Subsilicic magnesian potassium-hastingsite from the Prince Olav Coast, East Antarctica

KAZUYUKI SHIRAISHI

National Institute of Polar Research, Kaga, Itabashi-ku, Tokyo 173, Japan

TAKANOBU OBA

Department of Geosciences, Joetsu University of Education, Joetsu 943, Japan

MORIHISA SUZUKI

Department of Geology, Faculty of School Education, Hiroshima University, Hiroshima 734, Japan

AND

Ken'ichi Ishikawa

Department of Earth Sciences, College of General Education, Tohoku University, Kawauchi, Sendai 980, Japan

Abstract

Two subsilicic magnesian potassium-hastingsites (4.55 and 4.34 wt.% K_2O) and one magnesian potassium-hastingsite occur in calc-silicate pods in well-layered gneisses from the transitional amphibolite- and granulite-facies terrain of a Cambrian metamorphic complex, East Antarctica. Subsilicic magnesian potassium-hastingsite is the most K-rich Ca-amphibole yet reported:

 $(K_{0.85}Na_{0.11}Ca_{0.02})_{0.98}(Ca_{1.98}Mn_{0.02})_{2.00}(Mn_{0.01}Mg_{1.92}Fe_{1.20}^{2+}Fe_{1.11}^{3+}Ti_{0.13}Al_{0.64})_{5.0}$

(Si5.64Al2.36)8O22.48(OH,F,Cl)1.52.

KEYWORDS: subsilicic magnesian potassium-hastingsite, amphibole, East Antarctica

Introduction

THE Prince Olav Coast (68.5°S, 40-44.5°E) is in the eastern part of the Cambrian Lützow-Holm Complex (Hiroi *et al.*, 1983; Shiraishi *et al.*, 1987; Hiroi *et al.*, 1991, Shiraishi *et al.*, 1994). The Lützow-Holm Complex is composed of a series of pelitic to psammitic and volcanogeneous welllayered gneisses with minor granodioritic migmatite. The Complex is subdivided into three zones: upper amphibolite-facies, a transitional zone, and granulite-facies from east to southwest (Hiroi *et al.*, 1987; 1991). P-T conditions of the transitional zone are estimated to be 780°C and 0.7 GPa on the basis of various geothermo-barometers (Shiraishi, 1986).

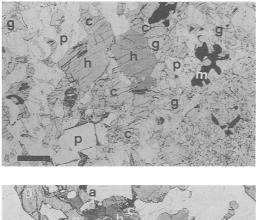
Mineralogical Magazine, December 1994, Vol. 58, pp. 621–627 © Copyright the Mineralogical Society

In this paper, we describe the occurrence, petrography and composition of K-rich Caamphiboles from calc-silicate pods in granulites from the transitional zone between amphiboliteand granulite-facies.

Mode of occurrence and petrography

Two samples were collected from Cape Omega and Daruma Rock, about 10 km from one another, in the Prince Olav Coast (Suzuki and Moriwaki, 1979; Shiraishi *et al.*, 1989).

Sample 77010721 (abbreviated to 721) from Cape Omega is a spindle-shaped calc-silicate pod, 70 cm long and enclosed in well-layered hornblende gneiss and biotite gneiss. The gneisses


