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Abstract 

Silicate minerals grown from glasses, and rapidly cooled melts, often have non-compact branching or 
'spherulitic' morphology. The branching patterns are observed in volcanic rocks, glasses, meteorites, slags and 
sometimes in shallow level intrusive rocks. Experiments, observations, theory and simulations all support the 
concept that the crystal morphology is the result of growth under diffusion limited conditions. We show that in 
a silicate melt under appropriate conditions the equations for heat transfer and chemical-diffusion reduce to 
the Laplace equation. This means that the temperature or chemical gradient is a steady state field. Interaction 
between this field and a random variable (Brownian motion of growth species) is modelled and yields 
complex branching objects. The growing cluster affects the field such that an in-filled structure cannot be 
formed. The branching structures of the model crystal are remarkably similar to those formed in nature, and to 
those produced in laboratory experiments, implying that the model captures the essence of the branching- 
growth process. 
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Introduction 

BRANCHING-TEXTURED silicate minerals (and more 
rarely carbonates and oxides) are formed in 
environments where the kinetics of crystallization 
are rapid with respect to rates of chemical diffusion 
(Keith and Padden, 1963). Usually the environments 
are characterized by sharp thermal gradients and, 
sluggish diffusion or both (i.e. glassy cooling 
contacts of silicate melts). Natural examples are the 
branching plagioclase and olivines of volcanic rocks 
(Bryan, 1972; Fowler et al., 1987 and 1989). The 
textures are characterized by tip splitting wherein 
branches bifurcate during propagation. Figure 1 
exhibits an example from the quenched rim of an 
Archaean pillow basalt. Similar textures have been 
synthesized in the laboratory under conditions of 
very high supercooling (e.g. Lofgren, 1974; 
Donaldson, 1974) and simulated using a variation 
of the simple growth algorithm, Diffusion Limited 
Aggregation (Fowler et al., 1989). Although at first 
glance the textures apparently have a random 
branching structure, in general they possess a dilation 
symmetry, or scale invariance. That is, small 

segments when suitably expanded look like the 
whole. Fowler et al. (1989) show that these scale- 
invariant branching structures can be measured using 
fractal geometry which allows us to quantify 
irregular objects. The knowledge that these branching 
crystals have a fractal dimension of ~ 1.7 was the 
original motivation for this work, because other 
similar fractal objects have been modelled by related 
techniques (see discussion). 

Theoretical work on crystal growth in silicate 
magmas and other systems, e.g. snowflakes (Nittman 
and Stanley, 1986) and plastics (Keith and Padden, 
1963) demonstrates that the branching is the result of 
growth under chemical diffusion limited conditions. 
The unpredictable or random nature of the diffusion 
process, coupled with rapid crystal growth, leads to a 
texture that is not random but organized on many 
length scales (i.e. scale invariant). 

Here we relate Fourier's heat equation and Fick's 
diffusion law to conditions present during non- 
equilibrium crystal growth, and demonstrate how 
they reduce to the Laplace equation (a steady state) 
under the imposed conditions. We then use the 
discrete form of the Laplace equation, suitable for 
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FIG. 1. Photograph of branching-textured olivine from 
the quenched margin of an Archaean pillow basalt, 
Holloway Township Abitibi Ontario. Length of main 

branch approximately 0.1 mm. 

digital computers, in a simulation to produce a steady 
state field imitating temperature or concentration. 
With the addition of an appropriate rule for selecting 
growth sites on the model crystal, the field is then 
allowed to interact with a random component that 
mimics the Brownian motion of real growth species. 
The resulting patterns are strikingly similar to 
textures of branching minerals. 

Theoretical considerations 

First we introduce some terminology. The terms 
equilibrium growth and disequilibrium growth are 
often used to distinguish crystal growth that takes 
place slowly (e.g. deep within a slowly cooled 
pluton) from rapid crystal growth (e.g. a quickly 
cooled margin of a volcanic rock). By definition, at 
equilibrium there is no macroscopic change within 
the system, hence no growth, so the concept of 
equilibrium crystallization is incorrect. Crystals form 
in disequilibrium, or better, crystallization is an 
attempt to reach equilibrium. Thus all crystal growth 
and dissolution require a departure from equilibrium 

which in the case of temperature driven growth can 
be measured by the amount of undercooling. Because 
heat transfer is not the only driving mechanism for 
crystallization, we use where appropriate, the 
qualitative terms near equilibrium growth and, far 
from equilibrium growth. 

