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Abstract

We discuss the use of regression diagnostics combined with nonlinear least-squares to refine cell parameters
from powder diffraction data, presenting a method which minimizes residuals in the experimentally-
determined quantity (usually 20, or energy, Egy). Regression diagnostics, particularly deletion diagnostics,
are invaluable in detection of outliers and influential data which could be deleterious to the regressed results.
The usual practice of simple inspection of calculated residuals alone often fails to detect the seriously
deleterious outliers in a dataset, because bare residuals provide no information on the leverage (sensitivity) of
the datum concerned. The regression diagnostics which predict the change expected in each cell constant upon
deletion of each observation (hki reflection) are particularly valuable in assessing the sensitivity of the
calculated results to individual reflections. A new computer program, implementing nonlinear regression

methods and providing the diagnostic output, is described.
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Introduction

THE determination of the lattice (or cell) parameters
of crystalline materials from powder diffraction data
is a very common task in mineralogical and
petrological research. Bearing in mind the prevalent
nature of this task, it is somewhat surprising to
discover that it is very often carried out using a
method that could easily be improved upon. The
approach that is commonly employed follows that
first adopted by Cohen (1935) to refine cell
parameters from diffraction data by iterative least-
squares refinement of trial cell parameters, using the
minimization of the sums of squares of residuals in 9
= dy). This is largely a matter of convenience,
because the most compact and elegant expression for
the dependence of the spacing of the (hkl) lattice
planes, dyy, in terms of the unknown cell parameters
is given by
O = dwi = Wa? + k6™ + P + 2klb ¢ "cosat”
+2Ihc"a"cosP” + 2hka’d cosy” (1)
The values of the reciprocal constants (a*, b*, c*,
o', B, and y") are usually found by fitting the

expression above to values of Quy (found from
measurements of 20,,,) by a non-linear least-squares

procedure. The real space unit cell parameters are
then determined from these reciprocal constants with
their uncertainties calculated by error propagation.

It is surprising that iterative non-linear refinement
is the most common method used for cell parameter
determination from powder diffraction data, given
that the equation above is actually linear in six
parameters which may be readily determined by the
much simpler method of linear least-squares. This
fact was noted and discussed by Kelsey (1964) who
outlined the method of error propagation for the
expression for Oy, recast as

Onu = W2xy + K% + Pxs + kixy + lhxs + hkxg  (2)

The advantages of this approach are that it is direct
and fast, using standard least-squares procedures, and
that no initial guesses are required for the cell
parameters. The disadvantages are that the last three
unknowns x4, x5 and xg are made up from various
combinations of the cell parameters and are not
independent of the first three parameters. Large
correlations among the various parameters might
cause rounding error, reducing the accuracy with
which a, B and y can be determined. Furthermore,
equation (2) above is only linear in parameters x; ... Xg
when written in terms of Qpy. If we wish to minimize
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residuals in another dependent variable, such as (the
most usually measured) 20, or di, then the
expression becomes non-linear in the cell parameters
and simple linear least-squares cannot be used.

Rather than minimizing residuals in Q, in which
case direct linear methods such as those of Kelsey
(1964) might be used, it is usually more appropriate
to use the experimentally measured quantity (such as
2041 or Egg) as the dependent variable for
minimization. Below, we discuss the advantages of
this approach. Additionally, we draw attention to the
advantages of using regression diagnostics as a tool
in detecting not only outliers in measurements of
diffraction data but also those diffraction peaks
which are most influential in determining the fitted
cell parameters.

