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Abstract 

We review some of the most recent developments in classical and quantum mechanical molecular dynamics 
simulations, in particular as applied to Earth-forming phases at conditions prevalent in the Earth's deep 
interior. We pay special attention to the modelling of high pressures and temperatures, elucidating the 
problems associated with both the classical and quantum approaches in view of the empirical potentials 
required for the former, and the limitations of finite temperature calculations for the latter. We show the 
current status of such calculations for major phases such as MgSiO3 perovskite. 
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Introduction 

ONE major goal of computational mineral physics is 
to be able to describe fully the physical and defect 
behaviour of Earth-forming phases under the condi- 
tions found in the Earth's interior. The computational 
approaches currently used generally employ either 
static simulation or dynamic simulation techniques to 
model the mineral properties; in the case of the 
former, these are calculated using the vibrational 
frequencies of the atomic oscillations (phonons) via 
lattice dynamics, whereas in the latter the component 
ions are given initial explicitly assigned velocities, 
and their trajectories are calculated via molecular 
dynamics. For either method to be used successfully, 
there are two types of methodological problems that 
have to be overcome: how to model the effect of 
pressure and temperature accurately, and how to 
reliably describe the interatomic interactions over a 
wide range of atomic separations. The solution to 
these problems differs depending upon the simulation 
technique used. 

In the following section we shall discuss how both 
lattice dynamics and molecular dynamics can be used 
to model extreme conditions of pressure and 
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temperature, largely taking examples from work 
performed by the authors and their collaborators. 
We will conclude that molecular dynamics techni- 
ques are currently most appropriate for modelling the 
pressure and temperature conditions prevalent in the 
Earth's interior. We shall then consider how 
molecular dynamics has been used in association 
with interatomic potentials to describe the behaviour 
of silicates at high pressures and temperatures, and 
will outline how the limitations of such an approach 
can be overcome by using quantum mechanical 
methods. 

The modelling of pressure and temperature: the 
case for molecular dynamics 

Laboratory experiments on minerals and mineral 
analogues are currently limited to moderately high 
pressures or high temperatures, but rarely both. In 
order to model deep Earth mineral phases, it is 
essential to be able to simulate systems at extreme 
conditions of pressure and temperature simulta- 
neously. This can be done using computer simula- 
tions techniques; however, the approach adopted 
depends upon the computational method being used. 
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Modelling pressure 

Modelling the effect of pressure is essential if one is 
to obtain accurate predictions of phenomena such as 
phase transformations and anisotropic compression. 
This problem is now routinely being solved using 
codes that allow constant stress, variable geometry 
cells in both static and dynamic simulations. In the 
case of lattice dynamics, the mechanical pressure is 
calculated from strain derivatives, whilst the thermal 
pressure is calculated from phonon frequencies 
(Parker and Price, 1989): 

dU dF(o~) (1) 
Pmechanical : ~ ; Pkinetic - -  d V 

where U is the static lattice energy, c is the strain on 
the cell, F(co) is the vibrational free energy, and V is 
the volume. The balance of these forces is used to 
determine the variation of cell size as a function of 
pressure and temperature. 

In the case of molecular dynamics, both the 
particle positions and the volume of the system, or 
simulation box, can be used as dynamical variables, 
as is described in detail in Parrinello and Rahman 
(1980). However, in general, the pressure of the 
simulated system is calculated from the equation: 

P - -  V 6 V  rij (2) 
k i=I j>i 

where N is the number of particles within the system, 
V is the volume, r 0 is the distance between ions i and 

j ,  ~ / ~ r  o is the first derivative of the potential energy 
of ion i with respect to ion j ,  and kB is Boltzmann's 
constant. 

Modelling temperature 

In general, the temperature of a simulated system is 
obtained from kinetic theory via: 

2 x average kinetic energy of the system 
T =  

number of degrees of freedom x Boltzmann's constant 

(3) 

However, for static and dynamic simulations this 
kinetic energy is obtained in different ways; in the 
case of lattice dynamics, there are problems in 
simulating high temperatures, whilst in the case of 
molecular dynamics the problems arise in the low- 
temperature rdgime. 

