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Abstract 

Interpretation of grain size measurements in terms of the kinetics of grain growth depends on the 
ability to define the temperature variation of mineral growth rates. An outline is presented of the 
application to mineral growth rates of a corresponding states equation (CSE), which provides a 
relationship of growth rate to a reduced temperature function. Additionally, growth rates exhibit a 
'compensation effect' between the pre-exponential constant and the activation energy in the standard 
Arrhenius equation, analogous to that shown by diffusion data. The general systematics of activation 
energy, equilibrium temperature and growth rate maxima are controlled by the relationships of the 
CSE, the standard Arrhenius equation and the compensation effect, and on this basis the temperature 
variation of growth rate between the equilibrium and the glass temperature may he estimated. 

KEYWORDS" mineral growth rates, compensation effect, corresponding states equation. 

Introduction 
A MAJOR hindrance to the study of the kinetics of 
the crystallisation processes in igneous rocks is 
the relative paucity of data on the temperature 
variation of mineral growth rates. In modelling 
crystallisation and grain growth in a cooling 
igneous body, it is impractical to measure the 
temperature dependence of grain growth rates for 
each mineral. Even if this were to be done there is 
no certainty of achieving an environment for the 
experimental crystaUisation which is similar to 
that of the original rock formation, and in 
addition, the times required for grain growth 
would be prohibitively long. It is more convenient 
to use a limited number of defining parameters to 
generate trial temperature-dependent growth 
rate curves. 

It is the purpose here to define the major 
parameters which control the form of the growth 
rate curves and to attempt to outline the system- 
atics of a wide range of such curves. 

Corresponding states equation 
A corresponding states equation (Gandica and 

Magill, 1972; Magill et al., 1973) has been shown 
to approximate closely to the temperature varia- 
tion of basaltic mineral growth rates (Dearnley, 
1983). 

The relationship may be expressed by 

log (G/GMAx) = f[TE -- T)/(TE - T~o)] = f0 
(1) 

where G is the growth rate at temperature T; 
GMAX is the maximum growth rate and log 
(G/GMAx) - - - - -  0 Occurs at 0 = 0.140, see Fig. 1 and 
Table 1, ire is the equilibrium temperature (~ 
and T~ is a kinetically limiting value of the glass 
transition temperature (Tg) at infinite time. 
Growth can only take place within the tempera- 
ture range from the equilibrium temperature (TE) 
to the transition temperature (T=). 

The concept of a kinetically limiting To~ value 
may be illustrated (using equation 7) by compar- 
ing two growth rate curves with the same equilib- 
rium temperature (TE), say 1200~ but with 
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Fro. 1. Standard corresponding states equation (CSE) 
curve of log G/GMA X vs log 0. The curve is represented 

by a 6th degree polynomial, see equation (3). 
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Table 1 Corresponding states equation coordinates 
for the standard growth rate curve 

Reduced temperature 
function 

e=  ( T ~ - T ) / G E - ~ )  
Log (o / ou~x) 

0.02 -1.4086 
0.04 -0.7077 
0.06 -0.3979 
0.08 -0.2152 
0.12 -0.0313 
0.14 0 
0.18 -0.0162 
0.24 -0.2951 
0.30 -0.9208 
0.36 - 1.7964 
0.43 -3.2041 
0,48 -4.3143 
0.54 -5.8745 
0.60 -7.5687 

differing activation energy (for instance of Q = 
160 kcals mo1-1 and Q = 80 kcals mol- l) .  At 
decreasing temperatures (for instance during 
cooling at a given rate) the rate of grain growth 
falls much more rapidly in the former instance 
than in the latter. Therefore, in the former case, 
the growth rate reaches a limiting minimum value 
more rapidly, and at a higher T~ (386 ~ than the 
corresponding T~ (of 42~ for the Q = 80 
kcals tool -1 curve. Such a limiting temperature is 
similar to that of a closure (or blocking) tempera- 
ture (see Dodson, 1973, 1976) at which diffusion 
effectively ceases during cooling. 

When the CSE is plotted as a log-log curve 
(Fig. 1) the power law relations of the high- 
temperature portion (8 ~ 0.04) are evident, given 
by 

G/GMAx = 352.27 8 2.328 (2) 

and, for 0 -> 0.43 the CSE coincides with the 
Arrhenius expression (equation 4). 

