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Abstract 

Kinetics of atomic ordering in a potassium feldspar is simulated using massively parallel computing. The 
simulation method is based on the Monte Carlo algorithm for the A1-Si redistribution (the Kawasaki 
dynamics) combined with the lattice relaxation. The Hamiltonian has the symbolic form 

1 A H = ~ u  u - u F p  

where u represents displacements of atoms from ideal positions, and p the A1 and Si occupation numbers. The 
model is purely elastic; there is no direct interaction between A1 and Si atoms. The simulated crystal is a thin 
film with (010) surfaces and consists of 64 x 64 unit cells; the unit cell defined for the whole film contains 
slightly more than 4 formula units. The (010) orientation is chosen in order to preserve in the film the main 
structural feature of feldspars: crankshaft-like sheets formed by four-tetrahedra rings. This makes it possible to 
observe the Pericline twins only. At the late stage of the kinetic run these twins are clearly seen. The direction 
for the domain walls is determined by the spontaneous strain and changes with the change of the model 
parameters; considerable local deviations from this direction are observed. 
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Introduction 

THE crystal structure of potassium feldspar, 
KA1Si3Os (MT4Os), is envisaged as a three- 
dimensional framework of coruer-sharing A104 and 
SiO4 tetrahedra, with potassium atoms occupying 
large framework cavities. The basic elements of this 
framework are four-tetrahedra rings; such rings form 
crankshaft-like sheets perpendicular to the (010) 
direction. A tetrahedron containing an A1 atom is 
somewhat larger than the equivalent Si tetrahedron; 
mean S i - O  and A1-O bond lengths are 1.62 A and 
1.75 A, respectively (e.g. Smith and Brown, 1988; 
Putnis, 1992). This difference in the size between the 
two types of tetrahedra is accommodated within the 
framework by some local deformation. We now 
consider the A1/Si ordering transition C2/m ~ Ci. 
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The driving force of this transition is the interaction 
between AI and Si atoms; in particular, there is a 
resulting repulsion between two A1 atoms occupying 
neighboring tetrahedra. This circumstance is 
frequently formulated in terms of the so-called A1 
avoidance rule: two A1 tetrahedra usually do not 
share a corner if the Si:A1 ratio is greater than one 
(e.g. Megaw, 1973). 

Below the transition, potassium feldspar has a 
characteristic twin microstructure with two types of 
twins (Albite and Pericline) observed (Brown and 
Parsons, 1994). The spontaneous strain tensor has 
non-zero exy and ~,yz components, and possible 
orientations of domain boundaries can be determined 
from the requirement that the atomic displacements 
in the domain-wall plane must be identical for both 
adjacent domains. This requirement is expressed 
mathematically as the compatibility condition 
(Sapriel, 1975): 
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t 

y]ij(ei5 - eij)xixj  = 0 (1) 

t 
where el/and F, i j  denote components of spontaneous 
strain tensors for two domains, and xi is a coordinate 
of a point in the domain-boundary plane. In the case 
under consideration e 0 = - g i j  and Eq. 1 has two 
solutions: (i) y = 0 (Albite twin law) and (ii) z = 
-(exy/eyz)X (Pericline twin law) (Salje et al., 1985). 
The first defines a (010) domain wall; the second 
corresponds to the domain boundary orthogonal to 
the (010) plane, with an orientation that is not fixed 
and depends on the value of the spontaneous strain. 

The aim of the present paper is to address a 
question of the formation and temporal evolution of 
the microstrncture. We report here preliminary 
results of a computer-simulation study of this 
problem. In the computer experiment the simulated 
sample is instantly cooled down across the transition 
temperature. Different aspects and problems of such 
simulation are discussed. 

The model 

The model considered in this paper is an extension of 
earlier work (Salje and Parlinski, 1991; Salje, 1992; 
Parlinski et al., 1993a, b; Bratkovsky et al., 
1994a, b,c). In this model we distinguish between 
two groups of sublattices; ordering takes place on the 
sublattices of the first group, while the second group 
is not involved in the ordering process. The 
sublattices of the second group form the host lattice 
Ordering atoms interact with the host lattice 
producing static distortions (i.e. shifting the equili- 
brium positions of the host atoms). In the model this 
ability of the ordering atoms to distort the host lattice 
is described by the so-called Kanzaki forces 
(Khachaturyan, 1983) with which the ordering atom 
acts on neighbouring host atoms at the sites of the 
unperturbed host lattice. Thermal displacements of 
the host atoms (vibrations around shifted equilibrium 
positions) are not taken into account. 