Choice of dependent variable

In many regression problems there exists a choice of
which variable to use as the dependent variable. This
often turns out to be an important choice since it
usually affects the magnitudes of the determined
parameters. Most familiar is the question in simple
straight line relationships involving two variables
(e.g. y = a + bx) of whether to regress y on x or x on y.
All error is usually placed on the dependent variable
(say y) and it is assumed that it is y which we wish to
estimate from known values of x using the
parameters of the regression equation. In the
present situation the choice would appear clear —
the values of Ak, are known (if the indexing has
been done correctly) and so Q must be the dependent
variable to use. Uncertainties in each Q,; value are
not generally known, however, and generally each is
assigned its own weight. This is because it is not
usually O which has been measured but some other
experimentally determined value such as the angle
(20,1) or energy (En) of a Bragg reflection,
depending on the nature of the diffraction experi-
ment. Clearly it would be more satisfactory to
minimize the residuals in the experimental obser-
vables during the regression. Because Qpyy, Epg and
duy do not vary linearly with 20 (see Fig. 1), the
regression results will depend on which one we
choose to be the dependent variable. This is,
however, a consequence of using unweighted least-
squares. With non-linear least-squares methods, any
of the possibilities (28, Qnu, Enw and dyy) can be
easily used as the variable whose residuals are to be
minimized and the most reasonable choice must be
the one which was measured in the particular
diffraction experiment, unless particular care is
taken over weighting the data points to compensate.
These advantages of reformulating the theory of
refinement as a non-linear least-squares procedure
rather than a linear least-squares procedure have been
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Fic. 1. A Plot of d-spacing, energy and Q against 20 for
a typical set of measured X-ray reflections of chlorite
(taken from Roots, 1994). The values for d and Q have
been multiplied by 5 and 100, respectively, to scale them
to those for E in keV. The nonlinearity between 20 and d
becomes particularly important for materials with large
d-spacings, such as the chlorite represented here.

recognized previously (Hart er al., 1990; Toraya,
1993). Figure 1, a typical dataset involving
reflections in the range 6—80 °28, suggests that
regressing with d-spacing as the dependent variable
will place increasingly excessive weight on low angle
reflections, thus seriously biasing the results on the
basis of arguably the lowest resolution reflections.
This effect becomes particularly significant in
materials with large d-spacings, such as the chlorite
from which the data of Fig. 1 were obtained.
Likewise, use of Q as the dependent variable would
place too low a weight on low angle reflections but
would begin to place too large a weight on the very
high angle reflections when compared with the
experimentally determined variables E and 20. A
strategy that has been employed to overcome this
functional bias is to weight the data in Q to
compensate, an approach that indeed provides an
adequate (if piecemeal) solution to this aspect of
having chosen the incorrect dependent variable.
Weights may, however, also be needed to account
for the variation in quality of each peak position
measurement. It is known, for example, that the
standard deviation of the measured position (in, say,
20) is inversely proportional to the square root of the
peak intensity (Wilson, 1967). If we wish to weight
the observations to take account of this or some other
judgement of individual datum quality, further
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adjustments must be made to those weights which
have already been applied to correct for the
functional bias of (. The preferred approach is to
carry out the initial nonlinear least-squares on the
basis of regression of the measured quantity (20 or E)
rather than Q, and then weights can be applied as
necessary to take account of experimental judge-
ments of each datum. Indeed, this has been adopted
by previous workers who modified existing methods
(Hart er al., 1990).

As an illustration of the potential weakness of
performing unweighted regression on Q, we compare
the results of regressing the data for Monte Somma
anorthite from Redfern and Salje (1987), details
given below, using 26,4, Oy, duu and Ejy as the
dependent variable. To simulate an energy-dispersive
synchrotron experiment, we have assumed a beam 20
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of 10° to calculate an energy spectrum from the
original data. The differences in cell parameters,
although small, can be as large as the individual
estimated uncertainties. Figure 2 shows the differ-
ences in the volume and lengths of the cell edges
using these four dependent parameters and shows
clearly that O and d yield the most extreme values.
Although not shown in Fig. 2, the cell angles o, B and
v all have similar strong dependence on regression
variable. In carrying out these regressions we
employed a two step approach. First we used linear
least-squares of Oy, to obtain starting guesses for the
cell parameters, and then we used nonlinear least-
squares of the measured variable of choice to obtain
the refined parameters. This approach not only allows
the correct regression variable to be selected, it also
means that initial guesses at the starting cell
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FiG. 2. The effect on the cell dimensions of changing the dependent variable (Q, 20, E or d) in the refinement of the
anorthite data (see Tables 1 and 2). Note that O and d typically provide extreme values for the cell constants.
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parameters are not required (only indexed peaks and
a specification of the crystal system).

