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Abstract 

We describe a model for framework silicates in which the SiO 4 (and AIO4) tetrahedra are treated as perfectly 
rigid and freely jointed. From this model we are able to identify low-energy modes of distortion of the 
structure, which we call Rigid unit modes. These modes can act as soft modes to allow easy distortions at 
phase transition. We discuss three forces that will operate at a phase transition in conjunction with the 
candidate soft modes to determine which of the rigid unit modes will actually precipitate a phase transition, 
and illustrate these ideas by detailed discussions of the phase transitions in quartz, leucite and cristobalite. The 
model can also be used to estimate the transition temperature, and the theory highlights an important role for 
the stiffness of the tetrahedra. 
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The paradox of framework aluminosilicates 

THOSE of US who come into Mineralogy from other 
disciplines are frequently struck by a paradox posed 
by framework aluminosilicates: despite the fact that 
silicates are amongst the strongest and most stable of 
materials, there are a number of intriguing theoretical 
problems associated with their structural stability. 
One is that aluminosilicates are riddled with phase 
transitions. Another is that aluminosilicates have 
considerable chemical flexibility, as they are able to 
form solid solutions over wide compositional 
changes. Aluminosilicates sometimes have unusual 
thermal expansion properties, and zeolites have a 
number of industrially important chemical properties. 
So what is going on with these aluminosilicate 
frameworks? 

It turns out that, unlike engineering frameworks, 
the frameworks built from linkages of perfectly rigid 
SiO4 and A104 tetrahedra are not themselves 
perfectly rigid. Instead, they can have some internal 
degrees of freedom of distortion, which give rise to 
low-frequency phonon modes that can propagate 
with no distortions of the tetrahedra. We call these 
Rigid Unit Modes (RUMs), and their existence 
provides natural candidates for the soft modes that 
typically drive displacive phase transitions (Dove et 
al., 1992, 1993, 1995a). The idea has its roots in the 

geometrical polyhedral tilting models of Megaw 
(1973) and Hazen and Finger (1982). 

The existence of RUMs in an aluminosilicate 
framework structure is more subtle a point than might 
initially be imagined. Each tetrahedron has 6 degrees 
of freedom, and each linked corner has three 
constraint equations that prevent the linkage from 
splitting. Thus the number of constraints per 
tetrahedron is �89 (from a sharing between two 
tetrahedra of the constraints on a single linkage) 
• 4 (the number of comers of a tetrahedron), which 

is the same as the number of degrees of freedom: the 
numbers of constraints and degrees of freedom are 
exactly matched. However, we have shown else- 
where (Dove et aI., 1992; Giddy et al., 1993) that it is 
possible for some of these constraints to be 
degenerate, i.e. not independent. A simple example 
of a degenerate constraint is shown in Fig. 1. This is a 
function of symmetry rather than topology, and as a 
result the high-temperature phases of framework 
silicates can have some modes of distortion that do 
not occur in corresponding low-temperature phases. 

A computational method: the split-atom method 

We have developed a computational method to allow 
us to determine the complete RUM spectrum for any 
framework silicate (Giddy et al., 1993; Hammonds et 
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FIG. 1. A two-dimensional example of the effect of 
symmetry on the number of independent constraints. 
The three structures are formed by bars hinged at 
common corners. Each bar has 3 degrees of freedom: 2 
translations and 1 rotation, so the total number of 
degrees of freedom for the bars in each structure, F, is 
simply equal to 3 x the number of bars. At each corner 
there are two constraint equations, forcing the hinge 
points of two jointed bars to have the same x and y 
coordinates. Therefore, the number of constraint equa- 
tions associated with each structure, C, is simply equal 
to 2 x the number of corners. The resultant number of 
degrees of freedom for each structure is F - C. Three of 
these will be the rigid-body motions of the structure, two 
translations and one rotation. In the left-hand structure, 
there is an additional degree of freedom, the possibility 
to shear the structure. This degree of freedom is lost in 
the middle structure as a result of the extra constraints 
imposed by the cross-brace bar. However, the right-hand 
structure presents an interesting contradiction, for 
although it has the same number of constraints as the 
middle structure it can clearly also be sheared. The 
solution to this problem is to note that the two 
constraints associated with the joint marked * can be 
replaced by the single constraint that the middle bar 
should be parallel to the top and bottom bars. This then 

reduces the value of C by 1. 