Near equilibrium silicate mineral growth is 
characterized by the formation of well-faceted 
crystals. The growth rate is slow and largely 
controlled by interface attachment kinetics at 
defects on the crystal face. The probability that an 
individual species in the liquid will migrate to, strike, 
and adhere to a crystal growth site is low; crystals 
develop slowly and are well-faceted. Under far from 
equilibrium growth conditions the growth kinetics 
are dominated by the transfer rate of material to the 
crystal, not interface attachment kinetics. Branching 
minerals formed in quickly cooled environments are 
typically found in a glassy matrix within a few mm of 
cooling contacts, where thermal gradients are sharp 
(e.g. ~ 1,200~ basalt against ~0~ sea water, or 
host rocks). Further from the cooling contact these 
textures are replaced by a series of other morphol- 
ogies in a reasonably systematic progression that 
depends upon the degree of undercooling (e.g. 
Lofgren, 1974; Fowler et al., 1987). 

We consider the case of an unstirred magma of 
uniform composition undergoing quenching (e.g. 
margin of a pillow basalt, or high level intrusion) 
wherein the thickness of the margin is negligible 
(mm-cm) in comparison to the thickness of the 
magma body (m-10 m). We expect the heat loss 
from the magma to be dominated by conduction 
across a horizontal interface (Carlsaw and Jaeger, 
1959). Thus the relevant equation for cooling is 
Fourier's: 

bTIbt  = k (~2Tf~z2) (1) 

where T = temperature, t = time, k = thermal 
diffusivity, and heat loss is in the vertical direction z. 
Under these conditions the maximum in the 
temperature gradient (bT/~z) occurs at the cooling 
contact (see Fig. 2). Here then, the RHS of 
Equation 1 is zero implying that bTl~t  is also zero, 
which holds as long as the far field initial magma 
temperature remains constant. This is a reasonable 
constraint over the short time and small scale that the 
quench takes place relative to the cooling of the main 
body of lava (e.g. pillow, tube or sill). In other words 
under the stated conditions, the second derivative of 
the temperature at the contact is given by: 

(~2TpOz 2) = 0, (2) 

o r  

~ 2 T  ~ 0 (3) 

Thus in the immediate vicinity of the cooling 
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FIG. 2. Schematic diagram depicting temperature 
distribution across a horizontal cooling contact under 
conditions dominated by conduction. In nature the 
vertical extent of the cooling contact in which these 
crystals grow corresponds to only a few millimeters at 
the top of the cooling magma. The cooling body 
envisaged (e.g. a lava flow, tube or pillows, or high 
level intrusion) has thicknesses of the order of a metre to 
several 10s of metres and in general very much larger 
horizontal dimensions. Because of these characteristic 
dimensions one can assume that the far field temperature 
of the magma remains constant at its initial value during 
the time the cooling contact is formed. The maximum 
change in temperature is at the contact. According to 
Fourier's equation the maximum in the derivative dTIdz 
occurs at the contact. Thus the second derivative dZTIdz 2 

is zero here. 

contact the temperature is a scalar field obeying the 
Laplace equation Equation 3. In other words close to 
the contact the gradient in temperature is unchanging, 
or a steady state condition exists. 

We also consider the growth of branching textures 
in glass at a constant temperature. Devitrification 
textures are common in silica-rich glasses, such as 
rhyolites. They are distinguished from those grown 
directly from the liquid in that they are often 
nucleated on fractures, are distributed long distances 
(metres) from any evident cooling contacts, and do 
not have an associated progression of morphologies 
away from cooling contacts. The growth in these low 
temperature silica-rich systems is clearly diffusion 
limited. The relevant equation for mass transfer is 
Fick's second law: 

~C/~t = D V Z C  (4) 

where C is concentration and D is chemical 
diffusivity. 

