Fleet 
et al., 1978; Carpenter, 1981; Carpenter et al., 
1989b). Since I k is proportional to Q2, the disor- 
dering process, therefore, seems to involve a 
homogeneous and continuous decrease in the 
amplitude, Qk, of a single Fourier component of 
Q. The transition is associated with a point on 
the Brillouin zone boundary and this Fourier com- 
ponent is expected to have the smallest time con- 
stant (fastest rate of decay). 

The disordering behaviour observed by Car- 
penter et al. (1989b) follows Q2oc _ lnt for a con- 
siderable range of Q (Fig. 6) rather than ln/XQ 
oc t, as would be expected for the simplest, homo- 
geneous GL behaviour. A satisfactory fit between 
the observations and a GL solution was obtained 
by using a tricritical model for the free energy 
driving force: 

G = �89 - Tc)Q 2 + ~cQ 6 (53) 

and a systematic dependence of AS* on Q2, as: 

AS* = AS* + esQ 2 (54) 
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This gives a GL equat ion of the form: 

f' I Q --2RT . 
to dt = Jao yAexp( -  2XG* / R  7) 

exp(-esQ2/R) 
dQ (55) 

[a (T -  Tc)Q + cQ s] 

Values of T c = 865~ a = 22.8J �9 mole -1 �9 K 1 
and c = 25900J �9 mole -1 were derived from an 
analysis of experimental  and structural data (Car- 
penter  et al., 1989a), and AH* between - 5 4 0  and 
580kJ �9 mole -1 (at one atmosphere) from a T I T  
analysis of the kinetic data (Carpenter  et al., 
1989b). Numerical  solutions with [ exp ( -AS* /  
R)]/~/k = 9 x 10 -I9 sees and e s = 20J - mole -1 
�9 K -1 are shown in Fig. 6. 

Zone boundary ordering (anorthite). A1/Si 
ordering in anorthite (CaA12Si208) gives rise to 
a doubling of the triclinic feldspar unit  cell (for 

recent reviews see Ribbe,  1983a,b; Smith, 1983, 
1984; Smith and Brown, 1988; Carpenter ,  1988). 
The s_ymme_try change is defined, for convenience,  
as C1 ~.~ I1. T c for this transition is well above 
the melt ing point but  crystals with substantial AI/  
Si disorder can be synthesized by annealing glass 
of anorthite composit ion for short times at tem- 
peratures above - 1100 ~ (Laves and Goldsmith,  
1955; Goldsmith and Laves, 1956; Kroll and 
Mt~ller, 1980). Unde r  these synthesis conditions, 
the first crystals to form give very diffuse intensity 
around h + k = odd, l = odd superlattice positions 
in over-exposed electron diffraction patterns. On 
further isothermal annealing,  diffuse but  quite dis- 
crete reflections develop as pairs about  these 
superlattice positions, closely resembling the 
so-called 'e '  reflections of the incommensurate  
structure at in termediate  compositions in the 
plagioclase feldspar solid solution (NaA1Si30 8- 
CaA12Si208). On further anneal ing the incom- 
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mensurate reflections give way to progressively 
stronger and sharper reflections at the superlattice 
positions themselves. 

The ordering transition under metastable con- 
ditions clearly proceeds by the amplification of 
a spectrum of Fourier components of Q with dif- 
ferent wavevectors centred around superlattice 
positions in the reciprocal lattice. The incommen- 
surate structure which develops at relatively small 
QOD may arise entirely as a consequence of the 
kinetic process or because it can exist as a stable 
equilibrium state over some t_emper_ature range 
between the stability fields of C1 and 11 structures. 
In either case, additional gradient or coupling 
terms must be included in the Landau-Ginzburg 
expansion to describe the free energy driving 
force for ordering. A possible source of coupling 
terms is the order parameter,  Q, for a displacive 
monoclinic (C2/m) ~ triclinic (C1) transition in 
anorthite. Tc for this transition would be similar 
to or higher than T c for the C1 ~ / 1  transition 
(Carpenter, 1988). Alternatively, coupling with 
a C1 A1/Si ordering scheme might occur. This 
remains to be characterized, however, though an 
indirect coupling mechanism, via the spontaneous 
strain, is suspected. For present purposes it is suf- 
ficient to note that, as expected from theory, the 
metastable conditions of a kinetic experiment pro- 
mote the development of a modulated structure. 