Regression diagnostics

As an aid in fitting cell parameters to diffraction data,
it is extremely useful to calculate several so-called
regression diagnostics along with all the other
parameters during the regression in order to identify
possible outliers in the data. Regression diagnostics
are discussed in some detail in the work of Belsley et
al. (1980) and Powell (1985) with respect to linear
regression analysis where their value is demonstrated
in helping identify which data points in a set are
outliers and which data are potentially dangerous
because they have very high influence on the
calculated results (leverage). Although these diag-
nostics only apply strictly to linear problems, by
linearizing the function at the solution we may use all
the machinery of the linear situation. The assumption
is that for small errors, the function we are fitting is
reasonably linear — an assumption we have to make
anyway, in determining the magnitudes of the
uncertainties on fitted parameters. We will now
introduce five important diagnostic parameters and
explain their use.

Typically, the only diagnostic used during
refinement of cell parameters is the difference
between the observed and calculated values (the
residuals) of the data. We shall see that this
20,ps—20.,c value can be misleading, and the use
of regression diagnostics provides a far superior
method for identifying poor data points resulting
from measurement or indexing errors. Regression
diagnostics provide a useful method for confirming
the correct indexing of peaks. It should be noted at
the outset, however, that these are single-observation
diagnostics — based on the influence a single data
point may have, and as such the method cannot detect
deleterious effects arising from several observations
acting together, since these may mask one another.

(1) Hat. One of the most important diagnostics in
helping detect influential data is the Hat matrix H, so
called because it puts the Hat on y, being a projection
matrix relating calculated and observed values for the
vector of y values, ¥ = Hy. The diagnostics of value are
the diagonal elements #; referring to each observation i
and these can take on values from #; = 0, indicating
that observation { has no influence on the fit, to h; = 1,
indicating extreme influence such that observation i is
fixing one of the parameters. The Hat values are
related to the distance of any point from the centre of
the data spread, so that points lying at the extremities
of data space are very influential in determining the
values of one or more parameters, whereas data lying
in the middle of the spread exert little influence on the
calculated parameters. The Hat values sum to the

number of parameters in the regression, Y. b = p
and the average value of k; is therefore given by 2
where p is the number of parameters and n is the
number of observations. Observations with high
leverage are influential, and are flagged by Hat values
in excess of a cut-off of %{1 (Belsley et al., 1980). High
leverage simply flags the very influential data and does
not in itself imply that such data are harmful. Other
diagnostics must be used in conjunction with the Hat
values in helping to assess the data.

In linear least-squares problems, a solution b
which minimizes the residuals in y for the equations
y = Xb is found by solving the normal equations,
which may be expressed in terms of matrix algebra as
X™X)b = XTy, where X7 is the transpose of X. The
Hat matrix is then defined as X(X™X)"!XT.

A good non-linear least-squares method for
optimizing cell parameters is that of Marquardt (as
detailed, for example, by Bevington, 1969) in which
the final stage is a Gauss-Newton step to finding
solutions b to the equations A = J%e where J is the
Jacobian of partial derivatives of the fitting function
with respect to the cell parameters a, b is the vector of
increments to the cell parameter estimates, and e is the
vector of residuals (y; — yf). Linearizing the fitting
function at the solution allows an estimate of the Hat
values from #; = H; = j,-gJTJ)_lj,-T, where j; is the ith

3 Oyi é}’i Vi
row of J, ie. [325 3 7l

(2) Sigma(i). 'The’ standard error of the residuals,
G,, is a useful measure of the spread of the calculated
y values, and a drop in this diagnostic signals a better
overalleit to the data. The definition of o, is given by
0'3 =22 where e is the vector of residuals, and if this
value falls significantly upon deletion of an
observation i, it points to that observation being
potentially deleterious to the fit. The deletion
diagnostic (i), calculated for each observation, is
the value of o, which would result if the observation
i were to be deleted from the dataset. Scanning down
the list of calculated o©,(i) for values significantly
smaller than the overall o, highlights observations
which might be harmful to the fit.