K. SHIRAISHI ET AL.

Sample nodomain Mineral	770107 SMH		77010721-1 MPH	80D10-3 SMPH
SiO ₂	36.8	34	39.43	36.58
TiO ₂	1.1		1.03	1.65
Al_2O_3	16.0		14.31	16.12
Cr_2O_3	0.0		0.02	0.01
Fe_2O_3	9.		9.88	
FeO	9.1		8.38	17.92
MnO	0.2		0.45	0.17
MgO	8.4		9.02	7.97
CaO	12.3		12.23	12.31
Na ₂ O	0.1		0.96	0.20
K ₂ O	4.1		3.07	4.55
H_2O^+	4		5.07	4.55
H_2O^-	0.1		0.70	0.23
F	0.2		0.20	
Cl	0.		0.10	0.03
O≡F,Cl	0.	13	-0.11	-0.11
Total	100.1	72	98.97	97.63
		tomic formulae		
	(1)	(2)	(1)	(3)
Si	5.561	5.639	5.900	5.663
Al ^{IV}	2.439	2.361	2.100	2.337
T	8.000	8.000	8.000	8.000
Al ^{VI}	0.516	0.635	0.424	0.606
Cr	0.002	0.002	0.002	0.001
Ti	0.125	0.127	0.116	0.192
Fe ³⁺	1.097	1,113	1.112	0.341
			2.012	1.839
Mg Fe ²⁺	1.890	1.917	1.049	
	1.180	1.197		1.979
Mn	0.027	0.008	0.057	0.022
M1,2,3	4.837	5.000	4.772	4.980
Mn	-	0.019	-	-
Ca	1.975	1.981	1.961	2.000
Na	0.025		0.039	_
M4	2.000	2.000	2.000	2.000
Ca		0.022	_	
Na	0.083	0.109	0.240	0.060
K	0.836	0.847	0.586	0.899
A	0.919	0.978	0.826	0.959
Total	15.756	15.978	15.598	15.939
				22
0	22	22.48	22 2	22
OH	2	1.36		
F Cl		0.12 0.04	_	
o Å		Cell dimensions	9.941(4)	10.002(3)
a A		007(3)		
bĄ		107(5)	18.110(8)	18.112(7)
c Å		368(5)	5.337(3)	5.356(4)
β°	105.	66(5)	105.25(5)	105.54(4)

TABLE 1. Chemical compositions of amphiboles

*total Fe as FeO; MPH: Magnesian potassium-hastingsite; SMPH: Subsilicic magnesian potassium-hastingsite (1) 23 oxygen calculation; (2): 24(O,OH,F,Cl) oxygen calculation; (3): Recalculated after Spear and Kimball (1984)

are permeated by pinkish granitic material, resulting in a migmatitic structure. The gneiss that is adjacent to the calc-silicate pod contains magnesian potassium-hastingsite, clinopyroxene (Cpx), plagioclase (An₉₄₋₉₆) (Pl), magnetite (Mag), and apatite (Ap) with granoblastic texture (Fig. 1a). The outermost layer (up to 0.5 cm) of the calc-silicate pod is composed of clinopyroxene, plagioclase (An₉₅₋₉₇), magnetite and titanite (Ttn) with secondary muscovite and epidote. The interior part of the calc-silicate pod is dominantly garnet (Grt) which occurs as symplectic intergrowths with plagioclase (An₉₈₋₉₉) and subordinate aluminian clinopyroxene, subsilicic magnesian potassium-hastingsite, magnetite and apatite. The Ca-amphibole and clinopyroxene tend to form dark vein-like patches in this domain. Secondary epidote occurs as anhedral grains replacing garnet and plagioclase in the symplectite and forms a mantle around

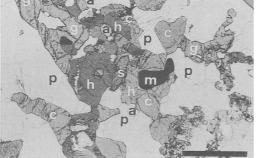


FIG. 1. Photomicrographs of subsilicic magnesian potassium-hastingsites: (a top) 77010721. Note the symplectic intergrowth of garnet, epidote and plagioclase in the lower-right corner; (b bottom) 80D10; h: subsilicic magnesian potassium-hastingsite; a: apatite; c: clinopyroxene; g: garnet; m: magnetite;

p: plagioclase; s: titanite. Scale bars are 0.5 mm.

garnet and clinopyroxene adjacent to plagioclase in some cases. Plagioclase and garnet are partly replaced by chlorite, muscovite, calcite and scapolite (Me_{98}).

Sample 80D10 (abbreviated to D10) from Daruma Rock is a 10 cm long calc-silicate pod in migmatitic hornblende-biotite gneiss. This sample has a granoblastic texture and appears heterogeneous (Fig. 1b). It can be divided into the following domains consisting of different mineral assemblages:

- Domain D10-1: Cpx, Pl(An₅₁₋₅₃), Kfs,
 - Scp(Me₇₇₋₇₈), Mag, Ttn
- D10-2: Cpx, Pl(An₈₄₋₈₉), Scp(Me₈₀₋₈₃), Mag, Ttn
- D10-3: Ca-amph, Grt, Cpx, Pl(An₉₄₋₉₉), Mag, Ttn, Hem, Ap

More than a half of the pod is made of D10-3. Subsilicic magnesian potassium-hastingsite with or without clinopyroxene forms thin veinlets and pools in the dominant garnet and plagioclase aggregate of D10-3.