For the whole of the curve from 0 = 0,001 to 
0.60 a sixth degree polynomial (with r 2 = 0.9998) 
closely fits the CSE: 

log (G/GMAx) = --21.8640 -- 93.6566 log 0 
-- 159.2721 (log 8) 2 -- 138.8832 (log 8) 3 

66.0997 (log 0) 4 -- 16.1685 (log 0) 5 
1.5841 (log 0) 6 (3) 

The corresponding states equation (CSE) de- 
scribes the temperature variation of crystal 
growth rate of a range of materials and its 
applications extend beyond the organic molecules 
for which it was originally devised. It describes 
equally well the crystallisation of both multiphase 
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and simple congruent melting systems and covers 
large variations of chemical composition, growth 
rate (10 -1 to 10 -8 cm s e c - ) ,  temperature 
( -40~  to 1500~ and viscosity (10 o to 1013 
poise). Such a considerable extension of the CSE 
to cover materials so diverse as, for instance, 
glycerol, and blast-furnace slags and natural 
silicates (Tables 2-4), supports the suggestion 
(Magill et al., 1973) of a universal relationship. 

A preliminary outline of the application of the 
CSE to the basaltic system (Dearnley, 1983) 
forms the basis for this present extension, which 
considers in more detail the relationships 
involved between the CSE and the standard 
Arrhenius equation: 

G = Go exp - (Q/RT)  (4) 

where Go is the pre-exponential (frequency) 
factor, Q is the apparent activation energy for 
growth, R the gas constant and T(~ is the 
temperature. 

In order to estimate the best fit of the CSE 
curve to the growth rate vs temperature data for a 
given material, the characteristic value of T~ is 
required and this, in turn, requires the value of Q 
to be known. Normally, the experimentally 
measured grain growth rates are presented as a 
plot of growth rate against temperature, which 
shows a characteristic peak in growth rate 
(GMAx) at a certain undercooling (AT) from the 
melting temperature (TE). The method used to 
find the best fit to the CSE curve as a whole is 
based on the individual known values of G and T, 
together with TE, an initially estimated (trial) 
value for Q, and an iterative procedure to obtain 
T~ (as given in Dearnley, 1983). After the value 
of T~ has been found for a given trial Q, the 
appropriate CSE curve may be determined 
(based on the parameter 0 derived from these 
values) from equation (3). 

The r.m.s.d. (root mean square deviation) is 
then calculated between the experimental points 
of the original growth rate curve and the gener- 
ated trial CSD curve and the whole process is 
repeated as necessary with another trial value for 
Q (either incremented or decremented as 
required) with the object of decreasing the 
r.m.s.d, to a minimum. At this point the best fit of 
the experimental data to the CSE curve is 
obtained and the growth rate curve is completely 
defined by the determined parameters. 

Experimentally determined growth rates at 
known temperatures for the range of materials in 
Tables 2--4 are taken from published figures which 
have a range of scales and units and thus 
inevitably small errors may occur in the values of 
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Table 2. CSE best fits to temperature variation of grain growth data  

No. TE~ To0~ Q LogG o LogG* LogGMA X 
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LUNAR BASALTS 
1 1180 478 194561 30.08 0.82 -3.66 
2 1250 492 194414 29.36 1.47 -2.93 
3 1240 345 143770 20.43 -0.33 -4.22 
4 1210 275 125000 17.15 -1.26 -4.91 
5 1270 230 115012 16.21 -0.08 -3.52 
6 1280 208 109841 15.02 -0.43 -3.76 
7 1210 161 100000 14.23 0.31 -3.74 
8 1185 164 100228 14.86 -0.16 -3.44 
9 1270 147 97977 13.75 -0.12 -3.25 

10 1310 122 94228 12.05 -0.95 -3.95 
11 1360 93 90826 11.95 -0.20 -3.09 
12 1365 0 77253 10.06 -0.25 -2.80 
13 1340 -32 72777 9.40 -0.46 -2.95 
14 1310 -67 67715 8.91 -0.44 -2.82 
15 1270 -171 54800 7.37 -0.39 -1.70 

ALB 1TE-ANORTHITE-DIOPS IDE 
16 1255 408 162500 21.11 -2.13 -6.20 
17 1390 341 139996 17.22 -1.18 -4.82 
18 1391 305 131301 16.24 2.00 -1.52 
19 1415 303 131250 16.30 -0.69 -4.20 
20 1500 274 125072 16.07 0.66 -2.66 
21 1450 275 125000 15.62 -0.23 -3.60 
22 1340 277 125000 14.90 -2.03 -5.52 
23 1552 168 106735 13.86 1.08 -1.90 

GRANITIC MINERALS 
24 670 112 89831 17.72 -3.09 -7.00 
25 690 109 88494 16.70 -3.38 -7.22 
26 885 115 88210 13.88 -2.76 -6.22 
27 850 96 84516 11.95 -4.49 -7.96 
28 940 35 73615 9.43 -3.83 -6.89 
29 940 -20 64295 8.66 -2.92 -5.70 