Static calculations normally enable the effect of 
temperature to be calculated by evaluating the lattice 
vibrational frequencies and using them in standard 
statistical mechanics equations to give kinetic energy 

and therefore temperature dependent properties such 
as heat capacity, entropy, etc. (Parker and Price, 
1989). This methodology is based on the quasi- 
harmonic approximation (QHA) which assumes that 
the lattice vibrational modes are independent. 
However at high temperatures, where vibrational 
amplitudes become large, phonon-phonon scattering 
becomes important as the displacements interact with 
each other, and the QHA breaks down due to the 
anharmonicity of the system. Since, at ambient 
pressure, the QHA is only valid for T < 0D, the 
Debye temperature, if we are interested in the extreme 
conditions of the interior Earth, we need to extend this 
methodology to accommodate higher temperature 
simulations well above the Debye temperature of the 
mineral concerned (see e.g. Ball, 1989). 

In the case of molecular dynamics, the methods are 
essentially classical, and are outlined in detail in 
Allen and Tildesley (1987), and will be discussed 
briefly below; however, in principle Newton's  
equations of motion are solved for a number of 
particles within a simulation box to generate time- 
dependent trajectories and the associated positions 
and velocities which evolve with each timestep. Here 
the kinetic energy, and therefore temperature, is 
obtained directly from the velocities of the individual 
particles. With this explicit particle motion, the 
anharmonicity is implicitly accounted for at high 
temperatures; however, in this instance, it is the low 
temperature quantum effects that cause the problems. 

At low temperatures, quantum mechanical effects 
play a dominant r61e in determining the thermo- 
dynamic properties of crystals, such as heat capacity 
(e.g. Cochran, 1973). Molecular dynamics is essen- 
tially a classical technique, and therefore the low- 
temperature quantum behaviour of atomic motions is 
not adequately described by this method. However, 
to a first order approximation, this shortcoming can 
be compensated for, as has been outlined in a study 
of MgO at zero pressure and 300-2000 K (0D ,,~ 
940 K) by Matsui (1989), who applied a quantum 
correction to the predicted structural and thermo- 
dynamical properties via a Wigner-Kirkwood expan- 
sion of the free energy in powers of Plancks constant 
to h 2. He found that although the quantum 
contribution to the incompressibility was insignif- 
icant, for the thermal expansion coefficient and heat 
capacity, the applied quantum correction became 
increasingly important as the temperature decreased. 
Above 500 K, using these quantum corrections, the 
molecular dynamics simulations gave comparable 
agreement with the observed experimental data for 
all structural and thermodynamics properties; 
however, this was not the case below 500 K where 
he concluded that the need to include higher order 
terms in h is essential for accurate predictions of 
thermal expansion coefficients and heat capacity. 
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In contrast, at high temperatures, above the Debye 
temperature for a chosen mineral, molecular  
dynamics describes the anharmonic effects implicitly 
and is, in this respect, preferable to the lattice 
dynamics technique. It is especially important to take 
these anharmonic effects into account when studying 
melting and premelting properties of systems where 
T>> 0D. 

Matsui et al. (1994) have recently performed a 
parallel set of lattice dynamical and molecular 
dynamical calculations on magnesium silicate 
perovskite in order to investigate the effect of 
pressure on the validity of the QHA. They found 
that at zero pressure and 500 K, both molecular 
dynamics and lattice dynamics agreed well, but as the 
temperature was increased, the molar volume of 
MgSiO3 perovskite, as calculated by the lattice 
dynamical method, was increasingly overestimated. 
However, at lower mantle pressures (<100 GPa) and 
temperatures (2000-3000 K) the predicted volumes 
and incompressibilities of the molecular dynamics 
and lattice dynamics methods become more compar- 
able (see Fig. 1), but the thermal expansion 
coefficients are still significantly different due to 
the increased anharmonicity of this high temperature 
region. Therefore, to model lower mantle behaviour 
accurately, we need either high temperature mole- 
cular dynamics, or lattice dynamics simulations with 
a correction for the intrinsic anharmonicity of the 
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Fro. 1. The lattice dynamics and molecular dynamics 
simulated molar volumes of MgSiO3 perovskite at the 
temperatures 2000 and 3000K as a function of pressure 

up to 100GPa. After Matsui et al., 1994. 

system. As discussed above, such corrected lattice 
dynamics techniques are not currently routinely 
available, and so the remainder of this review will 
focus on the application of molecular dynamics to the 
study of mantle phases. 