Solution calorimetric data show that the excess 
enthalpy associated with the transition increases 
in magnitude (becomes more negative) approxi- 
mately linearly with the logarithm of annealing 
time at constant temperature (Fig. 7, from Car- 
penter, 1988). Although numerical values for the 
macroscopic order parameter  associated with the 
A1/Si ordering, QoD, have not been obtained for 
the synthetic samples, estimates of the Landau 
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coefficients for equilibrium behavior suggest that 
the transition may be close to being tricritical in 
character (Carpenter, 1988). For  QOD between 
0 and - 0 . 6  the excess enthalpy would be approxi- 
mately proportional to Q~D. If the inhomo- 
geneities in Q are ignored, preliminary 
experiments at different annealing temperatures 
(Carpenter, in preparation) give results which can 
be described for a limited range of QoD using a 
rate law of the form: 

AH* 
Q2 D o: Alnt  + -  (56) 

R T  

with AH* between 400 and 500 kJ �9 mole -1. The 
A coefficient appears to be temperature depen- 
dent, however, and the linearity of Q2 with lnt 
is not as well defined as in the case of cordierite 
(see below). 

It is also possible to describe the ordering kine- 
tics from a microscopic point of view. As in the 
case of cordierite (below), a separate order para- 
meter, or, describes the state of A1/Si order on 
a microscopic scale. This parameter  is expected 
to be related to QOD via: 

(~) = Q2 D (57) 

and is proportional to the number of nearest 
neighbour tetrahedral cation site linkages of the 
form A1-O--A1. If the enthalpy change, Ah, for 
each exchange reaction of the form: 

(-A1-O-A1-)  + 
(-Si-O-Si-)---~ 

2( -A1-O-Si - )  (58) 

is constant, then the total enthalpy change could 
be understood in terms of a logarithmic decrease 
in the number of A1-O-A1 bonds. Other contribu- 
tions to the excess enthalpy, such as the elastic 
energy, will be small. The microscopic mechanism 
may include some dependence of the entropy of 
activation on cr to give a cr oc lnt rate law. The 
mesoscopic mechanism clearly involves inhomo- 
geneities in QOD, however, and the inhomo- 
geneous behaviour can itself lead to a rate law 
of this form (e.g. equation 35). 

Zone centre disordering (albite). The mono- 
clinic (C2/m) ~ triclinic (C1) transition in albite 
(NaA1Si3Os) involves two order parameters; QOD 
describes the contribution of A1/Si ordering and 
Q describes the contribution of atomic displace- 
ments in lowering the symmetry. Bilinear 
coupling occurs via the spontaneous strain and 
the evolution of both order parameters can be 
followed from measurements of lattice para- 
meters (Salje, 1985; Salje et al., 1985). Under  
equilibrium conditions, albite crystals are homo- 
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the development of modulations in Qoo during disordering. 

geneous with respect to both Q and QoD, at least 
on a mesoscopic scale, and no modulated struc- 
tures are known. 

Salje and co-workers have recently found that 
modulations develop during isothermal disorder- 
ing of ordered albite above T c. These appear to 
be a consequence entirely of kinetic controls, with 
line broadening of X-ray diffraction maxima 
showing substantial local variations in Q and QOD 
(Fig. 8). The rate law for disordering at short 
times, using the spontaneous strain to follow QOD 

on a macroscopic scale, appears to be of the form: 

lnQoo ~ t (59) 

The behaviour of substantially disordered mater- 
ial can be represented approximately as: 

Qon ~ lnt (60) 

If the kinetic behaviour is determined on a more 
local scale (e.g. using spectroscopic methods), 
similar rate laws are found for the average order 
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parameter. The time evolution of (QoD) measured 
on either length scale is identical, therefore. 

Again as expected from theoretical consider- 
ations, zone centre disordering (albite) leads to 
significant inhomogeneities in Q and QOD where- 
as, during zone boundary disordering (ompha- 
cite), crystals remain homogeneous. This reflects 
the likelihood that the most important Fourier 
component has the fastest rate of decay in the 
zone boundary case but the slowest rate of decay 
in the zone centre case. Whether this is a truly 
general rule remains to be seen, however. 

A modulated structure is commonly found in 
natural samples of potassium-rich alkali feldspar 
(reviewed by: Ribbe, 1983a,b;  McLaren, 1984; 
Smith and Brown, 1988) and its origin as being 
a consequence of metastable ordering below T c 
has been the subject of much speculation (see 
Smith and Brown, 1988; Carpenter and Putnis, 
1985). Disordering of well-ordered triclinic crys- 
tals follows Q 2  o oc lnt at one atmosphere (Car- 
penter, 1988). The kinetic data are extremely 
limited, but the macroscopic approach presented 
here clearly provides a basis for systematic studies 
of the evolution of both natural and experimen- 
tally heat treated samples. 