Lunar basalts : (1) 70019 and (2) 79155, Klein et a1.(1975) ; (3) 14259, Scherer et 
al. (1972) ; (4) 67975, Uhlmarm et al. (1977) ; (5) 15498, Uhlmann and Klein (1976) ; (6) 
howardite, Hewins and Klein (1978) ; (7) 15286, Uhlmann and Klein (1976) ; (8)mare 
basalt, I-Iandwerker et al. (1978) ; (9) 60095, Uhlmann et al. (1974) ; (10) 14310, Seherer 
e t ~ .  (1972) ; (11) 65016, Uhlmama et al. (1974) ; (12) highland basalt, Handwerker et al. 
(1978) ; (13) 15418, Uhlmann et al. (1974) ; (14) 15555, Cukierman et al. (1973) ; (15) 
Apollo green glass, Uhlmann et al. (1974). 

Albite - anorthite, diopside : (16) Anl0  and (17) An30, Muncill and Lasaga (1987) ; 
(18) diopside, Kirkpatriek (1974) and Kirkpatriek et al. (1976) ; (19) An40, Muneill and 
I.,asaga (1987) ; (20) An75 and (21)An50, Kirkpatrick et el. (1979) ; (22) An20, Mtmcill 
and l...asaga (1987) ; (23) Anl00 ,  Klein and Uhlmann (1974), Kirkpatriek et al. (1976). 

Granitic minerals : (24) alkali feldspar and (25) quartz from granite ; (26) alkali 
feldspar and (27) quartz from granodiorite ; (28) and (29) plagioelase from granite and 
granodiorite, Swanson (1977) 
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Table 3. CSE best fits to temperature variation of grain growth data 

No. TE~ TC0 ~ Q Log G O Log O Log GMa x 

MEL ILITE 
30 1377 402 157306 21.04 0.21 -3.68 
31 1389 354 143750 19.24 0.35 -3.36 
32 1395 307 131682 16.60 -0.65 -4.18 
33 1417 284 127230 16.47 0.02 -3.44 
34 1452 259 122032 15.71 0.26 -3.09 
35 1400 256 120543 16.60 0.86 -2.50 
36 1420 248 119062 15.50 0.14 -3.18 
37 1402 232 115761 15.80 0.70 -2.58 
38 1390 169 103748 13 .83  0.20 -2.89 
39 1487 154 103260 12.65 -0.17 -3.16 
40 1470 149 101676 13.41 0.67 -2.30 
41 1433 140 99496 12.71 -0.04 -3.00 
42 1498 75 90800 10.96 -0.24 -2.95 
43 1451 53 86652 10,80 -0.18 -2.86 
44 1503 -85 70606 8.09 -0.59 -2.82 

LEAD BORATES 
45 696 319 18124q 41.4t5 0.59 -4.42 
46 775 313 160846 34.29 0.75 -3.91 
47 760 255 135259 29.28 0.67 -3.74 
48 750 248 133847 28.59 0.00 -4.46 
49 775 73 79090 16.26 0.23 -3.71 

Melilite : (30) 14 , (31)13, (32)15, (33)  19 ,134) 12,(35) 23, t36)I ,~,137)26,  
(38) 24, (39) 22, (40) 25 , ~41) t7 , (42) 21 , (43) t(~, (44) 20 . glass munbers from Table 
3 in Kruchinin and lvmlova (1968). 

Lead borates : ~45 - 471 and (49) , PbO,B ,O gl~,,-es , Faga~ el al. ( 197(D 
(48) PbO.2B203 glass, DeLuca el al. t 19o91 

the points  used in this study. Values  are t aken  
f rom the  exper imenta l  points  where  possible and  
not  f rom the  s m o o t h e d  growth  curves based  on 
these points  in the original  figures. A set of 
calculated values of the  pa rame te r s  TE, T=,  Q, 
log Go ,  log G* and  log GMAX is l isted in Tables  2 -  
4 for  76 pub l i shed  growth ra te  vs t e m p e r a t u r e  
curves. J 

The  CSE bes t  fits of the  measu red  growth  rates  
at various t empera tu re s  for  the  data  f rom Tables  
2-4  are shown in Fig. 2. G r o w t h  ra tes  in the  whole  
data  set have  a tog r .m.s .d ,  of 0.399, tha t  is within 
a factor  of 2.51 of  the  s tandard  CSE curve.  This is 
p robably  not  significantly in excess of the  likely 
errors  in the  original  growth ra te  m e a s u r e m e n t s  
toge ther  with the  errors  i nhe ren t  in reading off 
the values f rom the  pub l i shed  graphs.  Wi th in  the  