al. ,  1994). The heart  of the method involves 
identifying each tetrahedron as an individual rigid 
unit. The oxygen atoms that are shared between two 
tetrahedra are split into two, which we call the split 
atoms. In our approach two split atoms are then kept 
together by a strong harmonic force. The RUMs will 
be the vibrational modes in which the tetrahedra can 
move without the split atoms becoming separated, 
and the modes that require distortions of the 
tetrahedra will, in the split-atom representation, be 
the modes in which the split atoms are forced to 
separate. To first order, the strength of the split-atom 
force constant can be related to the stiffness of the 
tetrahedra. 

The dynamical equations of the split-atom method 
can be cast into the formalism of molecular lattice 
dynamics (Pawley, 1972), and we have modified a 

computer program to work with the split-atom 
method (Giddy et al., 1993; Hammonds et aL, 
1994). The RUMs are the phonon modes that are 
calculated with zero frequency. We have found that it 
is sometimes useful to add a nearest-neighbour S i - S i  
interaction, which attempts to model a constraint that 
will keep the S i - O - S i  bond angle fixed at an ideal 
value (Hammonds et al., 1994). The results of a 
RUM analysis for a few selected systems have been 
given by Dove et al. (1995a), and discussed in more 
detail by Hammonds et al. (1995). 

Experimental evidence 

There is a good body of experimental data, direct and 
indirect, that confirms the idea of the existence of 
rigid unit modes as low-frequency phonons. The 
most direct observation of RUMs can be obtained by 
inelastic neutron spectroscopy. The case of quartz has 
been documented in detail elsewhere (Berge et al., 
1986; Bethke et al., 1987; Dolino et al., 1989, 1992; 
Vallade et al., 1992), and the experimental picture 
has been reproduced by molecular dynamics simula- 
tions (Tautz et al. ,  1991). The other important 
example in which RUMs have been observed by 
inelastic neutron spectroscopy is lcucite (Boyscn, 
1990). Our calculations for leucite using the split- 
atom method have shown that there are RUMs along 
(110). The relevant inelastic neutron scattering data 
are shown in Fig. 2, where the mode frequencies are 
plotted as a function of wave vector (Boysen, 1990). 
The low-frequency modes that correlate with the 
RUMs are highlighted, although not all the RUMs 
have been measured (and indeed the results shown in 
Fig. 2 are only tentative). One point to note is that the 
frequency of a mode is a RUM at one wave vector 
but not at any other point along a given direction in 
reciprocal space will increase rapidly when moving 
along this direction. This is seen for leucite in Fig. 2: 
some of the components of the triply-degenerate 
RUM at k = 0 are not RUMs for wave vectors along 
the two directions in reciprocal space shown in this 
figure, and their frequencies rapidly rise on moving 
away from this wave vector. 

Low-frequency phonons can also be observed as 
diffuse scattering in electron or X-ray diffraction. 
The streaks of diffuse electron diffraction found in 
cubic ~-cristobalite (Hua et al., 1988; Welberry et al., 
1989; Withers et al., 1989) are in exact agreement 
with our calculations of the RUM spectrum (Dove et 
al., 1992, 1993, 1995a), which predict the existence 
of RUMs with wave vectors of the form {~,~,~}. 
More recently patterns of diffuse electron diffraction 
in the high-temperature phase of tridymite (Withers 
et al., 1994) have also been found to be in perfect 
agreement with the calculated RUM spectrum (Dove 
et al., 1995b). This is actually a significant test of the 
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Fro. 2. The low-frequency phonon dispersion curves of 
leucite determined by inelastic neutron spectroscopy by 
Boysen (1990). The phonon branches indicated by * are 
identified as the RUMs. The optic mode at k = 0 is the 
Tlg RUM. Not all the phonon branches have been 
measured, and the interpretation of the measurements 
that are available are only tentative. Nevertheless, the 
low-frequency modes along [110] can clearly be 
interpreted within the RUM model, and the way that 
some phonon branches come in steeply towards the 
wave vector at which they become a RUM is 
characteristic behaviour. Note the anticrossing between 
the upper transverse acoustic mode and an optic mode 

(Dove, 1993). 

