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Abstract 

We discuss the use of regression diagnostics combined with nonlinear least-squares to refine cell parameters 
from powder diffraction data, presenting a method which minimizes residuals in the experimentally- 
determined quantity (usually 20hkt or energy, Ehkt). Regression diagnostics, particularly deletion diagnostics, 
are invaluable in detection of outliers and influential data which could be deleterious to the regressed results. 
The usual practice of simple inspection of calculated residuals alone often fails to detect the seriously 
deleterious outliers in a dataset, because bare residuals provide no information on the leverage (sensitivity) of 
the datum concerned. The regression diagnostics which predict the change expected in each cell constant upon 
deletion of each observation (hkl reflection) are particularly valuable in assessing the sensitivity of the 
calculated results to individual reflections. A new computer program, implementing nonlinear regression 
methods and providing the diagnostic output, is described. 

I~YWORDS: powder diffraction, regression diagnostics, lattice parameters, computer program. 

Introduction 

THE determination of the lattice (or cell) parameters 
of crystalline materials from powder diffraction data 
is a very common task in mineralogical and 
petrological research. Bearing in mind the prevalent 
nature of this task, it is somewhat surprising to 
discover that it is very often carried out using a 
method that could easily be improved upon. The 
approach that is commonly employed follows that 
first adopted by Cohen (1935) to refine cell 
parameters from diffraction data by iterative least- 
squares refinement of trial cell parameters, using the 
minimization of the sums of squares of residuals in Q 
= dh~). This is largely a matter of convenience, 
because the most compact and elegant expression for 
the dependence of the spacing of the (hkl) lattice 
planes, dhkt, in terms of the unknown cell parameters 
is given by 

Qhkl = d ~  = h2 a .2 + kZb .2 + 12c .2 + 2klb*c*cosct* 
+ 21hc*a*cos[l* + 2hka*b*cosy* (1) 

The values of the reciprocal constants (a*, b*, c*, 
ct*, 13", and y*) are usually found by fitting the 
expression above to values of Qh~ (found from 
measurements of 20hkt) by a non-linear least-squares 
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procedure. The real space unit cell parameters are 
then determined from these reciprocal constants with 
their uncertainties calculated by error propagation. 

It is surprising that iterative non-linear refinement 
is the most common method used for cell parameter 
determination from powder diffraction data, given 
that the equation above is actually linear in six 
parameters which may be readily determined by the 
much simpler method of linear least-squares. This 
fact was noted and discussed by Kelsey (1964) who 
outlined the method of error propagation for the 
expression for Qhkl recast as 

Ohkt = h2Xl + k2x2 + 12x3 + klx4 + lhxs + hkx6 (2) 

The advantages of this approach are that it is direct 
and fast, using standard least-squares procedures, and 
that no initial guesses are required for the cell 
parameters. The disadvantages are that the last three 
unknowns x4, x5 and x6 are made up from various 
combinations of the cell parameters and are not 
independent of the first three parameters. Large 
correlations among the various parameters might 
cause rounding error, reducing the accuracy with 
which ct, 13 and y can be determined. Furthermore, 
equation (2) above is only linear in parameters xl ... x6 
when written in terms of Qhkt. If we wish to minimize 
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80 residuals in another dependent variable, such as (the 
most usually measured) 20hk I o r  dhkl, then the 
expression becomes non-linear in the cell parameters 
and simple linear least-squares cannot be used. 60 

Rather than minimizing residuals in Q, in which _~ 
case direct linear methods such as those of Kelsey 
(1964) might be used, it is usually more appropriate 
to use the experimentally measured quantity (such as ~ 40 
20hk l o r  Ehkl) as the dependent variable for ~. 
minimization. Below, we discuss the advantages of -~ 
this approach. Additionally, we draw attention to the 
advantages of using regression diagnostics as a tool o 20 
in detecting not only outliers in measurements of 
diffraction data but also those diffraction peaks 
which are most influential in determining the fitted 
cell parameters. 0 