? A listing of the computer programme in BASIC V for 
the calculation of the best fit CSE curve to grain growth 
data as outlined here may be obtained from the author. 

var ious groups of Fig. 2 the  m e a n  log r .m.s .d .  
values of 0.274, 0.306, 0.335, 0.347, 0.375 and  
0.879 cor respond  respect ively to the  basal t ic  
minera ls  of Leon tyeva  (1947, 1949) (Fig. 2 .6-9) ,  
l una r  basal ts  (Fig. 2.2),  lead bora tes  (Fig. 2.5),  
anor th i te -a lb i te  and  diopside (Fig. 2.1), melli l i te 
(Fig. 2.4) and  grani t ic  minerals  (Fig. 2.3). This  
la t ter  group has  the  largest  devia t ion ,  which may  
be  due  to the  difficulties of m e a s u r e m e n t  in this 
system. In Table  4 number s ,  50, 58 and  65 are 
based  on  the  smallest  n u m b e r s  of  exper imenta l  
points  in thei r  respect ive  groups  and  are unreli-  
able;  all show a p p a r e n t  values for  Q which are too 
large (see equa t ion  20), bu t  are re ta ined  for 
comple teness  of  the  Leon tyeva  (op. cit .)  da ta  set.  
As  can be  seen f rom Fig. 2.1, the  a lb i t e -  
anor th i te ,  d iopside group (Table  2) shows the  
least scat ter  abou t  the  s t andard  CSE curve over  
a lmost  five orders  of magn i tude  and  is closely 
fol lowed by the  lunar  basal ts  (Table  2) and  lead 
bora tes  (Table  3). 
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Table 4. CSE best fits to temperature variation of growth rate data 

No. T E~ "r o C Q LogG 0 LogC-,-* LOgGMA x 
oc 

PLAGIOCTASE 
50 1250 680 300000 42.43 -0.61 -5.66 
51 1225  618 262499 38.20 -0.09 -4.97 
52 1225  618 262499 38.23 -0.06 -4.94 
53 1 2 0 0  579 243749 35.96 -0.20 -5.01 
54 1300 607 242281 33.28 -0.38 -5.05 
55 1275  575 229038 31.88 -0.45 -5.05 
56 1240 547 220577 31 .91  0.06 -4.56 
57 1250 459 181250 24.78 -1.22 -5.50 

CLINOPYROXENE 
58 1 1 7 0  716 362499 54.96 0.07 -5.31 
59 1250  627 262499 37.54 -0.12 -4.97 
60 1200  591 250000 36.64 -0.44 -5.27 
61 1 2 4 0  563 227677 32.49 -0.39 -5.02 
62 1275  531 207987 28.89 -0.47 -4.92 
63 1 2 5 0  515 203420 28.26 -0.92 -5.36 
64 1200  435 175000 25.28 -0.68 -4.95 

OLIVINE 
65 1225  760 381249 55,28 -0.33 -5.71 
66 1250  664 287499 40,75 -0.49 -5.48 
67 1275  610 2.,47734 34.44 -0.53 -5.26 
68 1240 531 212500 30.44 -0,24 -4.80 
69 1225 455 181250 25.37 -1.07 -5.37 
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MAGNETITE 
70 1200 521 211476 29.13 -2.24 -6.80 
71 1250 427 168750 21.67 -2.54 -6.68 
72 1330 416 162500 19.80 -2 .35  -6.35 
73 1 3 3 0  400 156992 18.98 -2.42 -6.34 
74 1300  372 150000 17.92 -2.92 -6.80 
75 1 3 0 0  302 131250 14.83 -3.40 -7.04 
76 1300 56 83576 8.55 -3 .05  -5.84 

Plagioclase : (50) olivine basalt I ,  Leontyeva (1947) ; (51) Caucasian basalt 2 and 
(53) diabase 101, Leontyeva (1949) ; (54) basalt glass 221-3, Leontyeva (1943) ; (55) 
basalt 34 and (56) basalt glass 221-2, Leontyeva (1949) ; (57) olivine basalt 17, Leontyeva 
(1947). 

Clinpyroxene : (58) Caucasian basalt 2 ,  Leontyeva (1949) ; (59) olivine basalt 17, 
Leontyeva (1947) ; (60) Caucasian basalt 1, (61) basalt glass 221-2 and (62) basalt 34, 
Leontyeva (1949) ; (63) olivine basalt I ,  Leontyeva (1947) ; (64) diabase 101, Leontyeva 
(1949). 

