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Abstract 

Chromian spinel in volcanic rocks is a potential discriminant for magma chemistry. The TiO2 content of 
spinel, compared at similar Fe3+/(Cr + A1 + Fe 3+) ratios, can distinguish island arc basalts from 
intraplate basalts. MORB spinels are low in this ratio and are intermediate for the TiOe level at 
comparable Fe 3+ ratios. Spinels from back-arc basin basalts, although similar in TiO2/Fe 3+ ratio, are 
more enriched in Fe 3+ than the MORB spinels. Spinels in the oceanic plateau basalts are distinctly 
lower in TiO2 than other intraplate basalt spinels and even slightly lower in TiOa than the MORB 
spinels. The data were successfully applied to estimate the kind of the magma from which spinel- 
bearing cumulates, especially dunites, were formed. Original magma chemistry of altered or 
metamorphosed volcanics in which spinels survive can also be estimated by the chemistry of relict 
spinel alone. It is possible to estimate the magma type of source volcanics for detrital spinel particles of 
volcanic derivation. 

K E Yw o RI~ s : chromian spinel, TiO2 content, MORB, island-arc basalt and andesite, intraplate basalt, 
magma chemistry. 

Introduction 

CHROM1AN spinel is an important petrogenetic 
indicator in ultramafic to mafic rocks because it 
contains several cations as major and minor 
constituents. The ratios can change subtly accord- 
ing to physico-chemical conditions (e.g. Irvine, 
1965, 1967). It is well known that chromian spinel 
chemistry plays an important role in classifying 
mantle-derived peridotites in terms of origin and 
tectonic setting (Dick and Bullen, 1984; Arai, 
1990a). Chromian spinel sometimes memorizes 
equilibrium temperatures in olivine-bearing rocks 
(Irvine, 1967; Jackson, 1969; Evans and Frost, 
1975; Fabries, 1979). It also serves as a speedo- 
meter to show a cooling rate of olivine-bearing 
rocks (e.g. Ozawa, 1985). More recently Ozawa 
(1989) demonstrated that chromian spinel can be 
a stress indicator in peridotitic and other rocks. 
Chromian spinel in mantle-derived peridotites 
could also be an oxygen barometer of the upper 
mantle (e.g. Mattioli and Wood, 1986; Wood and 
Virgo, 1989). 

2+ Chromian spinel can contain the cations, Mg , 
Fe e+, Fe 3+, Cr 3+, A13+ and Ti 4+, and its compo- 
sition is sensitive to changes in the chemistry of 
the surrounding magma (e.g. Rimsaite, 197t). 
Chromian spinel, therefore, has the potential to 

Mineralogical Magazine, June 1992, Vol. 56, pp. 173-184 
Copyright the Mineralogical Society 

indicate the chemical character of the mother 
magam. In this paper I summarize the compo- 
sitions of chromian spinel in volcanic rocks and 
defne its compositional range in mid-oceanic 
ridge basalts, arc basalts and andesites, and 
intraplate basalts. 

If the chemistry of chromian spinel is a 
successful indictor of its mother magma, original 
chemistry of altered or metamorphosed volcanic 
rocks might be estimated from relict chromian 
spinel. It might also be used to estimate a 
provenance and parentage of detrital chromian 
spinel grains. 

In this investigation cationic ratios were calcu- 
lated, assuming spinel stoichiometry. All Ti was 
combined with Fe as the ulvrspinel component 
(FeeTiO4). 

Compositional change of chromian spinel during 
magmatic differentiation 

Chromian spinel commonly occurs as pheno- 
crysts (or microphenocrysts) or as inclusions in 
the other phenocryst minerals, especially in 
olivine, of basaltic to andesitic rocks. Compo- 
sitional changes of chromian spinel in volcanic 
rocks and cumulates can be detected if they are 
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1.0 monitored by the Fo content of coexisting olivine. 
In general, Ti content and FeJ+# [= FeJ+/(Cr + 
A1 + Fe 3+) atomic ratio] of chromian spinel 
increase with a decrease of the Fo content of 
coexisting olivine (Fig. 1; Arai and Takahashi, 
1987). The Cr#  [= Cff(Cr + AI) atomic ratio] of 
chromian spinel increases or decreases or is "~ 
unaffected with a decrease of the Fo content of .~- 
olivine (Fig. 2). Note that the compositional 
variation of chromian spinel is due to an apparent 
differentiation process of magmas, which may 0 5  
integrate crystallization differentiation, magma 
mixing (Sakuyama, 1978), disequilibrium crystal- 
lization of spinel (Thy, 1983), assimilation etc. 