Ca-amphiboles

The amphibole is pleochroic in grayish green to light yellowish green. Chemical composition was determined with the JXA-733 Superprobe; data were processed by the Bence-Albee method, and with the JXA-8800 Superprobe at JEOL Co. Ltd, where data were processed by the ZAF correction method. Fe^{2+} contents of two amphiboles (in domains 721-1 and 721-3) were analysed by the $K_2Cr_2O_7$ titration method. The two analyses show higher Fe^{3+} contents than those calculated using the RECAMP program (Spear and Kimball, 1984). H_2O was estimated from loss of ignition extracted Cl and F contents.

Representative analyses with atomic formulae show the amphiboles to be magnesian potassiumhastingsite, and subsilicic magnesian potassiumhastingsites (Table 1). Individual amphibole grains show no detectable compositional zoning.

Unit-cell parameters were obtained from ten reflections (131, 240, 310, 221, 330, 151, 061, $\overline{2}02$, 350, 261) recorded on an X-ray diffractometer (Table 1).

Associated minerals

Representative compositions of associated minerals are given in Tables 2 and 3. K-feldspar occurs in the margin of sample D10 (D10-1). Apart from the amphibole, there is no K-rich mineral in sample 721. Pinkish-orange garnet shows no detectable compositional zoning.

5
7701072
01
Ē
ď
-=
als
ü
in.
d min
Å
Ĕ
Ξ.
ŝ
as
F
e of associated
lae
n
E
g
al
G
Ē.
В
e analyses and mineral f
an
S
yse
-fe
an
Ð
Ą
Ĕ
5
<u>.5</u>
B
õ
tiv
ta
e
ēS
d
e Res
_
TABLE 2. Re
Ę
AB
F