Olivine : (65) Caucasian basalt 1, Leontyeva(1949) ; (66) olivine basalt 17, Leontyeva 
(1947) ; (67) basalt 34, (68) basalt glass 221-2 and (69) Caucasian basalt 2 ,  Leontyeva 
(1949). 

Magnetite : (70) diabase 101, (71) Caucasian basalt 2,  (72) and (73) diabase 101, and 
(74) Caucasian basalt 1, Leontyeva (1949) ; (75) olivine basalt I ,  Leontyeva(1947) ; (76) 
basalt glass 221-3, Leontyeva (1943). 
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FI6.2. Growth rate (G) to maximum growth rate (G~Ax) ratio plotted against a reduced temperature function, 
0 = (TE -- T)/(T E - T~) for the various mineral groups of Tables 2-4: (2.1) albite-anorthite, diopside; (2.2) lunar 
basalts; (2.3) granitic minerals; (2.4) mellilite; (2.5) lead borate glasses; (2.6) magnetite; (2.7) plagioclase; (2.8) 
clinopyroxene; (2.9) olivine. The points plotted correspond to original experimental data points (see references to 
Tables 2-4) after using a minimum r.m.s.d, procedure to obtain the best fit to the standard CSE curve with the 

appropriate T~ value, see text for details of the method used. 

T and Tg relationships 

The parameter  T o in equation (1) above may 
be calculated iteratively from the CSE (Dearnley,  
1983), although an alternative explicit expression 
would be more immediately useful. In deriving 

such a function the well known ' two-thirds rule '  
(see, for example Sakka and Mackenzie,  1971) 
for glass temperature  and liquidus temperature ,  
(Tg/TE)  ~ ~ 0.66 and the CSE are shown to be 
directly related. 

Using the available glass temperature  and 
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liquidus temperature determinations of 40 lunar 
basaltic compositions and other basalts (Table 2; 
Fang etal., 1983, Scarfe, 1977, and Uhlmann 
etal., 1977) the mean Tg/TE = 0.620, with 
standard deviation 0.024 and standard error of 
the mean +0.004. This is close to the mean Tg/TE 
= 0.627 for a series of 15 samples, covering the 
A b - A n  range (Arndt and Haberle,  1973, 
Cranmer and Uhlmann, 1981). For the wider 
compositional range of (84) inorganic glasses 
listed in Sakka and Mackenzie (1971) the corres- 
ponding values are Tg/TE = 0.639. The combined 
results (of 139 determinations) yield a mean Tg/ 
TE = 0.633 with a standard error of the mean of 
+0.0O5. 

The function 0 in equation (1) represents the 
ratio of the actual growth temperature range 
(TE - -  T) to the maximum possible growth tem- 
perature range at infinite time (TE -- T~). In 
practice the maximum value of T~ approaches Tg 
and may therefore be estimated from Tg/TE = 
0.633. At  the other extreme the minimum T~ = 
-273 ~ 

An exponential function relates the ratio TJTE 
to the activation energy, Q for different TE values 
as shown in Fig. 3. The linear trends apply 
between TJTE = 0.633 and a minimum value of 
T~/TE = 0, as T~ approaches -273 ~ The slope 
is the same (2.9595) for each TE and the general 
relationship is given by 

Q = a exp(2.9595 TJTE) (5) 

By plotting the constant a (which is the 

Io% 
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Fia. 3. Relationships of activation energy (Q), at 
various values of TE, to the temperature ratio TJTE. 
All curves have the same slope (equation 5) and 

correspond to the general form of equation (6). 
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intercept at TJTE ~ = 0, corresponding to T~ = 
-273~  against T ~ a slope of 28.8708 is 
obtained, with an origin at T ~ = 0, and hence 

Q = 28.8708 T E exp(2.9595 TJTE) (6) 

from which 

T= = 0.3379 TE (lnQ - lnTE -- 3.3628) (7) 

This is the desired explicit relationship between 
T~, Q and TE derived from the CSE, which may 
be used in (19), below, to provide an expression 
relating GMAX, TE and Q, and in (1) to yield 

0 = (TE -- T)/[TE - {0.3379 TE (In Q - 
lnTE -- 3.3628)}] (8) 

or, for use in the polynomial expression in (3). 
These two equations (19) and (3), using Too from 
(7) may be used to estimate the temperature 
variation of growth rate in terms of TE, Q and G*. 