Assuming isothermal conditions, and knowing that 
under diffusion-limited conditions a steady state 
exists such that there is no change in concentration 
with respect to time: 

V Z C  ~, 0 (5) 

that is the Laplace equation. 

Therefore a rudimentary model for growth of 
branching crystals in high temperature gradients or 
highly viscous systems incorporates conditions where 
the growth is largely governed by fields obeying the 
Laplace equation. 

Method 

The branching growth is modelled on a digital 
computer. First we set up a potential field to simulate 
temperature or composition that obeys the Laplace 
equation. In nature this could be a steady state 
temperature variation across a cooling contact. Next 
we choose a nucleus for the model crystal. Because 
the movement of atoms is Brownian, we simulate the 
crystal growth process by coupling a random 
component with the field governed by the Laplace 
equation. The algorithm is similar to that used in 
physics to model other branching processes (e.g. 
Gould and Tobochnik, 1987, pp 472-474,  and 
discussion below). In order to simulate the field of 
equations 3 and 5 on a digital computer we use the 
Laplace equation in discrete form, and in two 
dimensions (i,j): 

Ixi,j = 1/4[(ixi,j-1) + (ixi,j+l) + (ixi--l.j) q" (ixi+l.j)] (6) 

where Ix represents discrete elements of the field (C 
or T) at all nodes (i,j) within a 100 by 100 grid. 

To mimic vertical cooling conditions (equation 1) 
we have imposed horizontal boundary conditions. 
This was done by assigning boundary values of the 
field variable at the grid top of IX = 0, and the grid 
bottom IX = 1, and none along the sides; and iterating 
equation 6 for all (i,j). The result (Fig. 3a) shows that 
the remaining 9,800 nodes have been assigned values 
in accordance with equations 3 and 5. Note the 
smoothly varying shades of grey from pure black (IX 
= 0) at the grid top, to pure white (IX = 1) at the grid 
bottom, visual confirmation that the conditions of the 
Laplace equation are obeyed. For thermally driven 
growth one can envisage that black relates to the 
coolest temperature and white to the hottest. 
Experimentation showed that sufficient convergence 
of the field values at each node was achieved after 50 
iterations of equation 6 over the entire grid, a 
boundary used subsequently (see also Niemeyer et 
al., 1984). 

The crystal growth simulation starts by assigning a 
value of IX = 0 to a node in the centre of the second 
row from the grid top. For clarity this nucleus node 
and the resulting growth structure are assigned a light 
grey colour (Fig. 3). Because this new value IX = 0 in 
the second row perturbs the field (in the sense that the 
new value is not consistent with smooth variation the 
required by equation 6), the entire grid at each node 
must be recalculated (e.g. a further 50 iterations o f  
equation 6). 
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FI% 3. (A) Potential field of a grid (100 x 100) constructed by iterating the discrete form of the Laplace equation 
(equation 6) with p. = 0 (pure black) at the top boundary, p. = 1 (pure white) at the lower boundary. For the case of 
thermally driven crystallization the black corresponds to low temperature and the white to high temperature. 
(B,C,D,E) Sequential images of the crystal growth simulation after many iterations (see text for details). The 
simulated crystal is light grey. (F) The potential field after the termination of growth. Note that in common with the 
real crystal of Fig. 1 the simulated pattern exhibits tip-splitting (branches grow off the main trunk) and that the 

branches never re-join. 

Next, a new node is chosen for growth. For 
attachment, it must be a nearest-neighbour node to 
the nucleus. Actual far from equilibrium crystal 
growth occurs when a random-walking-growth-unit 
collides and adheres to a growth site of the crystal. 
Therefore we use a random process to choose among 
the nodes that are possible growth sites on the model 
crystal. This is accomplished by assigning a growth 
probability Pi, (e.g. Niemeyer et al., 1984) to each 
possible growth node (i.e. all nearest neighbours 
nodes to the light grey growth array). The Pi values 
are calculated for each possible growth site from the 
field value of all their nearest neighbour nodes N, 
where ~ relates g to the growth probabilities 

N 
Pi = ~ * 1 / ~ / z ~ .  (7) 

i=l 

Thus each possible growth site has a probability Pi 
of being selected. A random number generator is then 

used to select one growth site among the various Pi '  s. 
The selected node is assigned the value 0 and its pixel 
is illuminated light grey. The field is recalculated, 
new Pi's determined, and a new nearest neighbour 
node is selected for growth, and so on. 