	K, SHIKAISHI ET AL.	
Scapolite	$\begin{array}{c} 42.98 \\ tr. \\ 24.03 \\ 0 \\ - \\ - \\ 0 \\ 0 \\ 0 \\ 0.12 \\ 0 \\ 0.12 \\ 94.55 \\ 7.233 \\ 7.233 \\ 7.233 \\ 7.233 \\ 0.004 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
Epidote	$\begin{array}{c} 37.73\\ 0.28\\ 0.28\\ 0.28\\ 0.05\\ 0.05\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.03\\ 0.033\\ 0.033\\ 0.033\\ 0.003\\ 0.003\\ 0.0014\\ 0.0014\\ 0.0014\\ 0.0014\\ 0.0014\end{array}$	8 4 2
	$\begin{array}{c} 42.81\\ tr.\\ 36.19\\ tr.\\ -\\ -\\ 0.12\\ 0.12\\ 0.11\\ 0.03\\ 99.24\\ 0.01\\ 0.03\\ 99.24\\ 0.11\\ 0.03\\ 0.11\\ 0.03\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	
Plagioclase 721-3	43.65 9.03 9.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.001 0.001 0.003 0.001	
G	$\begin{array}{c} 43.84\\ 0\\ 35.33\\ -\\ -\\ 0.066\\ 0\\ 0.066\\ 19.03\\ 0.66\\ 19.03\\ 0.066\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	
721-3 rim	$\begin{array}{c} 40.46\\ 1.46\\ 1.46\\ 0.03\\ 0.03\\ 0.03\\ 0.06\\ 0.16\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.001\\ 0.005\\ 0.001\\ 0.003\\ $	0.668
721-3 core	$\begin{array}{c} \textbf{40.44}\\ \textbf{1.28}\\ \textbf{1.28}\\ \textbf{0.02}\\ \textbf{0.02}\\ \textbf{0.20}\\ \textbf{0.20}\\ \textbf{0.20}\\ \textbf{0.20}\\ \textbf{0.20}\\ \textbf{0.20}\\ \textbf{0.295}\\ \textbf{0.037}\\ \textbf{0.295}\\ \textbf{0.037}\\ \textbf{0.037}\\$	0.695
roxene 721-2 rim	$\begin{array}{c} 45.15\\ 0.61\\ 0.61\\ 0.13\\ 0.13\\ 0.13\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.339\\ 0.037\\ 0.037\\ 0.037\\ 0.004\\ 0.017\\ 0.026\\ 0.006\\ 0.017\\ 0.026$	0.337
Clinopy 721-1 core	$\begin{array}{c} 44.29\\ 0.74\\ 0.74\\ 6.79\\ 0.05\\ 17.73\\ -\\ 0.51\\ 6.87\\ 0.34\\ 0.34\\ 0.34\\ 0.049\\ 0.049\\ 0.026\\ 0$	0.374
721-3 rim	$\begin{array}{c} 49.11\\ 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.05\\ 0.54\\ 11.58\\ 0.40\\ 0\\ 0\\ 0.40\\ 0\\ 0\\ 0.129\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.000\\ 0.009\\ 0.000$	0.383
721-2 core	$\begin{array}{c} 47.68\\ 0.56\\ 5.25\\ 5.25\\ 0\\ 0\\ 11.95\\ -\\ 0.50\\ 0\\ 0.35\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.433
tet 721-1 rim	37.19 0.67 0.67 0.04 0.72 0.72 0.77 0.72 0.72 0.72 0.72 0.72	0.761
Garnet 721-3 core	36.97 0.81 0.81 0.02 0.02 0.64 0.64 0.64 0.62 30.80 1.186 0.048 0.048 0.043 0.043 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.064 0.077 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.064 0.073 0.064 0.073 0.075 0.066 0.074 0.075 0.067 0.075 0.066 0.077 0.066 0.077 0.066 0.077 0.066 0.077 0.066 0.077 0.066 0.077 0.066 0.077 0.066 0.077 0.066 0.077 0.077 0.066 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.07777 0.0777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.07777 0.077777 0.07777 0.077777 0.07777777777	0.758
Mineral Domain Position	$ \begin{array}{c} SiO_{2}\\ TiO_{2}\\ TiO_{2}\\ FiO_{3}\\ Fe_{2}O_{3}\\ Fe_{2}O_{3}\\ Fe_{2}O_{3}\\ Fe_{2}O_{3}\\ Fe_{2}O\\ Mn\\ Mn\\ Mn\\ Mn\\ Mn\\ Mn\\ Mn\\ Mn\\ Mn\\ Mn$	$Fe^{3+/(Fe^{2+}+Fe^{3+})}$