Choice of dependent variable 
In many regression problems there exists a choice of 
which variable to use as the dependent variable. This 
often turns out to be an important choice since it 
usually affects the magnitudes of the determined 
parameters. Most familiar is the question in simple 
straight line relationships involving two variables 
(e.g. y = a + bx) of whether to regress y on x or x on y. 
All error is usually placed on the dependent variable 
(say y) and it is assumed that it is y which we wish to 
est imate from known values of x using the 
parameters of  the regression equation. In the 
present situation the choice would appear clear - -  
the values of h,k,l are known (if the indexing has 
been done correctly) and so Q must be the dependent 
variable to use. Uncertainties in each Qhkz value are 
not generally known, however, and generally each is 
assigned its own weight. This is because it is not 
usually Q which has been measured but some other 
experimentally determined value such as the angle 
(20hkl) or energy (Ehkl) of a Bragg reflection, 
depending on the nature of the diffraction experi- 
ment. Clearly it would be more satisfactory to 
minimize the residuals in the experimental obser- 
vables during the regression. Because Qhkt, Ehkl and 
dhkt do not vary linearly with 20 (see Fig. 1), the 
regression results will depend on which one we 
choose to be the dependent variable. This is, 
however, a consequence of using unweighted least- 
squares. With non-linear least-squares methods, any 
of the possibilities (20h~1, Qhkl, Ehkt and dhkl) c a n  be 
easily used as the variable whose residuals are to be 
minimized and the most reasonable choice must be 
the one which was measured in the particular 
diffraction experiment, unless particular care is 
taken over weighting the data points to compensate. 
These advantages of reformulating the theory of 
refinement as a non-linear least-squares procedure 
rather than a linear least-squares procedure have been 
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FIG. 1. A Plot of d-spacing, energy and Q against 20 for 
a typical set of measured X-ray reflections of chlorite 
(taken from Roots, 1994). The values for d and Q have 
been multiplied by 5 and 100, respectively, to scale them 
to those for E in keV. The nonlinearity between 20 and d 
becomes particularly important for materials with large 

d-spacings, such as the chlorite represented here. 

recognized previously (Hart et al., 1990; Toraya, 
1993). Figure 1, a typical dataset involving 
reflections in the range 6 - 8 0  ~ suggests that 
regressing with d-spacing as the dependent variable 
will place increasingly excessive weight on low angle 
reflections, thus seriously biasing the results on the 
basis of arguably the lowest resolution reflections. 
This effect becomes particularly significant in 
materials with large d-spacings, such as the chlorite 
from which the data of Fig. 1 were obtained. 
Likewise, use of Q as the dependent variable would 
place too low a weight on low angle reflections but 
would begin to place too large a weight on the very 
high angle reflections when compared with the 
experimentally determined variables E and 20. A 
strategy that has been employed to overcome this 
functional bias is to weight the data in Q to 
compensate, an approach that indeed provides an 
adequate (if piecemeal) solution to this aspect of 
having chosen the incorrect dependent variable. 
Weights may, however, also be needed to account 
for the variation in quality of  each peak position 
measurement. It is known, for example, that the 
standard deviation of the measured position (in, say, 
20) is inversely proportional to the square root of the 
peak intensity (Wilson, 1967). If we wish to weight 
the observations to take account of this or some other 
judgement of individual datum quality, further 
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adjustments must be made to those weights which 
have already been applied to correct for the 
functional bias of Q. The preferred approach is to 
carry out the initial nonlinear least-squares on the 
basis of regression of the measured quantity (20 or E) 
rather than Q, and then weights can be applied as 
necessary to take account of experimental judge- 
ments of each datum. Indeed, this has been adopted 
by previous workers who modified existing methods 
(Hart et al., 1990). 

