The Cu–Bi–S system: results from lowtemperature experiments

NAIDING WANG

Institute of Mineralogy and Petrography, University of Heidelberg, Germany

Abstract

Low-temperature experiments in the 'dry' ternary Cu–Bi–S system, conducted by using sulphidation methods down to 120°C produced a new metastable solid solution series $Cu_{10}Bi_2S_{13}$ – $Cu_5Bi_2S_8$ at 178°C, coexisting with CuS. This transformed slowly at 190–200°C to an assemblage of either CuS–(Cu,Bi)₈S₉ or CuS–Bi₂S₃ or both, depending on available sulphur. Sulphidation experiments on Cu₃BiS₃ similarly revealed a solid solution range for the phase (Cu,Bi)₈S₉ of up to Cu/Bi = 3/2 at 178–190°C, and a lower stability limit of 138°C. Isothermal sections of the system were constructed at 200 and 300°C, based on the new information collected but excluding the metastable series.

KEYWORDS: Cu-Bi-S system, wittichenite, cuprobismutite, emplectite, hodrushite, low-temperature experiments.

Introduction

THE Cu-Bi-S system, an essential part of several multicomponent sulphosalt systems, contains four mineral species: wittichenite, cuprobismutite, emplectite and hodrushite. Of these, wittichenite and emplectite are known to have stability ranges extending from higher temperatures down to below 200°C, whereas hodrushite probably occurs only at very low temperatures. Their paragenetic relations, despite several detailed experimental studies (Buhlmann, 1965, 1971; Sugaki and Shima, 1971; Sugaki, 1972; Chen and Chang, 1974; Sugaki et al., 1978), remain obscure. Sluggish reaction rates, particularly in runs where no valence changes are involved, commonly result in non-equilibrium assemblages at the run temperatures. Accelerated reaction rates obtained for certain preferred reactant pairs, however, led unexpectedly to equilibrium or near-equilibrium conditions in relatively short periods, even at 200°C. The reactant pair Bi₂S₃-metallic-Cu yielded, for example, useful data for the Cu₂S- Bi_2S_3 join (Wang, 1989). Due to its affinity for sulphur, metallic Cu is readily sulphidized to univalent Cu⁺, whereas part of the trivalent Bi³⁺ component is simultaneously reduced to the metallic state, at temperatures near to 200°C. A second simple experimental approach, which proved to be more fruitful, involved the sulphida-

Mineralogical Magazine, June 1994, Vol. 58, pp. 201–204 © Copyright the Mineralogical Society

tion of the intermediate, mostly metal-rich products (Wang, 1982, 1984, 1988). A combination of these two processes yielded paragenetic information for the system at temperature ranges otherwise inaccessible through experiments in the dry system.

Sulphidation of the hexagonal Cu_2S series

The high-temperature hexagonal Cu₂S solid solution series on the Cu₂S-Bi₂S₃ join, as investigated by Buhlmann (1965, 1971), Sugaki and Shima (1972) and by Mariolacos (1980), was redetermined to cover a homogeneous Cu/Bi range from 12/1 to about 5/1 at 500°C. The sulphidation products of this series obtained overnight at 178°C consisted of a new metastable series on the CuS-Bi₂S₃ join with compositions ranging from $Cu_{10}Bi_2S_{13}$ to $Cu_5Bi_2S_8$, and intergranular CuS. This new series is pleochroic (light grey-yellow) and strongly anisotropic. No characteristic powder diffraction pattern could be isolated from the intense, partially overlapping CuS reflections. Prolonged sulphidation at 178°C and 190°C of the Bi₂S₃-rich partial range produced, in the metastable product, finely exsolved lamellae or myrmekitic intergrowth, similar to those observed following the sulphidation of bornite (Wang, 1984). Re-equilibration of this material at 178, 190 and 200°C, for periods of up to nine months

led to a final assemblage of either $CuS-Bi_2S_3$, or $CuS-(Cu,Bi)_8S_9$ or both, depending on the amount or sulphur available. The sulphidation product of the Cu₂S-rich partial range, however, remained usually free from the exsolution product even at 230°C. At 250°C, the complete transition series broke down to the equilibrium assemblage CuS, (Cu,Bi)_8S_9, and sulphur.