Scowen et al. (1991) demonstrated that chro- 
mian spinel even totally enclosed in olivine could 
change its solidus composition by diffusion ~" 
through olivine in slowly cooling magmas. The d 
chemistry of chromian spinel is also dependent on 
the cooling rate, even if the magma chemistry is 
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Fro. 1. Relationships between Fo of olivine and FeJ+# 
and TiO2 wt.% of coexisting chromian spinel. Ryozen 
basalt is a Mg-rieh arc tholeiite of Miocene age in 
northeast Japan arc (e.g. Shuto etal . ,  1985). FeJ+#, 
FeJ+/(Cr + A] + Fe 3+) atomic ratio. Data source: 
Ryozen, Arai (unpublished); Alkali basalts (Arai, 

1990b). 
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FiG. 2. Relationships between Fo of olivine and Cr# of 
coexisting chromian spinel in some volcanic rocks. 
OSMA, olivine-spinel mantle array (Arai, 1987, 1990a), 
in which mantle-derived spinel peridotites are plotted. 
Manam data are after Johnson et al. (1985). Shodo- 
shima basalt is Miocene high-Mg tholeiite associated 
with high-Mg Setouchi andesites (Tatsumi and Ishizaka, 
1981). Tekakusayama alkali basalt, central Japan is 

Miocene in age (Hattori, 1986). 

the same (e.g. Ozawa, 1985; Scowen et al . ,  1991). 
The Ti content of spinel is, however, a reliable 
indicator of magma chemistry because the diffus- 
ivity of Ti 4+ in olivine is relatively low (Scowen 
et al. ,  1991). 

Chemical characterist ics  o f  chromian spinel in 
Mg-rich magmas  

In this article three main groups, arc magmas 
(basalts and andesites), ocean-floor basalts 
(MORB) and intraplate basalts, are considered. 
The three groups of magmas can be distinguished 
to some extent from each other by Ti contents 
(e.g. Fig. 6 of Glassley, 1974, and Fig. 2.4 of 
Wilson, 1989); the contents increase from island- 
arc magmas to intraplate basalts via MORB on a 
particular FeO/MgO ratio (Glassley, 1974). This 
indicates a potential usefulness of the TiO2 
content of chromian spinel for distinguishing 
between these three magma groups. 

High-magnesian andesites and boninites are 
included in the arc magmas in a broad sense in the 
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paper. Calc-alkaline andesites produced by 
magma mixing sometimes contain chromian spi- 
nels (e.g. Sakuyama, 1978). These are possibly 
inherited from the basalt end component of 
mixing (Sakuyama, 1978). Some back-arc basin 
basalts have an intermediate character between 
arc tholeiites and MORB (e.g. Sato and Tohara, 
1985), and so are discussed separately. The 
oceanic plateau basalts (Tokuyama and Batiza, 
1981) are also discussed separately from other 
intraplate basalts; they are depleted in incompat- 
ible elements compared to other intraplate 
basalts. 

(1) Olivine-spinel compositional relationships. 
As is shown in Fig. 3, the Fo of spinel-bearing 
olivine is frequently low in arc magmas relative to 
MORB and intraplate basalts (especially alkali 
basalts). MORB and intraplate alkali basalts 
usually plot within or very near the olivine-spinel 
mantle array (Arai, 1987, 1990a) in the Fo-Cr#  
plane (Fig. 3). This is consistent with the 
tendency for arc magmas to be more frationated 
(i.e. lower in MgO/total FeO) than intraplate 
alkali basalts, which often carry mantle-derived 
peridotite xenoliths, and MORB. 