As an illustration of the potential weakness of 
performing unweighted regression on Q, we compare 
the results of regressing the data for Monte Somma 
anorthite from Redferu and Salje (1987), details 
given below, using 20hkt, Qhkt, dhkl and Eh~l as the 
dependent variable. To simulate an energy-dispersive 
synchrotron experiment, we have assumed a beam 20 
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of 10 ~ to calculate an energy spectrum from the 
original data. The differences in cell parameters, 
although small, can be as large as the individual 
estimated uncertainties. Figure 2 shows the differ- 
ences in the volume and lengths of the cell edges 
using these four dependent parameters and shows 
clearly that Q and d yield the most extreme values. 
Although not shown in Fig. 2, the cell angles ct, [3 and 
y all have similar strong dependence on regression 
variable. In carrying out these regressions we 
employed a two step approach. First we used linear 
least-squares of Qhkt to obtain starting guesses for the 
cell parameters, and then we used nonlinear least- 
squares of the measured variable of choice to obtain 
the refined parameters. This approach not only allows 
the correct regression variable to be selected, it also 
means that initial guesses at the starting cell 
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FIG. 2. The effect on the cell dimensions of changing the dependent variable (Q, 20, E or d) in the refinement of the 
anorthite data (see Tables 1 and 2). Note that Q and d typically provide extreme values for the cell constants. 
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parameters are not required (only indexed peaks and 
a specification of the crystal system). 

Regression diagnostics 
As an aid in fitting cell parameters to diffraction data, 
it is extremely useful to calculate several so-called 
regression diagnostics along with all the other 
parameters during the regression in order to identify 
possible outliers in the data. Regression diagnostics 
are discussed in some detail in the work of Belsley et 
al. (1980) and Powell (1985) with respect to linear 
regression analysis where their value is demonstrated 
in helping identify which data points in a set are 
outiiers and which data are potentially dangerous 
because they have very high influence on the 
calculated results (leverage). Although these diag- 
nostics only apply strictly .to linear problems, by 
linearizing the function at the solution we may use all 
the machinery of the linear situation. The assumption 
is that for small errors, the function we are fitting is 
reasonably linear - -  an assumption we have to make 
anyway, in determining the magnitudes of the 
uncertainties on fitted parameters. We will now 
introduce five important diagnostic parameters and 
explain their use. 

Typical ly,  the only diagnostic used during 
refinement of cell parameters is the difference 
between the observed and calculated values (the 
residuals) of the data. We shall see that this 
20obs--20caJc value can be misleading, and the use 
of regression diagnostics provides a far superior 
method for identifying poor data points resulting 
from measurement or indexing errors. Regression 
diagnostics provide a useful method for confirming 
the correct indexing of peaks. It should be noted at 
the outset, however, that these are single-observation 
diagnostics - -  based on the influence a single data 
point may have, and as such the method cannot detect 
deleterious effects arising from several observations 
acting together, since these may mask one another. 

(1) Hat.  One of the most important diagnostics in 
helping detect influential data is the Hat matrix H, so 
called because it puts the Hat on y, being a projection 
matrix relating calculated and observed values for the 
vector ofy  values, ~ = Hy. The diagnostics of value are 
the diagonal elements h i referring to each observation i 
and these can take on values from hi = 0, indicating 
that observation i has no influence on the fit, to h i = 1, 
indicating extreme influence such that observation i is 
fixing one of the parameters. The Hat values are 
related to the distance of any point from the centre of 
the data spread, so that points lying at the extremities 
of data space are very influential in determining the 
values of one or more parameters, whereas data lying 
in the middle of the spread exert little influence on the 
calculated parameters. The Hat values sum to the 

n number of parameters in the regression, ~i=1 hi = p 
and the average value of h i is therefore given by 
where p is the number of parameters and n is the 
number of observations. Observations with high 
leverage are influential, and are flagged by Hat values 
in excess of a cut-off of ~ (Belsley et al., 1980). High 
leverage simply flags the very influential data and does 
not in itself imply that such data are harmful. Other 
diagnostics must be used in conjunction with the Hat 
values in helping to assess the data. 