When a system consists of two interacting 
subsystems, its Hamiltonian contains three terms: 
the first two are the Hamiltonians of the subsystems 
themselves and the last is the interaction term. In the 
present case the Ilamiltonian is 

H = H h o s t  + Ho,.dering + H i n  t . . . . .  tion (2) 

Here the first term is a potential energy of the host 
lattice in a harmonic approximation; for the second 
term it is assumed that there are no direct interactions 
between the ordering atoms and, therefore, Border ing  = 

0. The last term describes the above-mentioned 
interaction between the ordering atoms and those of 
the host lattice. The explicit expression for the 
Hamiltonian (2) is 

1 A H = ~ u  u - u F p  (3) 

= 1_ V "  V "  u i A ij u j - E E E u~Fi~P~ (4) 
2 L . .~  /__~.d " n n m  m 

n m  *3 nl  i s 

In Eq. 3 matrix notation is used. Here u denotes the 
displacements of the host toms from the ideal 
positions, A is the Born-yon Karman tensor of the 
host lattice, F is the set of the Kanzaki forces and p 
represents the occupation numbers for the ordering 
atoms; n,m,l are the cell+sublattice indices, i,j the 
Cartesian indices, and s is the ordering-atqm type 
index. Such Hamiltonians arise naturally as a result 
of an expansion of the internal energy of the system 
in powers of the small static displacements of the 
host atoms (Krivoglaz, 1969; Khachaturyan, 1983). 

In the case of potassium feldspar we assume that 
the size of a tetrahedron in the undistorted host lattice 
corresponds to that of the Si atom inside. It means 
that the Si atom does not produce any distortion, and 
the corresponding forces are zero. The difference in 
size between AIO4 and SiO4 tetrahedra is simulated 
by central repulsive forces by which the AI atom at 
the centre of the unperturbed tetrahedron acts on the 
oxygen atoms at its vertices producing the expansion 
of the tetrahedron. The host lattice has then to 
accommodate the resulting mixture of tetrahedra of 
two different sizes. We also need to specify the Born- 
von Karman tensor A in the Eq. 3, in other words, the 
character of interatomic bonds constituting the host 
lattice. Several types of the bonds are taken into 
account: (i) intra-tetrahedron O - O  bonds providing 
the elastic response of a tetrahedron to the Kanzaki 
forces; (ii) M - O  bonds responsible for the stability 
of the structure; (iii) M - M  bonds forming a lattice of 
hexagons in a mirror plane; (iv) inter-tetrahedron 
bonds which connect oxygen atoms belonging to 
neighbouring tetrahedra. The bonds of the last type 
are necessary for the elastic repulsion of two A1 
atoms occupying neighbouring tetrahedra (the A1 
avoidance rule), and also for preserving the T - O - T  
bond angle. The latter is often achieved by 
introducing an extra 'bond-bending' term into the 
Hamiltonian (see, for instance, Catlow, 1988). 

The simulation 

To change the distribution of ordering atoms in the 
simulated sample, we use the Monte Carlo method 
and the Kawasaki dynamics (see, e.g. Binder and 
Stauffer, 1987), interchanging atoms of corner- 
sharing tetrahedra. An approximation similar to the 
adiabatic approximation is adopted; we assume that 
the host lattice immediately reaches the equilibrium 
corresponding to a new configuration. This approx- 
imation is certainly valid since characteristic phonon 
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times are much smaller than the time interval 
between two successive attempts to change the 
distribution of ordering atoms. Thus each successful 
change is always followed by a complete relaxation 
of the host lattice. As is seen from the Eq. 3, the static 
displacements of the host atoms are 

bl e q  = A - 1 F p  (5) 

Such a calculation would mean an inversion of a 
very large, sparse matrix A. Instead, the equation of 
motion for atomic displacements is solved numeri- 
cally. Two equations are used in the simulation to 
calculate lattice relaxation: (i) equation for motion 
with energy dissipation (friction), 

m dZu/dt 2 + )~ du/dt  = f (6) 

where m is the atomic mass, y the friction coefficient, 
f t h e  external force, and (ii) equation for motion with 
constant velocity when external and friction forces 
compensate each other exactly, 

du/dt  = f (7) 

The Eq. 7 is a particular case of Eq. 6 (d2u/dt 2 = O, 
7 = 1) and corresponds to purely relaxational 
dynamics. Here the external force f is the sum of 
the Kanzaki force F and the reaction force of the 
deformed host lattice. As t goes to infinity, the 
atomic displacements approach their equilibrium 
values (5). For the numerical solution of the Eqs. 6 
and 7, we use the method of molecular dynamics 
(Dove, 1988) and the Euler method (Press et al., 
1986), respectively. 