(3) Rstudent. The use of simple residuals e; =
y; — 3¢ are of relatively little diagnostic vatue
where some observations are very much more
influential than others, as very influential data are
generally associated with small residuals. An adapted
form of residual, Rstudent, in which the residual has
been normalized by division by +/1 — h;, allows for
the effects of leverage. It is defined as (Belsley ef al.,
1980)

€;

Gy(i)\ll - hi

Rstudent; =

®3)

Rstudent may be used as a diagnostic parameter
since it is expected to be less than 2.0 at the 95%
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confidence level, and so values of Rstudent for an i
which are in excess of 2.0 suggest that the data point
(or in this case observed diffraction vector of the ith
hkl reflection) should be treated with suspicion.

(4) DfFits. DfFits is another important deletion
diagnostic which gives the change in the predicted
value §; upon deletion of the ith observation as a
multiple of the standard deviation of §,, When this
diagnostic is large, the predicted value of y,
corresponding to observation i, would change
substantially if the regression were to be rerun
without that observation. It is therefore a measure
of the influence of each observation i on its own
calculated position.

hie; 1
DfFits; = —— . — 4
T @)

Observations with DfFits greater than a cutoff
value of 24/p/n should be considered as potential
outliers in a dataset.

(5) DfBetas. The final diagnostic which may be
used to assess and improve cell parameter refinement
is called DfBetas, defined as

: : T \-1:T
DfBetas,-j _ B Bj(l) _ (J J) Ji €i (5)
Op, 0'[3]_(1 - hi)

¢l

This provides a measure of how much the
calculated value of each refined parameter B; would
change if the regression were rerun without using
observation i. It may conveniently be expressed as a
percentage of the standard deviation of that
parameter. Rather than use one of the heuristic
cutoff values suggested by Belsley e al. (1980) we
suggest that observations which would change a
parameter by more than 33% of its standard deviation
should be flagged as potentially deleterious to the
refined results. This diagnostic is particularly
valuable in assessing which of the observed
reflections has most influence on the calculated cell
parameters, and can be used in conjunction with the
other diagnostics in weeding out possibly deleterious
data as well as assessing the individual sources of
error in a cell parameter refinement.

Examples

Refinement of data collected as a function of 20

The usefulness of these regression diagnostics, which
we have incorporated into a non-linear least-squares
refinement procedure to determine unit cell para-
meters, is best illustrated by taking a closer look at
some specific examples. Taking first of all the typical
case of cell parameter refinement from diffraction
data collected as a function of scattering angle, 26,

we shall explain the use of the associated regression
diagnostics using the dataset for an anorthite
measured at high-temperature. The experimental
arrangements for the data collection and the scientific
significance of the data are described by Redfern and
Salje (1987) and Redfern et al. (1988). We have
refined this example dataset minimizing the square of
the residuals in 20 as well as the residuals in @, and
are thus able to compare directly the differences
between the two methods for a real set of data.
Computed results from these two refinements of the
anorthite data are shown in Tables 1 and 2.