In linear least-squares problems, a solution b 
which minimizes the residuals in y for the equations 
y = Xb is found by solving the normal equations, 
which may be expressed in terms of matrix algebra as 
(xTx)b = XTy, where X T is the transpose of X. The 
Hat matrix is then defined as x ( x T x ) - I x  T. 

A good non-linear least-squares method for 
optimizing cell parameters is that of Marquardt (as 
detailed, for example, by Bevington, 1969) in which 
the final stage is a Gauss-Newton step to finding 
solutions b to the equations (JTj)b = jTe where J is the 
Jacobian of partial derivatives of the fitting function 
with respect to the cell parameters a, b is the vector of 
increments to the cell parameter estimates, and e is the 
vector of residuals (Yi - YiC~c). Linearizing the fitting 
function at the solution allows an estimate of the Hat 
values from hi = Hdi = ji(jTj)-lj/T, where Ji is the ith 

. . . .  ~ Yi OY" 1 row or j ,  I.e. [Oa!' ~ "'" ~.J" 
(2) Sigma(i) .  ~l'he stana~ard error of the residuals, 

r is a useful measure of the spread of the calculated 
y values, and a drop in this diagnostic signals a better 
overall fit to the data. The definition of ~y is given by 

T . , . 

r = e-e where e is the vector of residuals and if this 
n - - p .  . . . .  ' 

value falls s lgmflcantly upon deletion of  an 
observation i, it points to that observation being 
potentially deleterious to the fit. The deletion 
diagnostic r calculated for each observation, is 
the value of Cry which would result if  the observation 
i were to be deleted from the dataset. Scanning down 
the list of calculated ~y(i)  for values significantly 
smaller than the overall ~y highlights observations 
which might be harmful to the fit. 

(3) Rstudent .  The use of simple residuals ei = 
c a l c  Y i -  Yi are of relatively little diagnostic value 

where some observations are very much more 
influential than others, as very influential data are 
generally associated with small residuals. An adapted 
form of residual, Rstudent, in which the residual has 
been normalized by division by ~/1 - h i ,  allows for 
the effects of leverage. It is defined as (Belsley et al., 
1980) 

Rstudenti  ei  (3) 
cry(i)~/1 - hi 

Rstudent may be used as a diagnostic parameter 
since it is expected to be less than 2.0 at the 95% 
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confidence level, and so values of Rstudent for an i 
which are in excess of 2.0 suggest that the data point 
(or in this case observed diffraction vector of the ith 
hkl reflection) should be treated with suspicion. 

(4) DfFits. DfFits is another important deletion 
diagnostic which gives the change in the predicted 
value Yi upon deletion of the ith observation as a 
multiple of the standard deviation of ~i. When this 
diagnost ic  is large, the predicted value of y, 
corresponding to observat ion i, would change 
substantially if the regression were to be rerun 
without that observation. It is therefore a measure 
of the influence of each observation i on its own 
calculated position. 

hiei 1 
DfFitsi  -- i ( " - (4) 

Observations with DfFits greater than a cutoff 
value of 2 v / p ~  should be considered as potential 
outliers in a dataset. 

(5) DfBetas. The final diagnostic which may be 
used to assess and improve cell parameter refinement 
is called DfBetas, defined as 

DfBetas/j - f}j - [}j(i_____~) _ (aTa)-~j~e, (5) 
O'[~j O'[~j (1 -- hi) 

This provides a measure of how much the 
calculated value of each refined parameter 13j would 
change if the regression were rerun without using 
observation i. It may conveniently be expressed as a 
pe rcen tage  of  the s tandard devia t ion  of that  
parameter. Rather than use one of the heuristic 
cutoff values suggested by Belsley et al, (1980) we 
suggest that observations which would change a 
parameter by more than 33% of its standard deviation 
should be flagged as potentially deleterious to the 
refined results. This  diagnost ic  is particularly 
va luable  in assess ing which of  the observed 
reflections has most influence on the calculated cell 
parameters, and can be used in conjunction with the 
other diagnostics in weeding out possibly deleterious 
data as well as assessing the individual sources of 
error in a cell parameter refinement. 