RUM model. Streaks of diffuse scattering were easily 
explained as arising from the existence of RUMs in 
symmetry planes in reciprocal space. However, the 
diffraction patterns also showed a strong curved 
surface of diffuse scattering, which passed through 
some special symmetry points but which mostly 
followed a general curve in reciprocal space. This 
curved surface has been exactly reproduced by our 
split-atom calculations, and is shown in Fig. 3. 
Confirmation that these patterns of diffuse scattering 
arise from phonon modes rather than static disorder 
comes from the fact that most of the scattering 
disappears completely on cooling into the low- 
temperature phases, consistent with our split-atom 
calculations for the low-temperature phases. 

A dramatic demonstration of  the existence of low- 
frequency phonons in I~-cristobalite that vanish on 
cooling into the c~-phase was obtained by inelastic 
neutron spec t roscopy  with powder  samples  
(Swainson and Dove, 1993a). These results were 
reproduced by calculations of the vibrational density 
of  states by molecular  dynamics s imulat ion 
(Swainson and Dove, 1995). 

110 112 

FIG. 3. Section of the RUM surface of tridymite in 
reciprocal space. There are RUMs at each wave vector 
on the curved surface and on each line, which are seen in 
diffuse electron diffraction measurements (Withers et 
al., 1995). The large circles are reciprocal lattice 
vectors. This pattern is repeated throughout this section 

of reciprocal space. 

Rigid unit modes and displacive phase transitions 

What drives a displacive phase transition ? 

We have identified three forces that are important in 
driving a phase transition. The first arises from the 
polarisability of the oxygen ions, leading to the 
classical dispersive (or Van der Waals) interactions 
that fall off as -1/(distance) 6. When integrated over 
the whole crystal, i.e. over distances to infinity, the 
energy involved is not insignificant, and scales as 
1/density. Thus this interaction always drives a 
system to its highest density allowed by the short- 
range repulsive interactions. The high-temperature 
phases are always in a minimum density configura- 
tion, so the phase transition will always lead to an 
increase in density and hence a lowering of the 
dispersive energy. Thus the dispersive energy always 
acts as a force to drive a phase transition from a high- 
symmetry phase to one of lower symmetry and 
higher density. It is useful to express this in terms of 
an effective inward pressure. If we characterise the 
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distortion that accompanies a phase transition by an 
order parameter Q, the driving energy for the 
transition is AU oc _Qe. The volume change that 
accompanies the phase transition is given as AV oc 
_Q2. These are related by the effective pressure: P = 
AU/AV.  

The second driving force is the short-range inward 
pull that  a cat ion in a cavity exerts on its 
neighbouring oxygen anions. Cavities are reasonably 
common in open framework structures. This inward 
pull will always try to force a collapse of the cavity 
around the cation and thereby drive a structure into a 
lower symmetry phase. 

The third force is associated with the preference 
for the S i - O - S i  bond angles to be around 145-150 ~ 
(Lasaga and Gibbs, 1988). In cristobalite, where the 
bond angles in the ideal structure of the [3-phase are 
180, this force drives the transition to the ordered or- 
phase with more favourable bond angles (see below). 
On the other hand, many high-symmetry structures, 
such as quartz and leucite, already have S i - O - S i  
bond angles with reasonable values, and some RUMs 
will actually cause these angles to deviate away from 
their most favourable angles. When we calculate the 
RUM spectrum for a given structure with the 

inclusion of the S i - S i  force constant, we generally 
find that only a few of the RUMs are calculated with 
zero frequency. Thus in some cases the S i - O - S i  
bond angle force can oppose a distortion, but in other 
cases can drive the phase transition. 