Z o n e  centre  order ing  (cordieri te) .  Glass of cor- 
dierite composition (Mg2A14Si501s) crystallizes 
readily at temperatures of -1000-1450 ~ and the 
first-formed crystals are hexagonal with substan- 
tial A1/Si disorder between tetrahedral sites. On 
annealing at constant temperature the degree of 
A1/Si order increases and a modulated structure, 
consisting of two orthogonal transverse modula- 
tions, develops. On further annealing, the modu- 
lated structure gives way to a twinned 
orthorhombic structure (Putnis, 1980a,b; Putnis 
and Bish, 1983). As in the case of albite, two order 
parameters are required to define the thermo- 
dynamic behaviour. QoD refers to A1/Si ordering 
and Q to distortions from hexagonal symmetry 
(Salje, 1987a; Putnis et  al . ,  1987). Q and QOD 
are actually two-dimensional because of the high 
symmetry involved, but this has little bearing on 
the simple kinetic analysis presented here. 

A microscopic order parameter, tr, is given by: 

tr = (1 - ~.N3) (61) 

where N is the number of A1-O-A1 linkages per 
unit cell and is expected to be zero in the fully 
ordered orthorhombic structure. 

Mean values of N and, hence, tr have been 
obtained for several isothermal series spanning 
the hexagonal, modulated and orthorhombic 
states by magic angle sample spinning NMR 
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FIG. 9. Variation in number, N, of AI-O-AI linkages 
as a function of log (annealing time) for A1/Si ordering 
in cordierite at different temperatures (from Putnis et 
al., 1987). The 1185 and 1290 ~ data have very different 
slopes from the 1400~ data, perhaps suggesting the 
operation of a different ordering mechanism above and 

below --1300 ~ 

spectroscopy (Putnis, 1988; Putnis et  al. ,  1985, 
1987; Putnis and Angel, 1985) and by infrared 
spectroscopy (GiJttler et  al . ,  1988). These are 
shown in Fig. 9 and imply a rate law of the form: 

tr oc A R T l n t  + B (62) 

It appears that the A coefficient varies with tem- 
perature, but this aspect of the behaviour is not 
yet fully understood. The TTT analysis of Putnis 
and Bish (1983) suggested that a change in the 
microscopic ordering mechanism occurs at 

1300 ~ which would account for the substantial 
difference in slope between the NMR data above 
and below this temperature, however (see Fig. 
9). 

According to equation 44 the temperature 
dependence of B in equation 62 should give an 
estimate of the activation energy. Using the 1195 
and 1290~ data in Fig. 9, a value for AH* of 
--410-590 kJ.  mole -1 is obtained, which is consis- 
tent with the value of 500 ___ 40kJ �9 mole -~ given 
by Putnis and Bish (1983). 

Combined calorimetric data (Carpenter et  al . ,  
1983) and NMR data (Putnis and Angel, 1985) 
suggest that ~h for individual A1/Si exchanges 
does not vary with Q or QOD and Carpenter et  
al. (1983) expressed the microscopic rate law as: 

dN 
_ _  oc e - N  ( 6 3 )  
dt 

This is equivalent to equation 61, since tr is pro- 
portional to N. The kinetic and thermodynamic 
data are insufficient to probe these rate laws 
further at this stage, but one possible interpre- 
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tation of the macroscopic behaviour is that AG* 
varies with tr. The presence of modulations clearly 
shows that QOD and Q become inhomogeneous 
on a mesoscopic scale, however, and an alterna- 
tive explanation involving the influence of local 
fields may be more realistic. That a modulated 
phase appears by coupling between order para- 
meters under metastable conditions (Salje, 1987a; 
McConnell, 1985, 1988) is not at all surprising 
in the light of the other experimental observations 
and theoretical considerations discussed above. 

Disordering of  incommensurate phases. In 
general it is likely that order parameters for 
incommensurate phases have rather long correla- 
tion lengths. Apar t  from this, the kinetics of 
order/disorder  processes should depend on the 
same factors as for commensurate transitions. 
Limited data exist for the time dependence of 
order parameter changes in such systems but dis- 
ordering data for nepheline (~Na3Kml4Si4016) 
are sufficient to illustrate the important issues, at 
least. 

McConnell (1981) followed the intensities of 
incommensurate superlattice reflections from a 
natural nepheline in situ at temperatures up to 
150~ On heating, the reflections show a sharp 
initial decrease in intensity, corresponding to 
rapid atomic displacements, followed by a slower 
decay associated with the disordering of potas- 
sium ions and vacancies between large cavity sites 
(McConnell, 1981, 1985). The reflections remain 
sharp during the disordering process suggesting 
that crystals remain homogeneous in Q. Tc is esti- 
mated as -183  ~ and the intensity data after rela- 
tively long annealing times at 100, 125 and 150 ~ 
are consistent with second-order character for the 
transition (Fig. 10a). 