Results 

Figure 3b, c,d,e and f show the evolution of the 
simulated crystal (light grey) and the field (black, 
grey, and white) during growth. Note that the overall 
pattern produced in Fig. 3e is very similar to the 
morphology of the natural crystal documented in 
Fig. 1. The pattern of Fig. 3 is an un-filled structure 
characterized by three orders of  branching (tip 
splitting). Note that in common with the crystal of 
Fig. 1 the pattern has dilation symmetry and the 
branches never intersect. The area within the branches 
remains un-filled because the gradient in the field 
between branches quickly becomes uniformly low in 
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accordance with equation 6 (Fig. 3 c - e )  making 
growth highly improbable. This occurs because 
interbranch areas are sandwiched between branches 
whose nodes have Ix = 0, thus the smoothing operation 
of equation 6 quickly reduces all node values between 
branches to near zero values. Therefore the inter- 
branch nodes have only a small range in Pi and are 
not selected often by the random number generator. In 
contrast, nodes near the tips have a large range in Pi, 
and consequently are often selected. Branches shield 
their embayments from further growth. In real 
branching growth, the shielding occurs because the 
probability of a random walking growth species 
migrating deep within an embayment to cause in- 
filling growth, without first colliding and sticking to a 
branch, is small. It is most probable that random 
walking growth species will collide and adhere to the 
structure near branch tips. Thus in the model the tips 
are associated with the highest range of field values 
and probabilities for growth. Model tip splitting 
occurs when a growth site is chosen that happens to 
be on the side of the tip of the main branch. 

The imposed vertical gradient and the choice of 
exponent a in equation 7 of the simulation results in 
early arrest of horizontal branches. This is consistent 
with our observations of natural branching crystals 
wherein the prominent growth direction is normal to 
the cooling contact and side branching is of lesser 
extent. For instance, the two branches that protrude 
the most to the left in Fig. 3c are only slightly 
changed by the time-step of Fig. 3d and not at all 
between the steps of Figs. 3d and 3e. Figure 3f 
shows the final gradient after growth. Note how the 
field has been modified with respect to the initial 
conditions of Fig. 3a. 

Discussion 

Although the theoretical considerations and simula- 
tion presented are a simplification of physical reality, 
the analysis captures the essence of the far from 
equilibrium branching crystal growth and demon- 
strates that the interaction of thermal or concentration 
fields obeying the Laplace equation with a random 
selection rule results in branching growth. In effect 
we equate the temperature change directly to 
concentration change. We recognize that this is 
highly idealized and that the physics of the process 
must be complex. However we are encouraged by the 
results and believe that they support the approach. 

The random selection rule is appropriate for both 
the simulation and a model of supercooled mineral 
growth. In the liquid, the motion of species is 
Brownian in the immediate vicinity of the cooling 
contact hence the selection of landing positions at the 
interface must involve a random process. Once 
initiated, branch propagation occurs through an 

interplay of the field (that is itself modified by the 
growth) and the random motion of growth species. 
For real crystal growth the multiplicity of possible 
choices over the entire time of crystal growth is truly 
enormous. Presumably in the case of snowflakes, this 
leads to the old adage that no two are alike! 