Finally, noting that the energy required to distort a 
tetrahedron is of higher energy than any of these 
processes, the displacive phase transitions found in 
aluminosilicate framework structure will be those 
allowed by RUM distortions. Which RUM actually 
operates will usually depend on the balance of these 
three forces (although in some cases other forces, 
such as arise from electronic instabilities, may come 
into play). 

Quartz 

The RUM model was initially developed with respect 
to the phase transitions in quartz. Megaw (1973) and 
Grimm and Dorner (1975) pointed out that many 
features of the classical at-J3 phase transition can be 
explained using a simple geometric model in which 
the SiO4 tetrahedra move as rigid bodies (Fig. 4). 
These ideas were extended by Berge et aI. (1986) and 
Vallade et al. (1992) in order to explain the existence 

FIG. 4. Crystal structures of the ct (left) and 13 (right) phases of quartz, with SiO4 tetrahedra shown as shaded rigid 
units. The two crystal structures are drawn with the same unit cells, viewed down a common [001] direction. 
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of the intermediate incommensurate phase. Not only 
did the RUM model provide a description of the 
incommensurate phase, it also provided an explana- 
tion for its existence. The key point is that the 
existence of a line of RUMs along the [100] 
directions forces the incommensurate instability to 
occur on cooling before the transition to the b-phase 
can occur. The details have been confirmed by 
inelastic neutron scattering experiments (Berge et al., 
1986; Vallade et al., 1992) and molecular dynamics 
simulations (Tautz et aL, 1991). From this work the 
phase transition in quartz is clearly seen as a classic 
soft-mode phase transition, in agreement with many 
other results but in contradiction to some assertions 
that the transition involves an order-disorder  
mechanism. 

In [3-quartz there are RUMs for wave vectors along 
all the main symmetry directions. We have calculated 
that the dispersive energy provides a inward pressure 
of P = 140 kbar. Since there is a clear driving force 
for a phase transition, we are posed with the question 
as to why the ~-1~ phase transition arises from an 
instability with zero wave vector, rather than from a 
wave vector at one of the points on the surface of the 
Brillouin zone? When we calculate the RUM 
spectrum for 13-quartz with the S i - S i  force, we find 
that the only RUM that retains its zero frequency is 
the RUM at zero wave vector. Thus only for this 
specific distortion does the force associated with the 
S i - O - S i  bond angle not oppose the phase transition, 
and this provides a possible explanation of why this 
instability is favoured over all others. 

Leucite, KAISiz06 

Leucite undergoes a cubic-tetragonal phase transi- 
tion at ~940  K (Fig. 5). A number of mechanisms 
have been invoked to explain this phase transition, 
including A1/Si ordering (which seems unlikely, as 
we have discussed elsewhere (Dove et al., 1992)) and 
K-site ordering. The high-temperature phase is cubic, 
space group la3d. The low-temperature phase has 
space group 141/a, which can be derived from the 
cubic phase by an instability of Tlg symmetry and 
zero wave vector, or by a two stage process involving 
an instability of Eg symmetry in the cubic phase to 
produce a tetragonal phase of space group 141/acd, 
followed by an instability of A2g symmetry in this 
intermediate phase, both of zero wave vector 
(Boysen, 1990; Palmer, 1990). There is experimental 
evidence for the existence of this intermediate phase, 
but the two pathways are not dissimilar since an A2g 
mode in the intermediate phase forms part of a Tlg 
mode in the cubic phase. The questions we have, 
particularly in view of the large number of ways of 
distorting the cubic phase, is what exactly happens 
and why? 