The composition and stability range of the (Cu,Bi)₈S₉ series

This sulphur-rich ternary phase, with a currently accepted formula Cu₄Bi₄S₉, was obtained above 300° C from reaction of 2CuS + Cu₂S + 2Bi₂S₃ or from sulphidation of presynthesized CuBiS₂. It was found to coexist with CuS in the sulphidation product of Cu₃BiS₃ even at 138°C. Reported metal/sulphur ratios include 6/7 (Sugaki and Shima, 1971; Godovikov et al., 1972), 16/19 (Buhlmann, 1965; Sugaki and Shima, 1972) and 8/9 (Tekeuchi and Ozawa, 1975). Detailed synthesis over the temperature range 120–500°C confirmed the temperature dependence of this ratio. At 300°C and lower temperatures, Cu₄Bi₄S₉ and other sulphur-rich members were stable. With increasing temperature, this phase became metalenriched with respect to the stoichiometric 8/9 formula. In the structure work of Tekeuchi and Ozawa (1975), the analysed mean composition of the material used, Cu_{4.2}Bi_{3.76}S₉, deviates considerably from the theoretical formula. At least part of the material is expected to be more Cu-rich than the mean composition.

Some selected sulphidation experiments were conducted to determine this Cu-rich range. A mixture of wittichenite and cuprobismutite (initial bulk composition 3Cu₂S·2Bi₂S₃) was sulphidized to Cu₃Bi₂S₆ at 190°C which produced, in six months, an assemblage with $(Cu, Bi)_8S_9$, Bi_2S_3 and a trace of CuS. Microprobe analysis of the main product indicated a Cu/Bi ratio of 3/2. A second sulphidation experiment, performed independently on homogeneous Cu₃BiS₃ at 180°C for eight months, yielded for the main product a spectrum of compositions with a Cu/Bi ratio extending even beyond the 3/2 limit. Although still without equilibrium, this result demonstrated the credible existence of a solid solution range for the $(Cu,Bi)_8S_9$ series at least to Cu/Bi = 3/2 at 180-190°C. Further heating of the run product at 300°C led to the disappearance of the coexisting Bi_2S_3 , the segregation of liquid sulphur, and the gradual breakdown of the Cu-rich partial range of the series, as reflected by the increasing amount of coexisting CuS. In marked contrast to these runs, similar sulphidation at 145°C gave only composi-

tions close to Cu₄Bi₄S₉ and coexisting CuS. This analysed 3/2 ratio corresponds to the fictitious metallic composition of the discredited mineral species 'klaprothite' on the Cu₂S-Bí₂S₃ join (Nuffield, 1947; Springer and Demirsoy, 1969; Buhlmann, 1971; Sugaki and Shima, 1971; Bente et al., 1977). The analytical result, however, does not provide a conclusive link between the phase (Cu,Bi)₈S₉ and the name klaprothite. The inconsistency in the sulphur/metal ratio and the lack of other convincing data preclude, at the present stage, a correlation of the two. 'Klaprothite' or the slightly more anisotropic 'emplectite' from the 'type locality', Wittichen, must be re-investigated as regards its chemical composition and powder pattern before a correlation can be speculated. The synthetic series $(Cu, Bi)_8S_9$, despite its stability only under relatively high sulphur fugacities (Bente, 1986), has a good chance to occur as a mineral in Cu-bearing Bi deposits. Its stability range extends from 138°C to almost 500°C and its tie line to Bi_2S_3 persists up to 420°C, as confirmed from numerous experimental runs in the present study.

Low-temperature phase relations

The information collected for the central part of the system permits the construction of two isothermal sections at 200 and 300°C (Fig. 1).

At 200°C, two ternary phases are stable on the Cu₂S-Bi₂S₃ join: Cu₃BiS₃ (wittichenite) and CuBiS₂ (emplectite). Both of them, as well as Cu₂S or its Bi-bearing members, coexist with metallic bismuth, as confirmed by the respective ternary and binary assemblages (Wang, 1989). The metastable series Cu₁₀Bi₂S₁₃-Cu₅Bi₂S₈ on the CuS-Bi₂S₃ join, was obtained as a primary sulphidation product at 178°C. However, its Birich partial range was found to break down after extended heating at 200°C, whereas the Cu-rich partial range remained unaltered at this temperature. Consequently, all phase assemblages which involve this series were considered to be metastable and not included in the 200°C isotherm.