Such kind of simulation is essentially beyond the 
capabilities of computers with ordinary architecture 
and needs parallel computing. The computer code for 
the simulation is written for the massively parallel 
computer AMT DAP 610 which is a peripheral 
processor attached to a host computer. It is a SIMD 
(single instruction, multiple data) device in which 
processor elements act on individual data sets but 
with a common instruction stream that is broadcast 
from a central processor. The processor elements are 
arranged in a square 64 x 64 matrix. This geometry 
makes it reasonable to simulate a sample consisting 
of nl x n2 • n3 unit cells, where nl = n2 = 64. In this 
case all information about rt3 unit cells is put into one 
processor element. The number of unit cells in the 
third direction remains arbitrary, but is limited by the 
speed of calculation and the degree of complexity of 
the unit cell. Usually the reasonable value of n3 is 
much less than 64, and the shape of the simulated 
specimen is necessarily that of a slab. 

In the case of potassium feldspar the structure of 
the unit cell is quite complicated. Because of this the 
simulated sample has the form of a very thin film; the 
computational 'unit cell' defined for the whole film 
contains slightly more than four formula units 

(Fig. 1). The film has (010) orientation, which is 
chosen in order to preserve in the sample the main 
structural feature of feldspars, the crankshaft-like 
sheets made up from four-tetrahedra rings, and the 
film contains two crankshafts. This makes it possible 
to observe the Pericline walls only. Free boundary 
conditions are used. Finally, the undistorted host 
lattice is somewhat idealized in comparison with the 
real sanidine structure; see Fig. 1. In reality there is 
some additional rotation of the tetrahedra. This 
difference in structure leads, for example, to the 
120 ~ value of  the fl angle, instead of  the 
experimentally observed value fl = 116 ~ (Megaw, 
1973). 

The most serious problem in simulating a system 
with lattice-mediated interactions is the calculation 
of the energy difference between two configurations 
of ordering atoms. This quantity is of primary 
importance for the Metropolis algorithm, since it 
determines whether a new configuration is accepted 
or rejected. In the case of the Kawasaki dynamics one 
has to take an initial distribution of ordering atoms, 
relax the host lattice accordiug to this configuration, 
calculate the total energy of the system, then 
exchange one pair of atoms, relax the host lattice 
again, calculate the new total energy and, finally, the 
energy difference. The difficulty here is that this 
calculation would be far too slow since (i) it involves 
two lattice relaxations per exchange attempt and (ii) 
it is impossible to use this algorithm for parallel 
computation. It would be desirable to select as many 
non-overlapping pairs of ordering atoms as possible 
(ideally, covering all the crystal) and make all 
exchange attempts independently after having 
relaxed the host lattice only once. The simplest idea 
which emerges is to calculate the energy difference 
in exchanging a pair of ordering atoms without 
subsequent lattice relaxation. This procedure is much 
faster and does allow parallelization; however, it is 
obviously incorrect. Nevertheless, it turns out to be 
possible to correct the result afterwards, as explained 
below. 

Thus, we would like to exchange ordering atoms 
and compare energies of two configurations, both of 
which are in the effective field of the host lattice 
re laxed according to the old conf igura t ion.  
Surprisingly, it can be shown that for the case 
under study (the Kawasaki dynamics and zero 
Kanzaki forces for one sort of ordering atoms) the 
energy difference calculated this way is connected 
with the correct one by a simple equation 

AE~r,'ec't = A E ~  . . . . .  t + 2E .  + 2Era - E . , .  (8) 

where E~ and Enm are the energies of a single atom 
(at site n) and a pair of atoms (at sites n and m) in the 
otherwise empty host lattice, respectively. In the 
infinite sample these quantities are the same for each 
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FIG. 1. The unit cell of the simulated thin film of the potassium feldspar defined with respect to the whole film. The 
simulated sample is obtained by the translation of this cell in x and z directions. All the tetrahedra are of the same 

size and correspond to the host lattice before applying the Kanzaki forces. Spheres represent potassium atoms. 

unit cell and depend only on the sublattice indices. 
This means that it is possible to calculate all these 
necessary energies once in advance and then use 
them for the energy-difference correction. In the case 
of a finite sample the above energies have certain 
spatial variation close to the sample surfaces; 
however,  in the simulation presented here we 
ignore this variation and calculate these energies 
for one of the central unit cells. 