Our RUM calculations for the cubic phase of 
leucite show the existence of 4 RUMs along the 
(110} directions, and at zero wave vector there are 8 
RUMs. These are the Azg + A2u + Tlg + Tlu modes, 
where the Tlu modes are the three acoustic modes. 
There are no Eg modes, which would be necessary if 
the transition from la3d to 141 / acd involved an optic 
instability. However, the acoustic modes generate 

4 

v V 

FIG. 5. Crystal structures of the tetragonal (left) and cubic (right) phases of leucite, with SiO 4 and A104 tetrahedra 
shown as shaded rigid units. The two crystal structures are drawn with the same unit cells, viewed down a common 

[001] direction. 
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strains of Eg symmetry. The change in space group 
from la3d to 141/acd is allowed to be a proper 
ferroelastic phase transition, in which the primary 
mechanism is a soft acoustic mode generating a shear 
strain of the structure. Thus the first stage in the 
phase transition will involve the condensation of the 
soft acoustic modes. In such transitions we often 
encounter the classic Chicken and Egg question - -  
does the ferroelastic instability follow from an 
acoustic mode softening, or does the acoustic mode 
soften as a result of another instability. In this case 
we can assert that there is a natural soft acoustic 
mode for the phase transition, and no other RUM 
distortions of the same symmetry. This instability is 
therefore generated by an acoustic mode softening, 
and the corresponding order parameter is a shear 
strain, rather than the shear strain coming in through 
coupling to another order parameter. Our RUM 
calculations for the intermediate phase show that 
there are RUMs of symmetry A2g + A2, + Eu + Big 4- 
Blu, where A2u + E u are the acoustic modes. The 
optic RUMs of the cubic phase transform as  A2g 
Big, Azu --* BI, and Tlg --* Azg + Eg, but the Eg mode 
in this last case is not a RUM in the intermediate 
phase. The second stage of the phase transition, the 
transformation from 14~/acd to 141/a, involves the 
condensation of the A2g optic RUM. It is not clear 
whether in the cubic phase the condensation of the Eg 
strain mode and the Azg component of the Tlg optic 
RUM are independent, or whether the softening Tlu 
optic RUM precipitates the softening of the acoustic 
mode (the relevant acoustic RUM along (110) has 
the same symmetry as one of the components of the 
Tju mode). In the latter case, there may be some 
mixing of eigenvectors, but the point is that the cubic 
phase is inherently elastically soft without being 
driven so through coupling to a softening optic 
instability. Further investigations by inelastic neutron 
spectroscopy on single crystals over a range of 
temperatures and by Raman scattering, particularly in 
the frequency regime below 1 THz, would certainly 
help confirm the overall picture and provide 
information about the link between the optic and 
acoustic RUM instabilities. 

We now consider the driving force for this phase 
transition. In order to draw comparison with quartz 
we have performed a simple lattice energy mini- 
misation calculation of SiO2 starting in the 141/a 
leucite structure, using the interatomic potential 
model for silica of Sanders et al. (1984). The 
lattice energy is minimised when the structure 
reverts back to the high-symmetry la3d structure. 
Thus the dispersive energy does not provide a 
sufficient driving force for this phase transition, 
even though the volume change associated with the 
phase transition is quite large. Instead, the S i - O - S i  
bond angles have more favourable values in the cubic 

phase, and the forces these generate are stronger than 
the dispersive forces. This is reinforced by our RUM 
calculations on the cubic phase with the S i - S i  
potential: we find that none of the RUMs retain their 
zero frequency with this interaction turned on. Thus 
the inward pull of the K § cations is essential to drive 
the phase transition. Now we ask why the transition 
involves an instability at zero wave vector rather than 
at [�89189 which is the other candidate wave vector 
where RUMs are found. Moreover, why is the Tlg 
RUM preferred over the other RUMs at zero wave 
vector? The answers are suggested by the RUM 
calculations with the S i -S i  potential turned on - -  of 
the optic RUMs, the Tlg RUM at k = 0 is the one that 
distorts the S i - O - S i  bond angle the least, so that the 
opposing force associated with this bond angle is the 
lowest. 