Fe₂O₃^{*}: Total Fe as Fe₂O₃, FeO^{**}: Total Fe as FeO

K. SHIRAISHI ET AL.

	Garnet	net			Clinopyroxene	roxene				Scapolite			Plagioclase	oclase		K-feldspar
	D10-3	D10-1	D10-2	-2	DIC	-3	DĭC		D10-2		D10-1		D10-2	D10-3		10-1
Position	core	nim	core	п'n	COLE	nin	core ri	пiп	core	піп	core	nim	core	core n	rim c	core
SiO ₂	36.67	37.04	45.91	47.15	ł	45.63	ł.	42.00	44.62	42.84	-	43.48	53.22	46.14 42		54.46
TiO,	0.59	0.79	0.28	0.19		0.22		1.10	0	0		0.03	0.02			0
Al,O	14.43	12.87	3.53	2.54		4.09		8.89	26.41	27.40		28.69	27.98			18.44
Cr,0,	0	0.10	0	0		tr.		0.05	0	0		0.02	0			tr.
Fe ₂ O ₃	17.14	17.88	23.09	22.38		23.14		17.78	1	I		1	I			I
Fe0"	I	I	I	i		ł		I	0.32	0.32		0.44	0.29			0.05
MnO	0.81	0.67	0.51	0.54		0.46		0.11	0.04	0.08		0.08	0			0.13
MgO	0.61	0.52	5.23	5.26		5.11		69.9	0	0.02		0.06	Ę,			0
cao	30.72	31.04	22.70	21.81		22.84		23.50	18.05	18.66		20.07	11.04			0.05
Na ₂ O			0.57	0.58		0.55		0.30	3.01	3.02		2.28	5.50			0.73
$K_2 \tilde{O}$			tr.	0		0		0	0.13	0.11		0.10	0.19			14.67
Total	100.97	100.91	101.82	100.45		102.64	100.48	100.42	92.58	92.58 92.45		95.19	98.24		99.18	98.53
	0=12		0=6	0=0	0=0	0=0	9=0	0=6	Si + Al = 12	Si + Al = 12	Si + AJ = 12 Si + AJ = 12	3i + AI = 12	0=8	0=8	0 = 8	0=8
	R = 8		R = 4	R = 4	R=4	R = 4	R=4	R=4								
Si	2.889		1.813	1.887	1.831	1.797	1.627	1.638	7.070	6.842	6.855	6.750	2.455	2.144	2.000	3.002
Al ^{IV}	0.111	0.065	0.187	0.113	0.169	0.203	0.373	0.362								
AI ^{VI}	1.230		0	0.007	0.022	0	0.054	0.047								
AI									4.930	5.158	5.145	5.250	1.521		1.985	1.012
Ë	0.035	0.047	0.008	0.006	0.013	0.007	0.034	0.032	0	0	0	0.004	0.001		0.001	0
ප්	0	0.006	0	0	0	0	0	0.002	0	0	0.007	0,002	0	0	0.002	0
Fe ³⁺	0.811	0.826	0.238	0.138	0.163	0.245	0.269	0.272								
Fe ²⁺	0.205	0.240	0.449	0.536	0.503	0.440	0.261	0.250	0.042	0.043	0.048	9,058	0.011		0.016	0.002
Mn	0.054	0.045	0.017	0.018	0.017	0.015	0.006	0.004	0.006	0.010	0	0.011	0		0.002	0.005
Mg	0.072	0.061	0.308	0.314	0.303	0.300	0.386	0.389	0	0.005	0,009	0.005	0.001		001	0
ۍ ۲	2.594	2.636	0.960	0.936	0.935	0.964	0.974	0.982	3.064	3.194	3.366	3.338	0.545		0.988	0.003
Na			0.044	0.045	0.043	0.042	0.017	0.023	0.924	0.936	0.765	0.688	0.492		0.024	0.065
K			0	0	0	0	0	0	0.027	0.022	0.029	0.019	0.011		0	0.871
$Fe^{2+}/(Fe^{2+} + Mg)$	0.741	0.796	0.593	0.631	0.624	0.595	0.403	0.392	Me77	Me77	Me81	Me83	An52	An85 A	An98	
$Fe^{3+}/(Fe^{2+} + Fe^{3+})$	0.798	0.775	0.346	0.206	0.245	0.358	0.507	0.520					Ab47		Vb 2	Ab 7
													5			CCIO

TABLE 3. Representative microprobe analyses and mineral formula of associated minerals in 80D10

Fe₂O₃^{*}: Total Fe as Fe₂O₃, FeO^{**}: Total Fe as FeO

SUBSILICIC MAGNESIAN POTASSIUM-HASTINGSITE

625

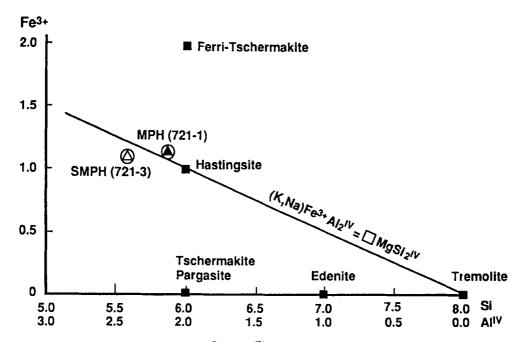


FIG. 2. Plots of K-rich Ca-amphibole on a Fe^{3+} vs. Al^{IV} diagram. Triangles with circles indicate a magnesian potassium-hastingsite (MPH)(721-1) and subsilicic magnesian potassium-hastingsite (SMPH)(721-3), respectively.

Clinopyroxene coexisting with the amphibole is pleochroic from light bluish-green to pale green. Sample D10 contains primary scapolite (Me₇₇₋₈₂) which does not coexist with the amphibole.