Examples 
Refinement o f  data collected as a function o f  20 

The usefulness of these regression diagnostics, which 
we have incorporated into a non-linear least-squares 
refinement procedure to determine unit cell para- 
meters, is best illustrated by taking a closer look at 
some specific examples. Taking first of all the typical 
case of cell parameter refinement from diffraction 
data collected as a function of scattering angle, 20, 

we shall explain the use of the associated regression 
diagnostics using the dataset  for an anorthi te  
measured at high-temperature. The experimental 
arrangements for the data collection and the scientific 
significance of the data are described by Redfern and 
Salje (1987) and Redfern et al. (1988). We have 
refined this example dataset minimizing the square of 
the residuals in 20 as well as the residuals in Q, and 
are thus able to compare directly the differences 
between the two methods for a real set of data. 
Computed results from these two refinements of the 
anorthite data are shown in Tables 1 and 2. 

(a) Minimizing residuals in 20. Many commonly- 
used cell parameter refinement programs provide 
lists of observed and calculated 20 or d-spacings for 
each of the observed reflections. The usual measure 
of the quality of each data point and test of whether a 
reflection is correctly indexed is taken as the 
difference between these observed and calculated 
values. For the Monte Somma anorthite dataset here, 
therefore, those reflections which show differences 
between the observed and calculated values which 
are greater than twice the average absolute deviation 
are flagged by a bullet in the Tables. This would be 
the usual limit of diagnostic information available to 
the experimentalist. Tables 1 and 2, however, also 
include the regression diagnostics referred to above, 
which provide an additional invaluable aid to the 
critical analysis and evaluation of each measured data 
point as well as providing a check of the accuracy of 
peak indexing. For example, for the anorthite data 
refined on the residuals in 20 (Table 1) we see that 
both the 224 and 228 reflections have values of Hat 

than the ~ cutoff explained above. Thus these greater 
reflections are particularly influential. Looking at 
their values of DfFits and Rstudent, however, we 
observe that while they are influential, they are not as 
detrimental to the overall fit as some of the other 
reflections. The 064 reflection, on the other hand, is 
not quite as influential (its value of Hat is just less 
than the cutoff) but it does appear deleterious to the 
fit, since both DfFits and Rstudent lie well above 
their limits. Indeed, we see that if this reflection were 
removed from the dataset it would lower the overall 
value of sigmafit from its current value of 0.0107 to 
0.0100 (as given by the parameter sigma(i), in the 
fourth column of the regression diagnostics), a 
percentage change in sigmafit of - 6 . 0 %  (as shown 
in the final column). This is a case where the 
experimenter  might wish to look again at the 
measurement of 20 for the 064 and 224 reflections 
and assess whether there may be some error of either 
measurement, indexing, calibration, or a problem of 
overlap with a strong reflection of another phase if 
the data are obtained from a mixed-phase sample. If a 
data point is an outlier, as the regression diagnostics 
imply, then the only option may be to remove one or 
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both from the refinement. The DfBetas parameters 
for these reflections provide a prior indication of the 
effect of such a course of action, since they show 
how the removal of a datapoint affects the refined 
cell parameters. Thus, in the case of removal of the 
064 reflection, one would see a change of +0.29cya 
(0.0003 A) on the a cell edge, -0.69crt, (0.0010 A) on 
b, hardly any change on c, but most significantly an 
increase of +0.87cr~ (0.0106 o) on the 0c angle. The 
overall effect is to increase the value of the cell 
volume by some 0.081 ,&3, which is only 38% of its 
standard deviation (and thus of arguable signifi- 
cance). The limited effect of removal of this 
datapoint on the refined parameters might have been 
expected since it is a further confirmation that while 
both DfFits and Rstudent lie above their limits for 
this reflection, and its removal can improve the 
overall quality of the fit, the reflection does not have 
as strong an influence on the derived cell parameters 
as, for example, the 224 reflection (since its Hat is 
lower than that for 224). Indeed, removal of 224 
would lead to a reduction in the cell volume by 71% 
of its standard deviation (0.151 ~3), and a large 
increase of the !3 angle by 123% of its standard 
deviation. 