We therefore conclude that in leucite there is a 
two-stage transition from the high-temperature cubic 
phase to the low-temperature tetragonal phase. The 
first involves a soft acoustic instability resulting in a 
proper ferroelastic phase transition, and the second 
involves the softening of an optic RUM. The basic 
picture has been confirmed in part by the inelastic 
neutron scattering measurements of Boysen (1990), 
discussed earlier (Fig. 2). Thus the phase transitions 
in leucite are classical soft mode phase transitions, 
and there is no need to invoke mechanisms based on 
alternative ordering processes. 

Finally is interesting to note that the tables of 
Stokes and Hatch (1988) show that there are 133 
possible phase transitions from the cubic la3d phase 
of leucite, involving a wide range of instabilities and 
possible low-temperature phases. Our RUM analysis 
has allowed us to understand why out of this long list 
of possibilities the leucite structure transforms in the 
particular way it does. 

Cristobalite 

The phase transition in cristobalite can be cast in the 
language of soft-modes by noting that the symmetry 
change at the a-13 transition (Fig. 6) involves an 
unstable RUM with wave vector [100] on the surface 
of the Brillouin zone of the b-phase (Hatch and 
Ghose, 1991). However, the phase transition has 
more of the nature of an order-disorder transition. 
The ideal cubic structure of the 13-phase has linear 
S i - O - S i  bonds, which are not energetically 
favourable. Structure refinements (Schmahl et al., 
1992), NMR studies (Phillips et al., 1993), and 
molecular dynamics simulations (Swainson and 
Dove, 1993a, 1995) of the 13-phase suggest that the 
S i - O  bonds are oriented at quite a large angle 
( ~  17 ~ to the expected orientations in the ideal cubic 
structure, (111). If this can be accomplished by some 
mechanism in which the tetrahedra can tilt as rigid 
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FIG. 6. Crystal structures of the at (left) and I] (right) phases of cristobalite, with S i O  4 tetrahedra shown as shaded 
rigid units. The two crystal structures are drawn with the same unit cells, viewed down a common [001] direction. 

bodies, the energy could be considerably lowered as 
a result of the S i - O - S i  bond angles coming closer 
to their ideal values with no cost associated with the 
high-energy distortions of the tetrahedra. The cubic 
structure will then necessarily be disordered. There 
are two ways in which this might be accomplished. 
Conceptually, the simplest is to assume that the 13- 
phase consists of domains of a structure of lower 
symmetry in which the tetrahedra are rotated to give 
favourable S i - O - S i  bond angles. Hatch and Ghose 
(1991) have suggested that the domains have the 
structure of the co-phase, whereas Wright and 
Leadbetter (1975) have suggested an alternative 
structure. Both proposed structures correspond to 
RUM distortions of the ideal cubic structure 
(Swainson and Dove, 1993b). The symmetry of the 
cubic phase is preserved as a result of static disorder, 
in which the long-range order of the 13-phase is 
obtained by averaging over domains of different 
orientation. The second way to obtain disorder is for 
the tetrahedra to be dynamically disordered, with 
continuous reorientational motions of the tetrahedra 
(Swainson and Dove, 1993a). This can be accom- 
plished as the result of the operations of planes of 
RUMs in reciprocal space. At any instance a 
disordered arrangement can be obtained as a linear 
superposition of RUMs with different phases, 
including the RUMs that give rise to the two 
domain structures outlined above. This linear 
combination will evolve with time, leading to 
dynamic disorder. Domains of lower-symmetry 

structures can appear as fluctuations within this 
process, but they will be mixed in with all possible 
fluctuations. This is discussed jn more detail else- 
where (Hammonds et al., 1995). 

What determines the transition temperature? 