The existence of a free surface in a sample 
undergoing the order-disorder  phase transit ion 

always means some degree of surface segregation 
(e.g. Zangwill, 1988). The concentration of each sort 
of atom becomes a function of a layer index. The 
closer the atomic layer is to the surface, the greater is 
the deviation of the concentration from the bulk 
value. This effect is especially important for a thin 
film. In the case considered here, it is energetically 
favourable for the A1 atoms to concentrate at the 
(010) surface of the feldspar film. The distortion of 
the host lattice produced by the Kanzaki forces is 
minimized this way. In order to prevent this 
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Fx6. 2. The distribution of AI atoms over the tetrahedral 
sites belonging to one of the crankshafts, after 600 
Monte Carlo steps per atom, for two different sets of the 
parameters of the host lattice. In these two cases, domain 
walls have distinctly different preferred orientations, 
demonstrating the dependence of domain wall orienta- 
tion on the choice of model parameters. Different 
symbols are used to show A1 atoms at sites allowed for 
two possible variants of the ordered phase (dots and 

open circles) and those at other sites (filled circles). 

segregation and mimic the properties of bulk 
potassium feldspar crystal, we slightly increase 
strengths of the intra-tetrahedron bonds at the (010) 
surfaces. The criterion is the natural requirement of 
equality of the energies of a single A1 atom at the 
surface and in the crystallographically equivalent 
layer inside the film. This leads to about 10% 
increase of the spring constants of the surface intra- 
tetrahedron bonds. 

Results and discussion 

In our study of the kinetics of microstrncture 
formation in the simulated potassium feldspar, the 
specimen is init ially in equil ibrium at some 
temperature above the transition; the A1-Si  distribu- 
tion is disordered (in fact, in the kinetic runs 
discussed here we start from a completely random 
A1-Si  distribution, i.e. from the equilibrium config- 

uration at infinite temperature). Then the sample is 
instantly cooled down across the transition, in other 
words, the temperature rapidly decreases to the value 
which corresponds to the ordered phase in equili- 
brium. The aim is to observe the process of transition 
from sanidine to microcline. 

At the early stage of the kinetic process, fine 
patches of two ordering variants of microcline 
(corresponding to two possibilities of ordering A1 
atoms on T1 sites) arise, and the soft direction for the 
Pericline domain walls is sometimes barely percep- 
tible. Then the patches start to coarsen, and the soft 
direction gradually begins to emergel At a later stage, 
we observe sufficiently wide stripes of  the Pericline 
twins; evolution of the sample at this stage is very 
slow, which precludes further development of the 
stripe pattern. Even after the stripes have been 
formed, considerable local deviations of the domain 
walls from the soft direction are observed; this 
observation is in agreement with the experimental 
findings. The overall direction for the domain walls 
changes with the change of model parameters, as 
might be expected from the solution of  the 
compatibility equation (1) for potassium feldspar, 
since the spontaneous strain in the ordered phase is 
also sensitive to the choice of model parameters. The 
microstructure at this stage for the two sets of the 
model parameters is shown in Fig. 2. Different soft 
directions are clearly seen. Only the A1 atoms are 
indicated; different symbols are used to show A1 
atoms at sites legal for two ordering variants of 
microcline and A1 'impurity' atoms (at sites different 
from Tl ). 

The study reported here is the first step towards the 
general goal to simulate bulk properties of feldspars 
on a mesoscopic length scale. In order to separate 
clearly surface and finite-size effects from the bulk 
kinetics, it is necessary to simulate, first of all, 
thicker samples and then to increase their size in x 
and z directions. It is important also to consider 
different orientations of the film (or slab). With this 
in mind, considerable attention was paid to the 
problem of the simulation speed. As a result, the 
simulation is rather fast, and in the case of the sample 
considered in this paper is about 200 Monte Carlo 
steps per ordering atom per hour. This allows us to 
simulate in the future from 10 to 20 crankshafts in a 
reasonable time. This work is now in progress. 
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