It is interesting to compare the use of the regression 
diagnostics explained above with the procedure of 
simple selection of potential outliers on the basis of 
the differences between observed and calculated 20 
positions (as might usually be performed in the course 
of  a cell parameter refinement). Four reflections show 
deviations between calculated and observed values 
greater than 2cy. Of these, the greatest is for the 064 
reflection and the 152 reflection. From the values of 
Hat, however, we see that 152 does not have a strong 
influence on the refined parameters, neither does its 
removal lower the overall standard deviation by as 
much as, say, the removal of 224 (which has a smaller 
deviation between observed and calculated 20). 
Furthermore, we have seen that while the removal 
of the 064 reflection gives the greatest reduction in 
sigmafit, this peak does not influence the refined cell 
parameters as much as the (almost as poorly fitting) 
224 reflection. While removal of 152 might be 
suggested from the differences between observed 
and calculated 20 positions, therefore, consideration 
of the deletion diagnostics, provided as a computa- 
tional by-product of the regression, indicates that the 
152 reflection is not a priority, and attention should 
first be paid to the 224 and 064 reflections. 

(b) Minimizing residuals in Q. The same dataset 
for anorthite has been refined by minimizing the 
residuals in Q, rather than in 20. This simulates the 
operation of a standard linear least-squares refine- 
ment of the data, as might be performed by any one 
of the many public domain programs available for the 
purpose. The output is shown in Table 2. As 

expected, the refined cell parameters differ from 
those obtained by refinement minimizing residuals in 
20 using exactly the same data. In particular the 13 
cell angle is more than one standard deviation 
smaller. Furthermore, we see that the residuals on 
individual observations are now quite misleading if 
employed as a mechanism for detecting outliers. The 
greatest variation between observed and calculated 
20 is shown by the 152 reflection. If this was all that 
was known, then the first course of action in an 
attempt to improve the refinement might be to 
eliminate this reflection, or at least measure it again 
to attempt to improve the fit. We showed above, 
however, that this reflection is not as detrimental to 
the non-linear least-squares refinement as either 064 
or 224, and that 224 was the peak which is most 
influential on the refined parameters when the data 
are handled correctly (refining on 20, the measured 
observation). Disturbingly, the 224 reflection shows 
what would probably be regarded as a perfectly 
acceptable value of 20obs--20calc when the data are 
fitted by refining residuals in Q, and there is no 
indication that this is the most deleterious outlier. 
The regression diagnostics obtained by refining 
residuals in Q also highlight a number of other peaks 
(such as 222, 7424, and 260), which we know are not 
significant outliers from our refinement of the data on 
the basis of minimising residuals in 20. Comparison 
of the computed results for this dataset using the two 
methods of refinement highlights both the impor- 
tance of refining the data on the basis of the observed 
quantities (rather than a derived function, such as Q), 
as well as the utility of deletion diagnostics in 
identifying outliers (compared with simpler yet less 
robust criteria such as the values of 20obs--20calc for 
individual reflections). 

Refinement of high-pressure energy-dispersive data. 

The provision of regression diagnostics becomes 
particularly useful when dealing with data that are 
inherently low quality. One particular field where 
this applies is in the analysis of high-pressure powder 
diffraction data collected in an energy-dispersive 
experiment. In a typical experiment a beam of white 
(usually synchrotron) radiation impinges on an 
extremely small amount of sample, often held static 
in a diamond anvil cell. Poor sample statistics, 
collection of a limited part of the diffraction cone, 
interference with diffraction from internal pressure 
standards, and the relatively low resolution of solid- 
state energy-dispersive detectors all conspire against 
the experimenter and mean that data must be handled 
and interpreted with care to obtain the best results. 