High-magnesian andesites, boninites and some 
high-Mg tholeiites have distinctly higher Fo and 
Cr# than other kinds of magmas (Fig. 3). Intra- 
plate alkali basalts (mostly from the southwest 
Japan arc) have Cr# < 0.6 (Arai, 1990b) 
(Fig. 3C). Oceanic plateau basalts and back-arc 
basin basalts are very similar to intraplate basalts 
(oceanic hot-spot basalts and flood basalts) and to 
MORB, respectively (Fig. 3ACD). 

(2) Cr#-Ti02 relationships. Chromian spinels 
from arc magmas have a wide spread of Cr# 
(Fig. 3). Boninites, high-magnesian andesites and 
high-Mg tholeiites have spinels with extremely 
high-Cr# (>0.8) (Fig. 3; Arai, 1990a). Chromian 
spinels in Quaternary subalkalic arc magmas from 
northeast Japan arc show an inter-volcano varia- 
tion of the Cr#,  from 0.2 to 0.7 (Fig. 3). It is 
noteworthy that the range of the Cr# of spinel in 
arc magmas is much extended towards low Cr# 
than that of Dick and Bullen (1984). 

As Fe3+# of spinel is strongly dependent on the 
degree of differentiation of the host magma (e.g. 
Arai and Takahashi, 1987), the TiO2 content 
should be compared for spinels with comparable 
Fe3+#. In Fig. 4 spinels from the intraplate 
basalts are clearly distinguished from other ones 
by their high Ti contents. Spinels from boninites 
and high-Mg andesites are also discriminated 
from other spinels by their higher Cr and lower Ti 
contents. The commonest spinels in the MORB 
are, however, indistinguishable from those in the 
arc magmas and those in back-arc basin basalts in 

terms of the Cr#-TiO2 relationship (Fig. 4). The 
oceanic plateau basalt spinels are distinctly lower 
in TiO2 than other intraplate tholeiites, in spite of 
the similarity in Cr# (Fig. 4). 

Distinction of chromian spinels in three primary 
magma clans; a discussion 

The similar TiO2 content of chromian spinels in 
MORB and arc magmas (Fig. 4) may be partly 
ascribed to the difference of the degree of 
differentiation between the two magmas. The Ti 
content of spinels was compared at similar Fe 3+ 
contents. Fig. 5 shows the Cr#-TiO2 relation- 
ships of spinels contoured by the Fe 3+ ratio for 
three basalt clans. Comparison of spinels with the 
comparable Fe3+#, e.g. 0.1, shows that the TiO2 
content of spinel increases from arc magmas 
through MORB to intraplate basalts. This is 
consistent with the relative TiO2 abundance of 
the magmas (Glassley, 1974). It is noteworthy 
that the Fe3+# of the MORB spinels is very low 
(Fig. 5A), which is partly due to the less fraction- 
ated character of the MORB relative to other 
magmas. Fig. 6 shows TiO2-Fe3+# relationships 
for spinels with Cr# of 0.3 to 0.6. It is clearly 
demonstrated that spinels in the intraplate basalts 
can be discriminated clearly from those in the arc 
magmas (Fig. 6). Spinels in an arc-related alka- 
line basalt from Rishiri volcano (Arai and Taka- 
hashi, 1987; Arai, 1990b), the nearest continental 
volcano of the Kurile arc (Katsui et al., 1978; 
Kobayashi, 1987), occupy a high-Ti portion of the 
arc-magma region on the TiO2-Fe~+# diagram 
(Fig. 6). The MORB spinels are intermediate, 
although not so clearly, between the arc-magma 
and intraplate-basalt spinels in their TiO2 con- 
tent. Low Fe3+# is a characteristic of MORB 
spinels (Figs. 5 and 6). Spinels in the oceanic 
plateau basalts (Tokuyama and Batiza, 1981) plot 
in a distinctively lower-Ti area than other intra- 
plate basalt spinels in Fig. 6. They differ from 
MORB spinels in their higher Cr# and Fe3+# 
and are slightly higher in TiO2 content than the 
main group of the arc-magma spinels (Figs. 3 and 
6). The Ontong-Java Plateau spinel (Stoeser, 
1975) is exceptional; it is rather similar in 
chemistry to the ordinary intraplate basalt spinels 
(Figs. 3 and 6). Spinels in back-arc basin basalts 
are intermediate in TiO 2 content; they are similar 
to the MORB spinels in this sense but extend 
more towards a high-Fe3+# region (Fig. 6). 

