The Metamorphism of Pyrite and Pyritic Ores: An Overview

James R. Craig and Frank M. Vokes
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
Department of Geology and Mineral Resources Engineering, University of Trondheim-Norwegian Institute of Technology, 7034 Trondheim, Norway

Abstract: Pyrite, the most widespread and abundant of sulphide minerals in the Earth's surficial rocks, commonly constitutes the primary opaque phase in ore deposits. Consequently, an understanding of the behaviour of pyrite and its relationships with coexisting phases during the metamorphism of pyrite-bearing rocks is vital to the interpretation of their genesis and post-depositional history. Metamorphism is commonly responsible for the obliteration of primary textures but recent studies have shown that the refractory nature of pyrite allows it to preserve some pre-metamorphic textures. Pyrrhotite in pyritic ores has often been attributed to the breakdown of pyrite during metamorphism. It is now clear that pyrrhotite can be primary and that the presence of pyrrhotite with the pyrite provides a buffer that constrains sulphur activity during metamorphism. Pyrite-pyrrhotite ratios change during metamorphism as prograde heating results in sulphur release from pyrite to form pyrrhotite and as retrograde cooling permits re-growth of pyrite as the pyrrhotite releases sulphur. Retrograde growth of pyrite may encapsulate textures developed during earlier stages as well as preserve evidence of retrograde events. Sulphur isotope exchange of pyrite with pyrrhotite tends to homogenise phases during prograde periods but leaves signatures of increasingly heavy sulphur in the pyrite during retrograde periods.

Keywords: metamorphism • pyrite • pyrrhotite • sulphur isotopes

Mineralogical Magazine; March 1993 v. 57; no. 386; p. 3-18; DOI: 10.1180/minmag.1993.057.386.02
© 1993, The Mineralogical Society
Mineralogical Society (www.minersoc.org)