We illustrate the use of regression diagnostics in 
refining energy-dispersive data using the example of 
epidote in Table 3. First of all we note that the Bragg 
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maxima were measured as a function of energy, and 
the cell parameters were determined from refinement 
of the same measured quantity. The list of observed- 
calculated peak.positions shows that the measured 
position of the 223 reflection displays the greatest 
deviation from the best fit calculated value. A typical 
strategy might be to assume that the 223 reflection 
position was spurious and to recalculate the cell 
parameters on the basis of a dataset without this data 
point. The regression diagnostics, however, indicate 
that rather than 223, it is the 414 and i06 reflections 
that require closer examination. Values of DfFits and 
Rstudent for the 414 peak are substantially greater 
than the cutoff. We also see that the i06 reflection 
has a large Hat, but this need not worry us as the 
values of DfFits and Rstudent are within their limits, 
and the value of sigma(i) shows that the regression 
would become worse, not better, if this reflection was 
omitted. On the other hand, sigma(i) for the 414 
reflection is substantially (around 17%) lower than 
sigmafit for the whole refinement, and the omission 
of this peak will improve the whole fit. Inspection of 
the DfBetas given in part (b) reveals that omission of 
the 414 reflection from the refinement will increase 
a, c, and the 13 angle by more than one standard 
deviation. It is interesting to note that removal of the 
223 reflection, as might initially have been indicated 
simply by considering E o b s - E c a l c  , would not alter 
any of the cell parameters by more than half their 
individual  standard devia t ions .  Fur thermore ,  
although the residual of this point is relatively 
large, the statistical tests show that it is not 
significant. By inspection of the diagnostics for 
every observation rather than just those above the 
critical cutoffs, we find that the measured observa- 
tion of the 223 reflection gives values of -0 .708 and 
-1 .720  for DfFits and Rstudent respectively (well 
below the cutoff), and furthermore has a small value 
of Hat (0.145) so is in any case insignificant. On the 
other hand, Table 3 shows that the 7~14 reflection is a 
true outlier in the dataset and identifies this peak as 
the reflection which should be checked if the 
refinement is to be improved. Once again, we see 
that the values of E,,bs--Ecalc are not always good 
indicators of the statistical quality of individual 
reflections. 

Implications of the use of regression diagnostics in 
cell refinement 

We have shown the efficacy of computing essential 
diagnostic information required for careful cell 
parameter refinement, and that such diagnostics 
present a considerable improvement on those 
procedures of weeding out reflections based purely 
on the individual deviations between observed and 
calculated data. There is no reason why the 

identification of outliers in datasets and subsequent 
improvement of refinements should not become a 
routine precursor to the publication and use of 
powder diffraction data. Indeed, Smith (1989) has 
already pointed out that any laboratory planning to 
prepare data for publication or for inclusion in 
databases such as the Powder Diffraction File or 
the NIST Crystal Data File should screen their data 
for errors and poorly-fitting values. The statistical 
tests described here provide a simple mechanism for 
carrying out such screening, using regression 
diagnostics for the first time. It also very important 
that the refinement is based on minimization of the 
differences between the true measured quantity and 
its calculated value (rather than a linearized derived 
function). R.C. Jenkins (1995, pers. comm.) recently 
pointed out that of the 5000 powder diffraction 
datasets culled from the published literature each 
year, the ICDD find that only 1000 or so are 
acceptable for inclusion in the Powder Diffraction 
File. With the early use of regression diagnostics 
provided here this 'hit-rate' could be significantly 
improved. 

The program UnitCell, which implements the 
regressions (with regression diagnostics) discussed 
above, is available free to users from non-profit- 
making institutions. The executable code (for 
Macintosh or Windows) may be obtained by 
anonymous ftp from rock.esc.cam.ac.uk, where it 
resides in directory pub/minp/UnitCell/. Download 
the file README for further instructions. The 
programs and further details may be obtained from 
the appropriate part of the World Wide Web server at 
Department of Earth Sciences, Cambridge University 
(http://www.esc.cam.ac.uk). 
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