C o m p e n s a t i o n  e f f e c t  

An interesting consequence of the application 
of the corresponding states equation to the 
growth rate data of Tables 2-4 is the general 
correlation which is evident between the hypo- 
thetical growth rate limit at infinite temperature 
(Go) and the apparent activation energy for 
growth Q (see Fig. 5) where the relationship takes 
the form 

log Go = aQ + b (9) 

Such a positive linear correlation between log 
Go and Q is analogous to that demonstrated by 
Winchell (1969) and Winchell and Norman (1969) 
in relation to rates of diffusion in silicates and is 
termed a 'compensation' effect, see also Hof- 
mann (1980), Lasaga (1981), Hart  (1981) and also 
Shaw (1972) in terms of viscosity estimations. 
Since the phenomena of diffusion, viscosity and 
crystal growth are closely related, it is not 
unexpected that the latter should also be charac- 
terised by a well defined compensation effect, 
although apparently this has not previously been 
recognised. 

For two curves of growth rate plotted against 
1/T, each with the same TE but with differing Go  
and Q values (see Fig. 4a), crossover growth rate 
(G*) at temperature T* (= TE) corresponds to an 
activation energy (Q) of zero (see Fig. 4b). 

Since, from (4) 

log G* = log G0l - Q1/2.303 RT* (10) 

then, at T*: 

(log G01 - log Go2)/(Q~ - Q2) = 1/2.303RT* 

Thus the slope a in Fig. 4b is given by 
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FIG. 4. Growth rate compensation relationships: (a) pair of growth rate curves (QI and Q2), with the same 
equilibrium temperature (TE2), showing compensation crossover at G* and TE2 and similar pairs may be imagined 
at TEl and TE3 with the same crossover, G*; (b) log Go vs Q (compensation) plot of three pairs of curves as in (a), 
note that the decrease in slope with increasing TE; (c) same data as in (b), but with slopes normalised by plotting log 

Go against Q/2.303RTE to yield a single trend. 

a = 1/2.303RT* (11) 

and from (9) 

b = log Go  - aQ (12) 

with the crossover temperature  at 

7"* = TE = 1/2.303 Ra (13) 

40 

32 

and where the crossover growth rate G* = l0  b 
(i.e. log G* = b) for any value of TE. 24 

The final form of the compensat ion effect fog G o 
equat ion may be obtained from (9) and (11) 

log G o  = Q/2.303RTE + log G* (14) 13 

or alternatively 

Go = G* exp(Q/RTE) (15) a 

and whereas by plotting Go  against Q, as in Fig. 
4b, the slope is governed by TE, if Go  is plotted 0 
against Q/2.303RTE then curves for all values of 
TE will be superimposed onto a single trend (Fig. 
4c) with a slope = 1. -8 

The TE values of  the data in Tables 2--4 vary 
from 670~ to 1552~ and, since each point 
would lie on a different slope, it is not  appropriate 
to plot G o  against Q, as in Fig. 4b. Instead the 
general form (14) is used in Fig. 5 (similar to Fig. 
4c). 

The above discussion is based on the assump- 

~ 
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/ 
/ 

I i I i | I l | i  i '  l I 

0 8 16 24 32 

Q / 2.303 R rE 

F~.  5. Compensation plot (as in Fig. 4c) for the growth 
rate data of Tables 2-4. The trend is given by equation 
(14), setting log G* = 0. Note the scatter involved by 

not allowing for the variations in G*. 
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tion of a constant value of the growth rate G* at a 
single crossover point at T* as in Fig. 4. However 
it is clear from the listings of G* in Tables 2-4 that 
this parameter is not a constant and this is 
apparent also from Fig. 5, which shows a con- 
siderable scatter around the trend of Go against 
Q/2.303RTE. This is also a feature of the original 
diffusion compensation law correlation graph of 
Winchell (1969, Fig. 4), again indicating that G* 
is not a general constant, although it may exhibit 
characteristic values for certain restricted groups 
of data. 

For the data considered here it is apparent that 
G* is related to GMAX and increases as GMAX 
increases (Fig. 6). This is based on 49 mineral 
growth rate curves from Tables 2-4 including all 
the data of Table 2 (except the lunar basalts 1 and 
2), mellilites from Table 3, and pyroxenes and 
olivine from Table 4. The remaining minerals, 
characterised by high Q values, fall on a parallel 
trend approximately one order of magnitude 
larger in G*. 