Some applications 

The results of the preceding discussion can be 
applied to assessment of origin of spinel-bearing 
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FI6. 3. Fo--Cr# relationships of Mg-rich magmas. OSMA, olivine-spinel mantle array (Arai, 1987, 1990a). (A) 
MORB. (B) Arc magmas. (C) lntraplate basalts. (D) Back-arc basin basalts and oceanic plateau basalts (see 
Tokuyama and Batiza, 1981). Data source: (A), Arai (!981), Donaldson and Brown (1977), Frey et al. ,  (1974), 
Sigurdsson and Schilling (1976); (B) Arai (unpublished), Arai and Takahashi (1987), Bloomer and Hawkins (1987), 
Crawford (1980), Graham and Hackett (1987), Johnson et al. (1985), Kuroda et al. (1978), Ramsay et al. (1984), 
Shiraki and Kuroda (1977), Tatsumi and Ishizaka (1981), Umino (1986), Walker and Cameron (1983), Yamamoto 
(1983); (C) Arai (1990b), Basaltic Volcanism Study Project (1981), Clague et al. (1980), Evans and Wright (1972), 
Gunn et al. (1970), Hawkins and Melchior (1983), Krishnamurthy and Cox (1977), Upton et al. (1984), Wilkinson 
and Hensel (1988); (D) lshizuki et al. (1990), Mattey et al. (1981), Ridley et al. (1974), Saunders and Tarney (1979), 

Shcheka (1981), Stoeser (1975), Tokuyama and Batiza (1981). 
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FIG. 4. Cr#-TiO2 relationships of chromian spinels from Mg-rich magmas. Spinels with Fe3*# < 0.2 are chosen for 
convenience. (A) Three main magma groups (MORB, island-arc magmas and intraplate basalts). Boninites include 
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Setogawa meta-picrite spinels (Ishida et al., 1990) are plotted for comparison. (B) Back-arc basin and oceanic 

plateau basalts. Data soruces are the same as that for Fig. 3. 
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FI6.6. Relationships between Fe3+# and TiO2 content of chromian spinel in Mg-rich magmas. (A) Three main 
magma groups (intraplate basalts, MORB and arc magmas). Spinals with Cr# from 0.3 to 0.6 are considered. Note 
that intraplate basalt spinals are perfectly distinguished from arc magma spinels. See text for details. (B) Back-arc 
basin basalts. Spinels from Sado picrite basalt in the Sea of Japan off Niigata are plotted for comparison (see text). 
Data soruce: Lau Basin and other west Mariana region, Mattey et al. (1981), Ridley et al. (1974); Okinawa Trough, 
Ishizuka et al. (1990); Scotia Sea, Saunders and Tarney (1979). (C) Oceanic plateau basalts. Data sources: Manihiki 
Plateau, Clague (1976); Nauru Basin, Shcheka (1981), Tokuyama and Batiza (1981); Ontong-Java Plateau, Stoeser 

(1975). 
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Clague (1988); Koolau dunites, Sen and Presnall (1986); Tahiti dunite, Tracy (1980); Takashima dunites, Arai and 

Kobayashi (unpublished). 

igneous rocks. It is also useful to estimate the 
provenance of detrital spinel particles which are 
of igneous origin. They should be carefully 
applied because the TiO2 content and Fe3+# of 
igneous spinels can be altered during above- 
solidus cooling (e.g. Scowen et al. ,  1991). 

(1) Paren ta l  m a g m a  f o r  duni tes .  Dunites are 
essentially bimineralic, composed of olivine + 
chromian spinel. Estimation of the kind of 
magma from which dunites were precipitated is, 

therefore, possibly based on the chemistry of 
spinel alone. 