(a) Minimizing residuals in 26. Many commonly-
used cell parameter refinement programs provide
lists of observed and calculated 28 or d-spacings for
each of the observed reflections. The usual measure
of the quality of each data point and test of whether a
reflection is correctly indexed is taken as the
difference between these observed and calculated
values. For the Monte Somma anorthite dataset here,
therefore, those reflections which show differences
between the observed and calculated values which
are greater than twice the average absolute deviation
are flagged by a bullet in the Tables. This would be
the usual limit of diagnostic information available to
the experimentalist. Tables 1 and 2, however, also
include the regression diagnostics referred to above,
which provide an additional invaluable aid to the
critical analysis and evaluation of each measured data
point as well as providing a check of the accuracy of
peak indexing. For example, for the anorthite data
refined on the residuals in 20 (Table 1) we see that
both the 224 and 228 reflections have values of Hat
greater than the 2;” cutoff explained above. Thus these
reflections are particularly influential. Looking at
their values of DfFits and Rstudent, however, we
observe that while they are influential, they are not as
detrimental to the overall fit as some of the other
reflections. The 064 reflection, on the other hand, is
not quite as influential (its value of Hat is just less
than the cutoff) but it does appear deleterious to the
fit, since both DfFits and Rstudent lie well above
their limits. Indeed, we see that if this reflection were
removed from the dataset it would lower the overall
value of sigmafit from its current value of 0.0107 to
0.0100 (as given by the parameter sigma(i), in the
fourth column of the regression diagnostics), a
percentage change in sigmafit of —6.0% (as shown
in the final column). This is a case where the
experimenter might wish to look again at the
measurement of 20 for the 064 and 224 reflections
and assess whether there may be some error of either
measurement, indexing, calibration, or a problem of
overlap with a strong reflection of another phase if
the data are obtained from a mixed-phase sample. If a
data point is an outlier, as the regression diagnostics
imply, then the only option may be to remove one or
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both from the refinement. The DfBetas parameters
for these reflections provide a prior indication of the
effect of such a course of action, since they show
how the removal of a datapoint affects the refined
cell parameters. Thus, in the case of removal of the
064 reflection, one would see a change of +0.29c,
(0.0003 A) on the a cell edge, —0.69a, (0.0010 A) on
b, hardly any change on c, but most significantly an
increase of +0.870,4 (0.0106 °) on the o angle. The
overall effect is to increase the value of the cell
volume by some 0.081 A®, which is only 38% of its
standard deviation (and thus of arguable signifi-
cance). The limited effect of removal of this
datapoint on the refined parameters might have been
expected since it is a further confirmation that while
both DfFits and Rstudent lie above their limits for
this reflection, and its removal can improve the
overall quality of the fit, the reflection does not have
as strong an influence on the derived cell parameters
as, for example, the 224 reflection (since its Hat is
lower than that for 224). Indeed, removal of 224
would lead to a reduction in the cell volume by 71%
of its standard deviation (0.151 A) and a large
increase of the B angle by 123% of its standard
deviation.

It is interesting to compare the use of the regression
diagnostics explained above with the procedure of
simple selection of potential outliers on the basis of
the differences between observed and calculated 20
positions (as might usually be performed in the course
of a cell parameter refinement). Four reflections show
deviations between calculated and observed values
greater than 2c. Of these, the greatest is for the 064
reflection and the 152 reflection. From the values of
Hat, however, we see that 152 does not have a strong
influence on the refined parameters, neither does its
removal lower the overall standard deviation by as
much as, say, the removal of 224 (which has a smaller
deviation between observed and calculated 26).
Furthermore, we have seen that while the removal
of the 064 reflection gives the greatest reduction in
sigmatfit, this peak does not influence the refined cell
parameters as much as the (almost as poorly fitting)
224 reflection. While removal of 152 might be
suggested from the differences between observed
and calculated 20 positions, therefore, consideration
of the deletion diagnostics, provided as a computa-
tional by-product of the regression, indicates that the
152 reflection is not a priority, and attention should
first be paid to the 224 and 064 reflections.

(b) Minimizing residuals in Q. The same dataset
for anorthite has been refined by minimizing the
residuals in Q, rather than in 20. This simulates the
operation of a standard linear least-squares refine-
ment of the data, as might be performed by any one
of the many public domain programs available for the
purpose. The output is shown in Table 2. As