Classical molecular dynamics and interatomic 
potentials 

In order to calculate the forces required in the 
solution to Newton's equations of  motion, it is 
necessary to accurately describe the interactions 
be tween  each of  the atoms in the system. 
Traditionally this has been done using interatomic 
potentials in which the energy of interaction between 
the atoms or ions within the system is described as a 
function of their separation and orientation. In 
molecular dynamics it is usual to use a two-body 
potential; many body systems are generally prohibi- 
tively complex, although simple three-body correc- 
tions may be included. When no net forces are acting 
on the constituent atoms, the sum of the attractive 
and repulsive potential energies between each pair of 
atoms in a crystalline solid at zero Kelvin is termed 
the static lattice energy: 

: + + (4) 
ij  riJ ij  ijk 

The first term on the right hand side is the 
contribution to the static lattice energy from the long 
range Coulombic attraction for an infinite array of 
atoms. The second term accounts for the diffuse nature 
of the electron clouds surrounding the nucleus; it 
includes the short range interactions associated with 
Pauli repulsion between neighbouring charge clouds, 
and the short and long range components of van der 
Waals attraction. The third term represents three body 
interactions which, for severely ionic solids with 
dominant pairwise interactions, may be negligible. 

In the rigid-ion model, the short range interactions 
predominantly effect nearest neighbour ions. Short- 
range potential functions may be represented by 
pairwise potentials such as the Buckingham potential 
which takes the form: 

q~ij = A i j e - ~  
c~j 

(5)  

where Aij, Bij and Cij are constants and rij is the 
interatomic separation. The first term in ~ij is that 
due to short range repulsion, while the second is due 
to van der Waals induced dipole-dipole attraction. 
The parameters of the potential given by Eq. 5 are 
obtained either by fitting to experimental data, or to 
quantum mechanically calculated energy hyper- 
surfaces, or both. 
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Having obtained the optimum potential function 
that will describe interactions between atoms in a 
given system, it is possible to calculate the pairwise 
forces between individual atoms. Newton's laws of 
motion are then solved to give an evolving trajectory 
over a period of time-steps for each of the N particles 
within the system at specified pressures and 
temperatures, calculating the required dynamic 
properties iteratively as the system evolves. 
Periodic boundary conditions applied to the ensemble 
generate the required infinite system. The ions are 
initially assigned positions and velocities within the 
simulation box; their co-ordinates are usually chosen 
to be at the crystallographically determined sites, 
whilst their velocities are chosen such that they 
concur with the required system temperature, and 
such that both energy and momentum is conserved: 

= o (6 )  
i 

y ~ m , [ n i ( 0 ) ]  z = 3NkBT (7) 
i 

where k8 is Boltzmann's constant, T is the initial 
chosen simulation temperature, and m i and oi are the 
mass and velocity of particle i. 

In order to calculate subsequent positions and 
velocities, the forces acting on any individual ion 
must then be calculated from the first derivative of 
the potential function, and the new position and 
velocity of each ion may calculated at each timestep, 
t, by solving Newton's equation of motion: 

F --  OUL = r a a ( t )  d2r  
or = m~- F (8) 

where a is the acceleration. This may be numerically 
integrated to generate a set of positions, ri(t + At) ,  
and velocities, t)i(t + At) ,  as the system evolves. 

In the following section we show how this 
methodology has been applied to relevant Earth- 
forming phases at temperatures and pressures 
prevalent in the lower mantle. 

Recent  appl icat ions  of  c lassical  molecular  
d y n a m i c s  to mant l e  phases  and  their analogues  

Potential models have been extensively used to 
simulate the behaviour of mantle phases (e.g. 
Catlow and Price, 1990). These models are now 
invariably successful in reproducing known structural 
and physical properties of mantle silicates. This 
success has led to potentials being used to predict the 
behaviour and properties of mantle phases at 
pressures and temperatures which are currently 
beyond experimental reach. A recent example of 

the use of molecular dynamics to study mantle phases 
is given in Matsui and Price (1992). These authors 
applied a simple empirical potential to simulate the 
structure of six MgSiO3 polymorphs. The simulations 
successfully predicted both structural and thermo- 
dynamic properties to within a few percent of the 
observed values in each case (see Table 1). They 
further applied the technique to study the existence of 
a post-protoenstatite high temperature phase and a 
C2/c  high pressure phase, both of which had been 
previously inferred from experiment. Their predicted 
co-ordinates and structure for the high pressure C2/c  
phase were subsequently successfully used by Angel 
et  al. (1992) to solve the single crystal X-ray data for 
this phase when it was later synthesised. 