Large numbers of dunite xenoliths are included 
in a Cenozoic alkali basalt exposed at Takashima, 
northern Kyushu, southwest Japan arc (Ishibashi, 
1971; Kobayashi and Arai, 1978) (Fig. 7). They 
are weakly tectonised but mineralogical charac- 
teristics of igneous stage are possibly preserved  
They are closely associated with various kinds of 
pyroxenite xenoliths of both Group I and Group 
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II in the sense of Frey and Prinz (1978) (Ishibashi, 
1971; Kobayashi and Arai,  1978). Chromian 
spinels from the dunitic xenoliths are plotted in 
the TiOz-Fe3+# diagram (Fig. 7). A majority lie 
within the field of arc magma, which may indicate 
that the Takashima dunites are cumulates from 
arc magmas. According to Arai  (1989), dunite 
xenoliths in the Cenozoic alkali basalts erupted 
on the southwest Japan arc could be of cumulus 
origin from arc magmas. 

Dunite xenoliths from Hawaii contain relat- 
ively Ti-rich spinel (Sen and Presnall, 1986; 
Clague, 1988). Spinels from the dunite and 
wehrlite xenoliths from Loihi (Clague, 1988) are 
almost included in the region of intraplate basalts 
(Fig. 7). Thus, they could be cumulates from 
intraplate basalt (alkali basalt), as concluded by 
Clague (1988). The origin of the dunite xenoliths 
from Koolau Volcano, Oahu, is, however, not 
simple. Ti content and Cr#  of the Koolau dunite 
spinels are almost identical to those in the 
Hawaiian shield-building tholeiites as described 
by Sen and Presnall (1986). However, the Fe3+# 
is higher at comparable Ti contents in the former 
spinels than in the latter ones, seemingly implying 
an arc origin (Fig. 7). As this is clearly incorrect, 
the Koolau dunite xenoliths could be cumulates 
from the Hawaiian shield building in slowly 
cooled magma chambers where cationic diffusion 
was effective. Fe 3+ ions can move more easily 
through olivine than Ti 4+ from surrounding 
(residual) melts (Scowen et al., 1991). 

(2) Magma type estimation o f  some basalts and 
metabasalts. Weakly to intermediately metamor- 
phosed mafic rocks (schistose green rocks) are 
exposed at the northern part of the Setogawa 
region, central Japan (Ishida et al., 1990). The 
region is the southernmost part of the Shimanto T]O21 
belt, which is a Cretaceous-Tertiary accretionary wtv. ! 
prism (e.g. Taira et al., 1989). The schistose green 
rocks are sometimes enriched in oblate chlorite 2.0 [ 
clots which include relic chromian spinel grains 
(Fig. 8A). The chlorite clots are interpreted to be 
deformed pseudomorphs of olivine and the rocks 
are, therefore, meta-picrite basalts (Ishida et al., 
1990) (Fig. 8A). The relic chromian spinels may 
preserve their trivalent cation ratios and TiO2 1.0 
contents (Ishida et al., 1990), and are plotted both 
in Cr#-TiO2 and in Fe3+#-TiO2 diagrams 
(Figs. 4A and 7). They all lie in the field of 
intraplate tholeiite and are strikingly similar to 
those in the Hawaiian tholeiites (Figs. 4A and 9). 
The original rocks of the Setogawa meta-picrite 
basalts are expected to be Hawaiian-type intra- 
plate tholeiites enriched with olivine (Wilkinson 
and Hensel, 1988; lshida etal . ,  1990). In the 
adjacent areas (e.g. the Circum-Izu Massif ser- 
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Fl6. 8. Photomicrographs. Plane-polarized light. (A) 
Shistose meta-picrite basalt fromn the Setogawa belt, 
central Japan. White lenses (O) are chlorite aggregates 
after olivine. Black dots in the centre are chromian 
spinel microphenocryst and inclusion in olivine, which 
often survive metamorphism. Scale, 5 ram. (B) Euhed- 
ral chromian spinel grains in altered volcanic glass (G) 
from Sanchu Cretaceous sandstone, Kanto Mountains, 