A second solid-solution series, intermediate to the two joins, $(Cu,Bi)_8S_9$, coexists stably at 200°C with Cu_3BiS_3 , $CuBiS_2$ and Bi_2S_3 . However, its expected coexistence with liquid sulphur at this temperature is interrupted by the phase assemblage $CuS-Bi_2S_3$ repeatedly observed at 190–200°C in the final sulphidation products, on and above $CuS-Bi_2S_3$ join. This $CuS-Bi_2S_3$ assemblage appears to conflict with the absence of a corresponding natural paragenesis covellitebismuthinite and it is uncertain if this final sulphidation product represents an equilibrium assemblage or not, at the temperatures concerned. Because of this uncertainly, the observed CuS-Bi₂S₃ tie line is plotted as a dashed line on the 200°C isotherm.

At 300°C, the phases Cu_3BiS_3 and $CuBiS_2$ persist on the Cu₂S-Bi₂S₃ join. The (Cu,Bi)₈S₉ series becomes slightly metal-enriched with compositions approaching Cu₄Bi₄S₉. Tie lines radiating from this phase to the following six phases were observed: CuS, Cu₃BiS₃, CuBiS₂, $CuBi_3S_5$, Bi_2S_3 and sulphur (Fig. 1). The assemblage Cu₄Bi₄S₉-Bi₂S₃ remained stable up to 420°C, where it was replaced by the assemblage CuBi₃S₅s.s. and liquid sulphur. The new addition CuBi₃S₅ at 300°C was detected in various assemblages only above 275°C. The phases cuprobismutite (Wang, 1989) and Cu₃Bi₅S₉ on the Cu₂S-Bi₂S₃ join appeared at higher temperatures and, therefore, are not included in the 300°C isotherm.

The X-ray powder pattern of hodrushite (Kodera et al., 1970) bears a striking resemblance to the pattern of cuprobismutite due to their lattice analogy. In the present experiments, however, neither cuprobismutite, nor other similar patterns with comparable *d*-spacings were observed below 300°C along the Cu₂S-Bi₂S₃ join which implicate the existence of the mineral hodrushite. Additional sulphur- or metal-enriched runs also gave negative results. The stable assemblage CuBiS₂ (emplectite) Bi_2S_3 (or $CuBi_3S_5$) + metallic Bi observed between 200 and 300°C practically rule out the expected existence of a ternary hodrushite in this temperature range. The initial analysis of hodrushite (Kodera et al., 1970) contains a maximum of 0.47 wt.% Pb, along with other impurities like Fe and Ag. In a later, more refined analysis (Makovicky and Maclean, 1972), the Pb content was not admitted into the hodrushite formula, $Cu_8Bi_{10}Me_2S_{22}$, because its amount was below the detecting limit. The impurities, inte-

grated in the Me part of this non-ternary formula, may be conceived as being responsible for the stability of this cuprobismutite-like mineral in the natural environment, and certainly under low temperature conditions.

Pentavalent bismuth

Stable phases or phase assemblages on the Cu₂S- Bi_2S_3 join, like CuBiS₂ or CuBi₃S₅, are able to take in, at low temperatures (e.g. 145°C), excess amounts of sulphur sufficient to transform their Cu component to a bivalent state, and part of their Bi component to a pentavalent state. Subsequent temperature increases result in the release of the absorbed sulphur under simultaneous reduction of the stable or metastable Bi⁵⁺ back to the normal trivalent state. X-ray powder diffraction data acquired in association with this valency promotion could not confirm any structure changes from phases containing the normal state Bi³⁺. In the 200°C isotherm, however, no corresponding solid solution range is plotted which reflects this reversible process. The co-existing pair Bi^{3+}/Bi^{5+} , if properly calibrated against temperature, might conceivably be employed as a measure of sulphur fugacity over low-temperature Bibearing assemblages.