The relationship between G* and GMAX shown 
in Fig. 6 may be expressed by 

G* = 496 GMAX 0"8459 (16) 

with a correlation coefficient of 0.9533. This 
regression has relatively large errors and other 
relationships derived from it (see 28-30, below) 

2 ; /  
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ol 

~ ~  o , 
/ 

- 4  / o �9 2 
�9 / .  : : 
(3 5 

- 6  
-; ' - ;  ' ' - 2 '  ' 

log GMAx 
FIG. 6. Relationship of G* (the crossover growth rate at 
TE) to the peak growth rate, GMAX. The regression is 
given by equation (16). Symbols 1-5 correspond to the 
groups of minerals listed in Tables 2-4, respectively 
lunar basalts, albite-anorthite and diopside, granitic 

minerals and magnetite, see text. 
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are therefore the least reliable and subject to the 
largest errors. 

Considering now the connections between the 
CSE, the Arrhenius and the compensation rela- 
tionships (equations l ,  4 and 15), we have from 
(1) an expression for the temperature To at 0 
given by 

To = Tz - 0(Tz - T~) (17) 

When 0 = 0.14 (at log (G/GMAx) = 0) the 
temperature To corresponds to that for GMAX. If 
however 0 is set within the Arrhenius region of 
the CSE curve (e.g. 0 = 0.43) then, from the 

�9 X - 4  curve of equation (3)]GMAx/Go = 1/6.25 10 
and Go = 6.25 • 10- GMAX- Substituting for To 
and Go in (4) gives 

Go = 6.25 x 10 4 GMAX : G O  exp[-Q/R{Tz - 
0 ( T E -  TOO}] (18) 

Finally, using the compensation relationship 
(15) to substitute for Go, an expression for G M A  x 

in terms of TE, Q, T~ and G* is given by 

GMA X = 1600 [G* exp(Q/RTv)] exp[-Q/R{TE -- 
0(T E -- T~)}] (19) 

where T~ is defined by (7). 

A c t i v a t i o n  e n e r g y  a n d  g r o w t h  rate  

For a given TE the maximum and minimum 
values of Q may be obtained from equation (27) 
below, by substituting T~/TE = 0.633 and T~/TE 
= 0 respectively, as shown in Fig. 3, from which 

Q max = 187.95 TE~ (20) 

O min = 28.87 TE~ (21) 

Similarly, by using (25) below, the value of 
G*/GMAx at Q min for any ire is a constant at 
4.46 x 101 cm sec -1, and G*/GMAx at Q max for 
any TE is equal.to 1.27 x 105 cm sec -1. These 
limiting values of G*/GMAx define the end points 
of the regression line shown in Fig. 7 when plotted 
against a normalising factor (Q/2.303RTE) to 
superimpose the trends for all values of TE onto a 
single (power-law) trend joining Q max and Q 
min, expressed by 

G*/GMAx = 1,889 X 10 -2 [Q/(2.303 RTE)] 4"249 
(22) 

with a correlation coefficient of 0.995�9 This 
simplifies to 

G*/GMAx = 2�9 X 10 -5 (Q/TE) 4"249 (23) 

and 

Q = 11.641 TE(G*/GMAx) 0"2353 (24) 



loL 

104 . 

G* 

loL / 
102 

346 

! I I , s , , ]  I ! I I I I ' I I |  

10 100 
Q/2.303RTE 

R. DEARNLEY 

106 . 

105 . 

104 . 

10 2 . 

101 , 

FIG. 7. Relationships of the ratio G*/GMA x to 
Q/2.303RTE for all the minerals of Tables 2--4, for 
comparison with the compensation plot of Fig. 5. The 

regression is given by equation (22). 

For comparison, if this same ratio of G*/GMAx 
is plotted against the temperature ratio T=/TE, as 
shown in Fig. 8, an exponential regression (with 
correlation coefficient, r = 0.9993) is obtained: 

G*/GMAx = 44.462 exp[12.5743 (TJTE)] (25) 

The influence of these limiting values of 
G*/GMAx at Q max and G*/GMAx at Q min on 
the overall CSE systematics of growth curves over 
a range of ire values may best be appreciated on 
an Arrhenius diagram (Fig. 9) by using the ratios 
of Go~G* and G*/GMAx plotted relative to G* = 
1. Notable features are the convergence of the Q 
min slopes at log Go~G* = 6.308 and the 
convergence of the Q max slopes at log Go~G* = 
41.068. 

At any TE the value of Go MIN represents the 
pre-exponential factor in equation (4) where 
T= = -273 ~ and where the activation energy 
for that TE is at a maximum. Conversely, GOMAX 
is equal to the pre-exponential factor where 

100 
I I | I I | I 

0 0.2 0.4 0.6 

(T../TE )~ 

Fro. 8. Plot of the ratio G*/GMAx against the tempera- 
ture ratio T=/TE for all the minerals listed in Tables 2-4. 