In a previous study Matsui and Price (1991) had 
used the same empirical potentials to investigate sub- 
lattice melting and ionic conductivity in MgSiO3 
perovskite. Their constant pressure and constant 
temperature calculations predicted the onset of 
oxygen sublattice melting and an orthorhombic to 
cubic phase transition above 10 GPa just prior to 
melting. They showed that the cubic phase exhibits 
solid electrolytic behaviour with an electrical 
conductivity comparable with that inferred for the 
lower mantle. In a parallel study using different 
potential models Kapusta and Guillop6 (1993) 
confirmed the high temperature solid electrolyte 
behaviour of MgSiO3 perovskite but predicted an 
orthorhombic to tetragonal phase transition in 
MgSiO3 perovskite, due to the precession of the 
SiO6 octahedra, at 2600 K and 310 kbar (see Fig. 2). 

If ionic conductivity in MgSiO3 perovskite is 
significant then it will play an important part in the 
behaviour of the Earth's lower mantle. To investigate 
further the nature of sublattice melting in perovskites, 
Watson et  al. (1992) modelled the behaviour of 
fluoride perovskites where experimental data on the 
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FIG. 2. Mean square ionic displacements in MgSiO3 
perovskite for three sublattices Mg, Si an O as a function 
of temperature at 310 kbar. After Kapusta and Guillopr, 

1993. 
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TABLE 1. Observed and simulated structural and physical properties of the six MgSiO3 polymorphs (P = 
0 GPa). After Matsui and Price, 1992 

Phase ortho clino proto garnet ilmenite perovskite 
Space group Pbca P21/c Pbcn 141/a R~3 Pbnm 

Cel! lengths, cell angle and molar volume 
a [A] Obs 18.227 9.605 9.306 11.501 4.728 4.775 

Calc 18.146 9.600 9.378 11.516 4.740 4.772 
b Obs 8.819 8.813 8.892 11.501 4.728 4.929 

Calc 8.727 8.672 8.820 11.516 4.740 4.925 
c Obs 5.179 5.166 5.349 11.480 13.56 6.897 

Calc 5.262 5.244 5.458 11.523 13.33 6.942 
I~ or 7 [o] Obs 90.0 108.5 90.0 90.0 120.0 90.0 

Calc 90.0 108.6 90.0 90.0 120.0 90.0 
V [cm3mo1-1] Obs 31.33 31.22 31.32 28.58 26.35 24.44 

Calc 31.36 31.14 33.98 28.76 26.03 24.56 

Bulk modulus(Ko), volume thermal expansivity (a) and enthalpy (H) 
Ko [GPa] Obs 108 - 112 154 212 247 

Calc 84 92 88 137 224 250 
[10-SK -1] Obs 2.5 2.5 4.0 2.2 2.4 3.2 

Calc 3.8 4.1 6.0 2.2 2.8 2.9 
H [kJ mo1-1] Calc -7187.7 -7187.7 -7186.5 -7151.0 -7157.0 -7150.0 

electrical conductivity is known. They found that 
enhanced fluoride mobility was only predicted in one 
of the compounds under investigation, KCaF3, but 
not in either of the other two, KMnF3 or KZnF3, in 
accord with experiment. These calculations, there- 
fore, confirm that potential models can accurately 
describe the structural and defect properties of 
perovskite phases. However, the major shortcoming 
associated with this type of calculation when applied 
to silicate perovskites at high pressures and 
temperatures is the reliance of the quantitative 
precision of the predicted properties upon the 
accuracy of the empirical potential used to model 
the interatomic interactions when sampling intera- 
tomic separations which are much shorter or much 
larger than those used in the development of the 
potential model. In an attempt to circumvent this 
principal limitation, molecular dynamics codes are 
now being developed that explicitly calculate the 
forces within the system via quantum mechanical 
methods without the need to employ empirical 
potential functions. 

Quantum molecular dynamics 

Density Functional Theory provides a tractable 
theoretical framework through which one can 
describe the electronic structure of materials (e.g. 
Tossel and Vaughan, 1992; Lundqvist and March, 
1987). Generally good predictions of the structural 

and electronic properties of materials can be obtained 
by solving self-consistently the one-electron 
Schr0dinger equation for the system. However, in 
comparison with empirical methods, quantum 
mechanical molecular dynamics applications are 
still in their infancy and are limited by the large 
computer resources required. Nevertheless, signifi- 
cant progress is being made in this area and we shall 
illustrate this method with some recent examples. 