Close to Tc, the GL solution for a homogeneous 
crystal approximates to 1/Q Z oc t (equation 22) 
and the intensity data obtained by McConnell at 
150 ~ are consistent with this, assuming I k oc Qa 
(Fig. 10b). At  100~ and 125~ the rate law 
appears to be closer to ln(Q-Qeq) 0c t (Fig. 10c), 
which is the simplest solution for a homogeneous 
crystal. A T I T  treatment of the data gives AH* 

70 kJ �9 mole -1, and suggests that AH* does not 
obviously vary systematically with Q (Fig. 10d). 
McConnell (1981) obtained 81 ___ 12kJ �9 mole -1 
by assuming a linear relation between I k and t 
over a limited range of t at each temperature.  

These intensity data are obviously not adequate 
to determine the rate laws unambiguously but 
they are at least consistent with simple GL solu- 
tions. A change from lnAQ ~ t behaviour below 
T c (nepheline) to Q2 ~ lnt behaviour above T c 
(omphacite) could be rationalized if AS* varies 
with Q2 at T > T c but not at T < T c. Above 
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T c almost any activated state will lead to a 
decrease in order initially but the proportion will 
be reduced as Q diminishes. Below Tc, on the 
other hand, the change of order must be directed 
towards an equilibrium state which still has a high 
degree of order and each step is more likely to 
be constrained by the same proportion of appro- 
priate activated states. 

Conclusions 

We have made no attempt to justify the mathe- 
matical basis of the rate laws presented in this 
paper. Interested readers are referred to the origi- 
nal papers of Glauber  (1963), Langer (1971), 
Metiu et al. (1976a,b) and Salje (1988a) for the 
full derivations. Rather,  we have intended to 
demonstrate that the use of t ime-dependent Lan- 
dau theory provides a new and practical approach 
for quantifying the kinetics and mechanisms of 
order /disorder  transitions. 

It is anticipated that cation ordering processes 
in minerals will generally involve long correlation 
lengths and that the important ratio ~c/~ tends 
to zero. As a result, the Ginzburg-Landau equa- 
tion should provide a general kinetic solution. 
Specific rate laws then depend on the location 
of the critical point in the Brillouin zone, the pres- 
ence of impurities and defects or inhomogeneities 
in Q, on whether ordering or disordering is being 
investigated, etc. These solutions should have 
much broader  applications than many atomistic 
models since they are largely independent of the 
structural details of individual minerals. Use of 
the order parameter  as the principle variable also 
has practical advantages in that, because of its 
relationship with other physical properties such 
as birefringence, spontaneous strain, diffraction 
characteristics, etc., its evolution can be followed 
with relatively simple experimental techniques. 
Furthermore,  the thermodynamic driving forces 
can be expressed as Landau expansions in the 
same order parameter  and these expansions seem 
to be effective for describing phase transitions in 
minerals over large temperature ranges of geo- 
logical interest. 

Given that so many different experimental tech- 
niques now exist for measuring order parameter 
behaviour on almost all length scales, it should 
be possible to determine the relative importance 
of microscopic processes, on the one hand, such 
as atomic interchanges, and macroscopic thermo- 
dynamic and physical properties, on the other, 
in controlling the non-equilibrium evolution of 
minerals. The common occurrence of modulated 
structures during kinetic experiments implies that 
mesoscopic scale processes are important. To 
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FIG. 10. Variations with time and temperature of the intensity, lk, of an incommensurate superlattice reflection 
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and of the single-crystal starting material (25 ~ Although limited, the data are consistent with a second order 
transition at Tr = 183 ~ (after McConnell, 1981). (b) Variation of 1/I k (a l /Q 2) with time. The lines are drawn 
in between data points by eye. At 125 and 150~ the data are consistent with a rate law of the form 1/Q 2 

t. (c) The same data as in (b) but replotted as ln[(X/1 - X/leq)/(X/l o - u - Qeq)/(Qo - aeq)], 
where I e_ is the estimated equilibrium intensity and 10 the initial intensity, leq was taken as the mean value 
of the last few (longest time) data points at 125 and 150~ and as a point on the straight line shown in (a) 
at 100~ The data are consistent with a rate law of the form In(AQ/AQo) o~ t at 100~ (d) Arrhenius form 
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indication of contours of equal 1Jlo; their slope gives a value of the enthalpy of activation of ~70 kJ �9 mole -1. 

wha t  ex tent  the  same processes  cont ro l  the  deve-  
l o p m e n t  of  the  i n c o m m e n s u r a t e  phases  obse rved  
in na tura l  minera ls  r emains  to be  de te rmined .  

W e  suggest  tha t  L a n d a u  theory  for  equi l ibr ium 
b e h a v i o u r  and  the  G i n z b u r g - L a n d a u  approach  to 
kinetics p rov ide  a powerfu l  theore t ica l  and  practi-  
cal basis for  assessing the  impact  of s t ructural  
phase  t rans i t ions  in minera ls  on  more  genera l  geo- 
logical processes.  
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