The regression is given by equation (25). 

TJTE = 0.633 and the activation energy is at a 
maximum for that TE. 

In metals, the activation energy for diffusion 
(Q) approximates to 16RTE ~ (McLean, 1965). 
On this basis, for a typical basaltic composition 
with an equilibrium temperature of say 1200 ~ 
the corresponding Q would be 46834 cal. mo1-1, 
which approximates to the Q min value of 42526 
cal. mo1-1 given by equation 21. These two 
equations have similar constants (respectively, 
16R and 28.87) but, significantly, the relationship 
for metals approximates only to the minimum 
activation energy for silicate minerals. In the 
latter, Q typically ranges from this lower value up 
to about 300000 cal. mo1-1, see Tables 2-4. 

A p p l i c a t i o n  o f  r e s u l t s  

The temperature variation of growth rate 
relationships in Figs. 1 and 2 are defined in terms 
of the G/GMAx ratios by the CSE, but the 
absolute G values are determined by GMAX and 
G*. Assuming the general applicability of the 
CSE and within the error limits of G* as derived 
from equation (16), then, if TE and GMA• are 
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FIG. 9. General relationships of growth rate, activation 
energy (Q), the pre-exponential factor (log Go) and 
equilibrium temperature (TE), normalised to G* = 1. 
G* is the compensation crossover growth rate value at 
each ire for the extrapolated Arrhenius trends, Go MIN 
represents the pre-exponential factor for the QM~N 
trends at each Tz (equation 21) and GoMax is the 
corresponding factor for the QMA• trends at each T z 
(equation 20); GMAX defines the range of the growth 
rate maxima for the range of 0MAX tO QMIN at each T~. 
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The CSE derived relationships outlined above 
have various practical applications. Firstly, they 
may be used to extrapolate from incomplete 
growth rate vs temperature determinations. If Tv, 
Q and GMAX are known, G* may be obtained 
from (22-24), then T~ from (25-27) and Go from 
(14-15). When TE and Q are known then Too and 
G*/GMAx may be found from (26) and (24) 
respectively. If only TE and GMAX are known, 
then the approximate values of the parameters Q, 
T=, G* and Go may be derived from equations 
(28), (29), (16) and (30) respectively, in terms 
only of these two most commonly available 
measurements. In this latter case however, using 
only TE and GMAX, the errors are greater due to 
the use of equation (16). 

Also, by using measured and/or estimated trial 
values for TE, GMAX and Q the kinetics of 
mineral growth can be modelled over any temper- 
ature range of growth as, for instance, in a cooling 
intrusion. 

Although more experimental measurements of 
crystal growth rate in the major rock forming 
systems are required to test and complement the 
above results, these general relationships, based 
on the best currently available crystal growth data 
from widely different materials, contribute to- 
wards a systematic and practical modelling of 
crystallisation which does not assume any specific 
nucleation or transport mechanism for growth. 

known, the whole form of the temperature 
variation of growth rate may be derived. 

Relationships derived from the regressions 
corresponding to Figs. 5-8 may be combined to 
yield a set of simplifying equations. Combining 
equations (23) and (25) yields 

T~/TE = 0.3379 (lnQ - In TE - 3.3628) (26) 

and also 

Q/TE 28.8708 exp[2.9595(TJTE)] (27) 

Combining equations (16) and (22) results in 

Q = 50.162 TEGMAx -0"0363 (28) 

and from (27) and (28): 

T=/TE = 0.3379 In(1.738GMAx -~176 (29) 

Finally, an expression for Go is obtained from 
(14), (16) and (28) 

,e~ --0.0363~ @ 
log Go = (10.96 I J M / ~  O 496) G 0 8459~ (30) 

t g MAX" ) 
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TE 
T 
r~ 
r~ 

Above  

G 
GMAX 
Go  

G* 

Q 
R 

Explanation of symbols 

Equil ibrium temperature  
Tempera ture  
Glass temperature  
Kinetically limiting value of the glass 
temperature  
Tempera ture  difference ratio as in equa- 
tion 1 

temperatures  in ~ or ~ as stated in text 

Growth rate (cm sec -1) 
Maximum growth rate (cm sec -1) 
Pre-exponential  (frequency) factor in the 
Arrhenius  equat ion (cm sec -1) 
Extrapola ted growth rate at compensa- 
tion 'crossover '  point at TE, see Fig. 4 
Activat ion energy for growth (cal tool-1) 
Ga~ constant (=  1.986 cal tool -1 ~ 