Quantum molecular dynamics (QMD) was first 
developed by Car and Parrinello (1985) who 
combined molecular dynamics with density func- 
tional theory (DFT) to produce a simulation 
technique applicable to both covalently bonded and 
metallic systems. DFT reduces the many-body 
Hamiltonian in the Schrddinger equation to that for 
one electron surrounded by an effective potential 
associated with the interactions of the surrounding 
crystal. The energy of the system is explicitly 
calculated by solving Schr~dinger's equation for the 
ensemble at each timestep using DFr to obtain the 
minimum energy surface and thereby calculate the 
interatomic forces, which is then combined with 
classical molecular dynamics techniques to calculate 
the atomic trajectories and related dynamic proper- 
ties. The local density approximation (LDA) is used 
in DFT to simplify the solution to Schr6dinger's 
equation by assuming the correlation energy is purely 
a function of electron density at any particular point 
in space, defining the exchange-correlation potential 
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as a function of electron density at a given co- 
ordinate position (Kohn and Sham 1965); in the 
LDA, the exchange-correlation energy of an elec- 
tronic system is constructed by assuming that the 
exchange-correlation energy per electron at a point r 
in the electron gas, ex i t ) ,  is equal to the exchange- 
correlation energy per electron in a homogeneous 
electron gas which has the same density as the 
electron gas at point r. 

Once the interaction energies and forces have been 
calculated, classical molecular dynamics techniques 
are used to solve for the particle trajectories. In 
QMD, the Lagrangian is used to define the system 
dynamics, and the equations of motion are derived by 
applying Lagrange's equation to this Lagrangian. The 
Lagrangian has four parts: the kinetic energy for both 
the internal and strain variables (i.e., all degrees of 
freedom for ions, electrons, and also the cell), the 
potential energy of the system from the Kohn and 

Shan equations (calculated ab initio from DFT), and 
a pressure-volume term; for a system of N particles of 
mass, mi, at position ri undergoing strain, e, to 
rescaled co-ordinates qi, the Lagrangian takes the 
form: 

N 

&t' = ~-'~ ~ ~hg(e)/li +-~Tr(s T) _ U(e,qi PD(e) i 

i = 1  

(9) 

where the metric tensor g(~;) = (l+e)T(l+e), U(e,qi) is 
the Kohn-Sham energy, P is the constant applied 
external pressure, and ~(e)  is the variable cell 
volume; w is a fictitious mass (see Wentzcovitch 
(1991) for details). The third and fourth terms 
combine to give the enthalpy which is minimised 
along the trajectories generated by the following 
equations of motion, and results in the structural 
optimization of the evolving system: 

i ~ tl 
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FIG. 3. Pressure dependence of structural parameters for the Pbnm phase. After Wentzcovitch et al., 1993. 
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/:].i = - ~  (1 + Ig)- l~  - g - l g ~  i (10) 

g ---- ~--(l'I -- P)(1 + ET) -1 (11) 

where f i  are the Hellmann-Feynmann forces, and the 
total stress 17 is given by: 

u 1 
n = + z (12) 

i=1 

where ui (e,qi) = (1 + e)ql and Z is the quantum 
mechanical stress tensor. 

The above equations would normally be used for 
finite temperature simulations; however, until 
recently, calculations have been limited to zero 
Kelvin studies of simple systems, since the computa- 
tional power required for finite temperature calcula- 
tions has been prohibitively time consuming and 
expensive. Under these conditions a damped 
dynamics can be used more efficiently, as outlined 
in Wentzcovitch et al. (1993). 