Renormalised phonon theory 

The simplest version of renormalised phonon theory 
gives an expression for the transition temperature, To: 

~BTc = -m~/~(~k/o~) (1) 
k 

where COo is the frequency of the soft mode at T=  0 K 
(and hence is an imaginary quantity), CO~ is the 
frequency of any other phonon mode labelled as k, 
and ~k is the coefficient of  the fourth-order 
anharmonic interaction between the phonon k and 
the soft mode (Dove, 1993). A calculation for quartz 
gives a value for Tc which is about 1.5 times the right 
answer (Dove and Heine, 1995). The errors reflect 
the approximations used in the application of 
renormalised phonon theory. The interesting point 
is that the magnitudes of the individual values of 
~dCO 2 are large but equally distributed over positive 
and negative values. Thus most terms in the 
denominator in equation (1) cancel, and it has a 
value that is much smaller than the maximum values 
of  I~k/co21. Given that the final value of the 
denominator will be a very sensitive balance 
between large positive and negative terms, the final 
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FIG. 7. A simple model of a monatomic crystal that displays a phase transition. The atoms interact with nearest 
neighbours by harmonic forces, represented by the springs. Each atom also oscillates in a local double-well potential, 
represented by the curves at each lattice point. The local potentials are a way of representing the effects of the rest of 

the crystal. 

value of Tc might be expected to be quite chaotic. 
Indeed, it could be infinite. We will see below that 
the RUM picture allows us to understand the 
resultant values of Tc. 

Another approach towards the transition temperature 

Fig. 7 shows a simple model that has often been used 
to gain insights into the basic phenomena at a phase 
transition. A set of atoms are linked by simple 
harmonic forces, and each atom vibrates in its own 
'double-well' potential, Fig. 7 shows a one-dimen- 
sional version of the model, but it is easily 
generalised to three dimensions, although it is most 
easily used if there is still only one variable per atom. 
The simple renormalised phonon theory described 
above can be applied exactly to this model. The 
harmonic force constant is J, and the potential 
double-well is described as -V2au 2 + �88 , where 
u is the displacement of the atom. We note that the 
minima of the double-well potentials occur at __+u0 = 
+__a/b, the transition temperature is given from 
renormalised phonon theory in the limit J >> a as 
(Bruce and Cowley, 1981; Sollich et al., 1994) 

kate oc Ju~ (2) 

We now use the proportional sign since the exact 
result is modified by well-understood but uninter- 
esting geometric terms. To express equation (2) in 
the symbols of equation (1), we note that ~ is 
determined by J, ctk = b for all values of k, and 
(Z~ 2 = - - a .  

We can relate this model to our RUM system by 
identifying the displacement u as a generalised 
rotation/translation of a tetrahedron, and the interac- 
tion between tetrahedra J as proportional to the 
stiffness of the tetrahedra: this point has been 
discussed in detail elsewhere (Dove et al., 1992, 
1993, 1995a). The important point that follows from 
equation (2) is that the transition temperature is 
determined by only two factors. The first is the 

stiffness of the tetrahedra, and the second is the 
maximum distortion as determined by local repulsive 
forces. 

Using a geometry appropriate to quartz, and taking 
account of the existence of RUMs along all the main 
symmetry directions, we have calculated a value for 
Tc of around 1000 K, with a realistic estimate for J, 
but subject to a fair!y-high level of uncertainty (Dove 
et al., 1995a). The key point here is not the exact 
value we calculate, but the fact that the simple model, 
in which account is taken of only one phonon branch, 
gives a result that is similar to for the full calculation 
that takes everything into account. 

We should remark on the significance of the limit 
J >> a. By mapping the RUM model onto the simple 
model, this condition follows from the fact that the 
stiffness of the tetrahedra is much larger than any 
other force constant, and certainly higher than the 
driving forces for the phase transition that will form 
the local double-well potentials. From a detailed 
study of the model (Bruce and Cowley, 1981) we 
know that the limit J >> a provides the condition that 
the order parameter for the phase transition, Q, has 
the temperature dependence Q = (u) ~(Tc - T) ~. 
This provides some validation for the successful 
application of Landau theory to these phase 
transitions. 

What do we learn from the comparison o f  the two 
models? 