Discussion

In the granulite-facies terrain of the Lützow-Holm Complex, potassium pargasite- (0.65 wt.% Cl, 3.19 wt.% K₂O) and chlorine-rich potassiumhastingsite (3.27 wt.% Cl, 3.27 wt.% K₂O) were reported from Einstödingen(Matsubara and Motoyoshi, 1985) and West Ongul Island(Suwa et al., 1987). In contrast, the Cl-content of the present samples is negligible. Two amphiboles(721-1, 721-3) are plotted near the line of (K, Na)Fe³⁺Al₂^{IV} = \Box MgSi₂^{IV} substitution in

Fig. 2.

If we calculate the unit formula on the basis of 0=23, the cation sum in M123 sites are 4.837 and 4.772 apfu (atoms per formula unit) (Table 1). Recalculation on the basis of 24(O, OH) gives a sum of M123 of 5.000 for the subsilicic magnesian potassium-hastingsite (Table 1). This supports the H_2O determination, which indicates that O(3) is occupied by O^{2-} as well as by monovalent anions.

Acknowledgements

We are much indebted to E. S. Grew of the University of Maine, Orono, for critical reading of the manuscript. We thank Y. Kondo for carrying out the microprobe work at JEOL Co. Ltd and H. Kojima for the assistance of the microprobe work at the National Institute of Polar Research. A part of this work was supported by a Grant in Aid for Fundamental Scientific Research (Nos.540646 and 04640733) of the Ministry of Education, Japan.

References

- Hiroi, Y., Shiraishi, K., Yanai, K., and Kizaki, K (1983) Aluminum silicates in the Prince Olav and Soya Coasts, East Antarctica. Mem. Nat. Inst. Polar Res., Special Issue, 28, 115-31.
- Hiroi, Y., Shiraishi, K. and Motoyoshi, Y. (1991) Late Proterozoic paired metamorphic complexes in East Antarctica, with special reference to the tectonic significance of ultramafic rocks. In: Geological Evolution of Antarctica. (M. R. A. Thompson, J. A. Crame and J. W. Thompson, Eds.), 83-87. Cambridge University Press, Cambridge.
- Matsubara, S. and Motoyoshi, Y. (1985) Potassium pargasite from Einstödingen, Lützow-Holm bay,

East Antarctica. Mineral. Mag., 49, 703-7.

- Shiraishi, K. (1986) Geology and petrology of Late Proterozoic metamorphic complexes in eastern Queen Maud Land, East Antarctic shield. Unpubl. D. Sc. thesis, Hokkaido University, 246pp.
- Shiraishi, K., Hiroi, Y., Motoyoshi, Y. and Yanai, K. (1987) Plate tectonic development of late Proterozoic paired metamorphic complexes in eastern Queen Maud Land, East Antarctica. In: Gondwana six: Structure, tectonics and geophysics. (G. W. McKenzie, Ed.), Geophysical Monograph, 40, 309-18. American Geophysical Union., Washington DC.
- Shiraishi, K., Hiroi, Y. and Motoyoshi, Y. (1989) Antarctic Geological Map Series, Sheet 13: Prince Olav Coast, 1:250,000. National Institute of Polar Research, Tokyo.
- Shiraishi, K., Ellis, D. J., Hiroi, Y., Fanning C. M.,

Motoyoshi, Y. and Nakai, Y. (1994) Cambrian origenic belt in East Antarctica and Sri Lanka: Implications for Gondwana Assembly. J. Geol., 102, 47-65.

- Spear, F. S. and Kimball, K. L. (1984) RECAMP-a fortran IV program for estimating Fe³⁺ contents in amphiboles. Computers & Geosci., 10, 317-25.
- Suwa, K., Enami, M. and Horiuchi, T. (1987) Chlorine-rich potassium hastingsite from West Ongul island, Lützow-Holm bay, East Antarctica. *Mineral. Mag.*, 51, 709-14.
- Suzuki, M. and Moriwaki, K. (1979) Antarctic Geological Map Series, Sheet 21: Cape Omega. National Institute of Polar Research, Tokyo.

[Manuscript received 24 May 1993: revised 7 February 1994]