Recent applications in quantum 
molecular dynamics 

An example of recent finite temperature QMD is 
provided by the study of liquid lithium by 
Wentzcovitch and Martins (1991). This implementa- 
tion uses soft separable pseudopotentials (Troullier- 
Martins) in a self-consistent calculation of forces and 
stresses on a system of variable cell shape. The 
pseudopotential function, which describes the core 
electrons throughout the crystal space, is generated 
for individual atoms, making the whole calculation 
more tractable. The efficiency of this method is 
comparable with that of Car-Parrinello showing a 
convergence of atomic co-ordinates after ~15 
timesteps for structural optimisations at zero 
Kelvin. Wentzcovitch and Martins (1991) method is 
particularly suited to dealing with simulations 
involving a cell with variable shape and volume. 
They found that their method, when applied to liquid 
lithium, produced results which were in excellent 
agreement with experiment, and which suggested that 
their approach would be ideally suited to the study of 
more complex phases. More recently, Wentzcovitch 
(1994) has studied the pressure induced hcp to bcc 
transformation in elemental Mg using a finite 
temperature QMD simulation. She succeeded in 
simulating both the hcp to bcc and the bcc to hcp 
transformation, and found that the mechanism 
involved was martensitic (diffusionless). 

The success in the initial study of lithium led to the 
investigation of silicate minerals. However, the 
complexity of such systems prevented their study at 

finite temperature, but Wentzcovitch et al. (1993) 
used the established constant pressure QMD to 
investigate the relative stabilities of the orthorhombic 
and cubic phases of MgSiO3 perovskite up to 
150 GPa, a pressure well beyond the reasonable 
extrapolation range for empirical potential models. 
Their low pressure results (<11 GPa) are in excellent 
agreement with single crystal X-ray observations for 
orthorhombic perovskite under compression (see 
Fig. 3 and Table 2), but the calculated relative 
compressibilities of the orthorhombic axes (a>c>b) 
are in conflict with those inferred from Brillouin 
scattering. Calculations on the relative enthalpies of 
the orthorhombic and cubic perovskite indicate a 
significant and increasing difference in enthalpy with 
pressure between these two structures, and suggest 
that the orthorhombic phase is always more stable 
than the cubic phase throughout the pressure range of 
the lower mantle (see Fig. 4). 

The type of quantum molecular dynamics 
described above supercedes the empirical potential 
method and is currently the best available technique 
for simulations of high pressure behaviour of silicate 
structures. However, with the advent of new 
massively parallel supercomputers, we will soon be 
able to perform finite temperature calculations on 
complex systems using quantum mechanical mole- 
cular dynamics. 

Conclusion 

For high-pressure and -temperature studies, QMD is 
ideal; finite temperature studies on liquid lithium and 
magnesium show that the technique works, whilst 

TABLE 2. Experimental and theoretical parameters of 
the zero pressure Pbnm phase of MgSiO3. After 
Wentzcovitch et aL, 1993 

Calc.(Pbnm) Exp.(Pbnm) Calc.(Pm3m) 

a 4.711 
b 4.880 
c 6.851 
Mgx 0.5174 
Mig r 0.5614 
Ox 0.1128 

ooi 0460  
0.1928 

0 2 0.1995 
O~ 0.5582 

Calc.( Pm3m) 
a' 3.472 
a' 3.48 

4.7787(4) 4.909 
4.9313(4) 4.909 
6.9083(8) 6.942 
0.5141(1) 0.500 
0.5560(1) 0.50O 
0.1028(2) 0.000 
0.4660(2) 0.500 
0.1961(1) 0.250 
0.2014(2) 0.250 
0.5531(1) 0.500 
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Fie. 4. Change in Enthalpy (H-Ho), where Ho is the zero pressure value for the Pbnm phase (e). • and A are results 
for the cubic phase obtained using 1 and 4 special k points respectively. After Wentzcovitch et al., 1993. 

zero Kelvin studies on more complex systems such as 
MgSiO3 perovskite show that the methodology can 
well be applied to Earth-forming phases. Indeed, 
calculations are currently also being performed on 
Mg2SiO4 olivine containing 28 atoms in the unit cell, 
and on a monoclinic pyroxene polymorph of MgSiO3 
with 40 atoms in the unit cell (Wentzcovitch et al., 
1995). However current lack of cpu power limits 
studies on silicates to zero Kelvin simulations, where 
the molecular dynamics codes are simply efficient 
geometry optimisers. Recent developments on 
machines with massively parallel architecture and 
enhanced processor speeds, such as the Cray T3D in 
Edinburgh, will enable finite temperature high 
pressure QMD simulations of complex minerals to 
become a realistic prospect within the next few years. 
It must be noted, however, that to obtain dependable 
thermodynamic data from MD simulations, large 
ensemble sizes are required. This will require the 
simulation of at least 1000 particles, and possibly 
even more (Winkler and Dove, 1992), and it seems 
that such very large simulations will be beyond QMD 
for several years yet to come. 
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