It is interesting to note that the two models described 
above give similar results. The results are not perfect, 
as a result of approximations inherent in the model, 
but they are close enough to the actual value of Tc to 
give us confidence that the models have captured 
some essential elements of the truth. The principal 
difference between the two models is that the full 
model takes explicit account of all 27 phonon 
branches, whereas the simple model contains only 
one phonon branch. In the first case it turned out that 
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the contributions of all the phonon modes to the 
denominator in the calculation of Tc were largely 
self-cancelling, leading to the question of why the 
resultant value of Tc is not nearer in value. This is 
answered by the results of the simple model. In the 
simple model a single anharmonic tbrce constant 
operates for all wave vectors of the phonon branch. 
This prevents any cancellation of the terms in the 
denominator of equation (2). It appears as if the 
phonon branch containing the soft mode in quartz 
operates in exactly the same way. The contributions 
from the other branches cancel out, but the 
contributions from the important phonon branch do 
not, and these then determine the value of the 
transition temperature. 

We can then directly apply the insights gained 
from the simple model to the phase transitions in 
aluminosilicates. The first is that the transition 
temperature is determined by the stiffness of the 
tetrahedra and the maximum distortion of the 
structure in the low-temperature phase. The second 
is that the phase transitions in aluminosilicates 
operate near the soft-mode limit where Landau 
theory is applicable. 

and hence the value of J in equation (2), to be 
independent of the K content x. The major effect of 
replacing the Na cations by the larger K cations will 
be to reduce the maximum distortion possible, since 
this is controlled by the extent to which the 
aluminosilicate framework can collapse about the 
alkali cation site. Thus from equation (2) we expect 
that as the maximum distortion, represented by u0 z, 
decreases with x, so also will the transition 
temperature. This result is not necessarily intuitive, 
for it might be argued that the effect of increased K 
content would be to stiffen the whole structure and 
therefore to raise the transition temperature. We have 
taken data for the alkali feldspar from Carpenter 
(1988). In this case the distortion associated with the 
phase transition is characterised by cos2cr *, where cr 
is one of the angles in the reciprocal unit cell of the 
low-temperature triclinic unit cell and is equal to 90 
in the monoclinic phase. We have extrapolated the 
data to T = 0 K, and plotted the values of cos2~ * at 
0 K and the transition temperatures as functions of x 
on the same graph, Fig. 8. It is clear from this figure 
that the transition behaviour is well-described by 
equation (2). 

Relationship to the effects o f  chemical composition 

Equation (2) contains an important implication for 
materials with variable chemical content, for 
example the alkali feldspars KxNal_xA1Si3Os, 
which undergo a monoclinic-triclinic displacive 
phase transition. As an aside, we point out that our 
RUM analysis for this transition shows that it is 
driven by an elastic softening rather than an optic 
instability (Hammonds et al., 1995). In the alkali 
feldspars, we expect the stiffness of the tetrahedra, 
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FIG. 8. The dependence of the transition temperature 
(closed circles, left-hand axis) and maximum distortion 
(open circles, right-hand axis) on K content in albite, 
KxNalxA1Si308. The maximum distortion is equivalent 

to 1000 x cos2e *. Data are from Carpenter (1988). 

Summary 

We have sketched a number of properties of phase 
transitions that are explained by the RUM model. We 
have elsewhere outlined a number of other crystal 
properties for which the RUM model has applica- 
tions, for example cation ordering, zeolite catalysis, 
and negative thermal expansion (Dove et al., 1992, 
1993, 1995a). In this paper we have sought to show 
how the RUM model can explain the occurrence of 
specific phase transitions, and how it can explain the 
value of the corresponding transition temperatures. 
The phase transitions are allowed by the existence of 
low-energy modes of deformation of the structure, 
namely without any distortion of the tetrahedra, and 
we have identified three different forces that can act 
to drive the transition or differentiate between 
different candidate deformations. The RUM model 
also provides a rationalisation for the observed 
transition temperatures, and we have shown the 
central role of the stiffness of the tetrahedra in this. 
The RUM model also helps explain the success of 
Landau theory in providing a comprehensive 
description of the thermodynamic properties asso- 
ciated with these phase transitions. 
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