Acknowledgements

The author thanks Prof. D. J. Vaughan, University of Manchester, for critical review of the manuscript, and Dr. S. Schmidt, University of Basel, for performing the microprobe analysis.

References

- Bente, K. (1986) Methodical and genetic aspects of sulfur fugacity studies of bismuth sulfosalts. Neues Jahrb. Mineral. Abh., 153, 312-4
- Bente, K., Kupcik, V. and Moh, G. H. (1977) Klaprothite. Neues. Jahrb. Mineral., Abh., 131, 39-42.
- Buhlmann, E. (1965) Untersuchungen im System Cu-Bi-S. Ph.D. thesis, University of Heidelberg, 102 pp.
- Buhlmann, E. (1971) Untersuchungen im System Bi₂S₃-Cu₂S und geologische Schlußfolgerungen. Neues Jahrb. Mineral., Mh., 137-41
- Chen, T. T. and Chang, L. L. Y. (1974) Investigations in the System PbS-Cu₂S-Bi₂S₃ and Ag₂S-Cu₂S-Sb₂S₃. *Canad. Mineral.*, **12**, 404-10.

- Godovikov, A. A., Fedorova, Zh. N., Pavlyuchenko,
 V. S. and Ptitsyn, A. B. (1972) New sulfosalt
 Cu₃Bi₃S₇ as an intermediate phase of the cuprous sulfide-bismuth sulfide-sulfur system. Dokl. Akad. Nauk SSSR, 202, 912-4 (in Russian).
- Kodera, M., Kupcik, V. and Makovicky, E. (1970) Hodrushite, a new sulphosalt. *Mineral. Mag.*, 37, 641-8.
- Makovicky, E. and Maclean, W. H. (1972) Electron microprobe analysis of Hodrushite. *Canad. Mineral.*, 11, 504-13.
- Mariolacos, K. (1980) Phase relations in the system Bi₂S₃-PbS-CuPbSiS₃ at 450°C and its extension in the system Bi₂S₃-PbS-Cu₂S. Neues. Jahrb. Mineral., Mh., 373-80.
- Nuffield, E. W. (1947) Studies of mineral sulfo-salts: XI — Wittichenite (Klaprothite). Econ. Geol., 42, 147-60.
- Springer, G. and Demirsoy, S. (1969) Beitrag zur Klärung der Existenz von Klaprothit. Neues Jahrb. Mineral., Mh., 32-7.
- Sugaki, A. (1972) Phase relations of the Cu₂S-Bi₂S₃ system. Tech. Rep., Yamaguchi University, Vol. 1, No. 1, 45-70.
- Sugaki, A. and Shima, H. (1971) The phase equilibrium study of the Cu-Bi-S system. IMA-IAGOD-Meetings '70; Proc. Abstr. IMA-Vol., 270-1.
- Sugaki, A., Shima, H. and Kitakaze, A. (1978) The phase equilibrium of the system copper-bismuthsulfur below 400°C, especially the relation between emplectite and cuprobismutite. Sulfosoli, Platinovye Miner., Rudn. Mikrosk. Mater, S'ezda MMA, 11th 1978 (pub. 1980).
- Tekeuchi, Y. and Ozawa, T. (1975) The structure of $Cu_4Bi_4S_9$ and its relation to the structure of CuS and Bi_2S_3 . Zeits. Krist. 141, 217–32.
- Wang, N. (1982) Sulfidization experiments performed at low temperatures. *Neues Jahrb. Mineral.*, *Abh.*, 144, 319-24.
- Wang, N. (1984) A contribution to the Cu-Fe-S system: The sulfidization of bornite at low temperatures. *Neues Jahrb. Mineral.*, Mh., 346-52.
- Wang, N. (1988) Experimental study of the Cu-Ge-S ternary phases and their mutual relations. Neues Jahrb. Mineral., Abh., 159, 137-51.
- Wang, N. (1989) Emplectite: Synthesis, powder data and thermal stability. *Neues Jahrb. Mineral.*, Mh., 521-3.

[Manuscript received 22 June 1993: revised 4 August 1993]