central Japan. Scale 0.l mm. 
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FIG. 9. Relationships between Fe3+# and TiO2 content 
of detrital chromium spinels in the Sanchu Cretaceous 

sandstone, central Japan. 
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pentine belt of Arai, 1991, and Arai and Okada, 
1991) flesh Miocene picritic basalts are exposed 
both as pillow basalts and as dykes (e.g. Same- 
shima, 1960; Kanehira, 1976). Their bulk 
chemistry is remarkably similar to some Hawaiian 
olivine-rich tholeiites (Ishida et al., 1988, 1990). 

A sheet of picrite basalt exposed at the Sado 
island in the Sea of Japan off Niigata (Yamakawa 
and Chihara, 1968) is a member of Ogi Basalts 
(Yamakawa and Chihara, 1968) of Miocene (11 
to 15 Ma) (Shinmura, 1990). The TiO2-Fe3+# 
relationships of spinels in the sheet indicate a 
character intermediate between intraplate and 
arc magmas for the picrite (Fig. 6B). The spinels 
are more enriched in Fe 3+ than MORB spinels 
and are almost included in the region of the back- 
arc basin basalt spinels (Fig. 6B). The Sado 
picrite basalt could be an olivine-cumulate back- 
arc basin basalt. This suggestion is supported by 
the fact that the climax of the Sea of Japan 
opening, ca. 15 Ma (Otofuji etal . ,  1985), is 
synchronous with the beginning of the Ogi Basalt 
eruption (Shinmura, 1990). 

(3) Source rock o f  detrital chrom&n spinel 
grains. Conglomerates and sandstones from the 
Sanchu belt, Kanto Mountains, central Japan, 
frequently contain detrital chromian spinel parti- 
cles (Arai and Hisada, 1991). The Sanchu sedi- 
ments are of Cretaceous age and filled a fore-arc 
basin (Hisada et al., 1991). The detrital spinels 
can be divided into two groups, low- and high-Ti 
ones (Arai and Hisada, 1991). The low-Ti spinels 
may have been derived from spatially associated 
serpentinites because the spinel chemistry is 
almost identical for the both (Arai and Hisada, 
1991). The high-Ti detrital spinels often occur as 
small euhedra in chlorite aggregates, which may 
be after volcanic glass or more frequently after 
olivine (or other magnesian minerals) (Fig. 8). 

2 +  The high Mg/(Mg + Fe ) ratio of the high-Ti 
detrital spinels relative to the low-Ti ones points 
to high-temperature crystallization of the high-Ti 
spinels (Arai and Hisada, 1991), and Fig. 9 
suggests that the magmas were intraplate basalts. 
Volcanic rocks containing analogous high-Ti spi- 
nels are absent in neighbouring areas; the source 
volcanics to the Sanchu high-Ti detrital spinels 
have been entirely eroded. 

C o n c l u s i o n s  

The chemistry of chromian spinels in volcanic 
rocks is mainly dependent on the chemistry of 
magma from which they are precipitated. The Ti 
content of spinel potentially discriminates the 
magma type because the Ti content of basalts is 
different for the three main primary magma clans 

S. ARAI  

(MORB, arc basalts and andesites, and intraplate 
basalts) at a given MgO/FeO* ratio. The TiO2 
content of spinels normalized by the Fe3+/(Cr + 
AI + Fe 3+) ratio successfully discriminates the 
three primary magma clans (especially arc mag- 
mas from intraplate magmas). Spinels from the 
oceanic plateau basalts and from the back-arc 
basin basalts have distinctive TiOz-Fe3+# rela- 
tionships. The intraplate basalt (except for ocea- 
nic plateau basalt) spinels have the highest TiO2 
contents and the arc magma spinels have the 
highest TiOe contents and the arc magma spinels 
the lowest. The results were successfully applied 
to estimate parental magmas for dunite cumu- 
lates, original magma chemistry of altered or 
metamorphosed volcanics, and provenance of 
detrital chromian spinel particles. 
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