The choice of the exponent a in equation 7 was 
based on the results of Niemeyer et al., (1984) who 
studied dielectric breakdown, a physical process that 
results in branching patterns (e.g. lightning) and can 
also be approximated by the Laplace equation. They 
demonstrated that dielectric breakdown in a gas is 
linearly related to the pattern growth probabilities, 
hence they used an exponent value = 1. Furthermore 
they suggest that a non-linear exponent is more likely 
relevant for solids, liquids and polymers. We have no 
knowledge of the microscopic relationships between 
the growth probability and the local field in a silicate 
melt. Therefore, based upon results of Niemeyer et  
al. (1984) (i.e. the suggested non-linear exponent for 
polymers) and because the image of Fig. 1 is strongly 
anisotropic we decided to use an exponent value of 
two for its simulation. Unlike dielectric breakdown 
real mineral growth incorporates anisotropy. The 
anisotropy of growth rate is related to the tendency 
for production of faceted morphologies which in 
itself is related to the entropy of fusion of the 
material ( Kirkpatrick et al., 1979; Jackson, 1958). 
Clearly we do not mean to suggest that a d  hoc tuning 
of the probabilities is a rigorous way to account for 
mineral growth anisotropy. More work is required in 
order to gain a complete understanding of the effect 
of the interaction between crystal anisotropy and the 
growth probabilities on the morphology of branching 
crystals. 

In the model the field is modified by the growth 
(cf. Fig. 3a and 3'). In the case of real far from 
equilibrium thermally driven growth the model 
predicts that the crystal must cool the environment, 
a counter-intuitive idea. The process whereby a 
crystal cools the environment from which it grows is 
termed constrained crystallization (Tiller, 1991). 
Constrained crystallization occurs during crystal- 
lization in sharp thermal gradients, or from stoichio- 
metric melts wherein the thermal conductivity of the 
crystal is greater than the liquid and hence cooler, In 
contrast, crystals that grow freely from a high 
temperature multiply saturated silicate liquid having 
low thermal gradients will be very slightly hotter than 
their surroundings due to the release of latent heat, so 
called un-constrained crystallization. Constrained 
crystallization is a well known process in engi- 
neering, used to grow very pure crystals (Tiller, 
1991). Moreover, Shore (1996) has demonstrated that 
the platy and branching olivine crystals (spinifex- 
texture) of Archaean ultramafic lavas (komatiites) 
developed because of this process. His calculations 
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show that the rate of heat transfer was faster through 
the olivine than the melt. 

The fact that concentration must be a scalar 
quantity, i.e. an unstirred system, accords well with 
formation of the texture during devitrification and 
with the silicate melt experimental results of Kouchi 
et al. (1986). They showed that mineral textures 
formed in quickly cooled and stirred experimental 
charges are characterized as being more faceted than 
their identically cooled non-stirred counterparts. One 
expects stirring to destroy( the steady state conditions 
(e.g. the relationship V~C ~ 0) hence material is 
advected to the growing crystal and fuller crystals 
with faceted crystal morphologies would result. In 
our simulation this condition can be modelled and 
results in more compact morphologies although no 
facets arise because there are no rules in this simple 
model to account for surface effects. 

Mixing environments are another place where one 
might expect similar branching growth to occur due 
to concentration gradients that obey the Laplace 
equation. Mixing of compositionally and hence 
thermally different viscous lavas, providing they are 
not vigorously stirred (i.e. turbulent), is a suitable 
environment, as is the juxtaposition of chemically 
different beds in a metamorphic environment. Also, 
according to Ben-Jacob and Garik (1990) the 
'decorated' and irregular shape of snowflakes is 
due to the limited diffusion of water molecules from 
the gas phase into the crystal. This leads to the 
intriguing possibility that the solution given for 
Fick's second law may be more general for processes 
in the earth sciences, in that it may govern formation 
of branching mineral textures from sparse vapour and 
liquid phases. 

In common with other branching phenomena, e.g. 
dielectric breakdown (Niemeyer et al., 1984), light- 
ning (Tsonis, 1991), viscous fingering during 
secondary recovery of petroleum, snowflake forma- 
tion (Nittmann and Stanley, 1986), electrodeposition 
(Brady and Ball, 1984) and dissolution (Daccord and 
Lenormand, 1987) growth of branching minerals can 
also be due to the interaction of a steady-state 
gradient obeying the Laplace equation and the 
interaction of a random component. Thus the 
remarkable branching textures of minerals owe 
their organization to the interplay of the random 
landings of growth species on a crystal growing in an 
invariant gradient of chemical potential. Accordingly 
the growth must occur from solutions that are not 
vigorously agitated. 
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