expected, the refined cell parameters differ from
those obtained by refinement minimizing residuals in
20 using exactly the same data. In particular the B
cell angle is more than one standard deviation
smaller. Furthermore, we see that the residuals on
individual observations are now quite misleading if
employed as a mechanism for detecting outliers. The
greatest variation between observed and calculated
20 is shown by the 152 reflection. If this was all that
was known, then the first course of action in an
attempt to improve the refinement might be to
eliminate this reflection, or at least measure it again
to attempt to improve the fit. We showed above,
however, that this reflection is not as detrimental to
the non-linear least-squares refinement as either 064
or 224, and that 224 was the peak which is most
influential on the refined parameters when the data
are handled correctly (refining on 20, the measured
observation). Disturbingly, the 224 reflection shows
what would probably be regarded as a perfectly
acceptable value of 20,,—20.,. when the data are
fitted by refining residuals in @, and there is no
indication that this is the most deleterious outlier.
The regression diagnostics obtained by refining
residuals in Q also highlight a number of other peaks
(such as 222, 424, and 260), which we know are not
significant outliers from our refinement of the data on
the basis of minimising residuals in 20. Comparison
of the computed results for this dataset using the two
methods of refinement highlights both the impor-
tance of refining the data on the basis of the observed
quantities (rather than a derived function, such as Q),
as well as the utility of deletion diagnostics in
identifying outliers (compared with simpler yet less
robust criteria such as the values of 20,—20 . for
individual reflections).

Refinement of high-pressure energy-dispersive data.

The provision of regression diagnostics becomes
particularly useful when dealing with data that are
inherently low quality. One particular field where
this applies is in the analysis of high-pressure powder
diffraction data collected in an energy-dispersive
experiment. In a typical experiment a beam of white
(usually synchrotron) radiation impinges on an
extrernely small amount of sample, often held static
in a diamond anvil cell. Poor sample statistics,
collection of a limited part of the diffraction cone,
interference with diffraction from internal pressure
standards, and the relatively low resolution of solid-
state energy-dispersive detectors all conspire against
the experimenter and mean that data must be handled
and interpreted with care to obtain the best results.
We illustrate the use of regression diagnostics in
refining energy-dispersive data using the example of
epidote in Table 3. First of all we note that the Bragg
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maxima were measured as a function of energy, and
the cell parameters were determined from refinement
of the same measured quantity. The list of observed-
calculated peak positions shows that the measured
position of the 223 reflection displays the greatest
deviation from the best fit calculated value. A typical
strategy might be to assume that the 223 reflection
position was spurious and to recalculate the cell
parameters on the basis of a dataset without this data
point. The regression diagnostics, however, indicate
that rather than 223, it is the 414 and 106 reflections
that require closer examination. Values of DfFits and
Rstudent for the 414 peak are substantially greater
than the cutoff. We also see that the 106 reflection
has a large Hat, but this need not worry us as the
values of DfFits and Rstudent are within their limits,
and the value of sigma(i) shows that the regression
would become worse, not better, if this reflection was
omitted. On the other hand, sigma(i) for the 414
reflection is substantially (around 17%) lower than
sigmafit for the whole refinement, and the omission
of this peak will improve the whole fit. Inspection of
the DfBetas given in part (b) reveals that omission of
the 414 reflection from the refinement will increase
a, ¢, and the P angle by more than one standard
deviation. It is interesting to note that removal of the
223 reflection, as might initially have been indicated
simply by considering E,ps—E s, Would not alter
any of the cell parameters by more than half their
individual standard deviations. Furthermore,
although the residual of this point is relatively
large, the statistical tests show that it is not
significant. By inspection of the diagnostics for
every observation rather than just those above the
critical cutoffs, we find that the measured observa-
tion of the 223 reflection gives values of —0.708 and
—1.720 for DfFits and Rstudent respectively (well
below the cutoff), and furthermore has a small value
of Hat (0.145) so is in any case insignificant. On the
other hand, Table 3 shows that the 414 reflection is a
true outlier in the dataset and identifies this peak as
the reflection which should be checked if the
refinement is to be improved. Once again, we see
that the values of E,,s—FEcy. are not always good
indicators of the statistical quality of individual
reflections.

Implications of the use of regression diagnostics in
cell refinement

We have shown the efficacy of computing essential
diagnostic information required for careful cell
parameter refinement, and that such diagnostics
present a considerable improvement on those
procedures of weeding out reflections based purely
on the individual deviations between observed and
calculated data. There is no reason why the

identification of outliers in datasets and subsequent
improvement of refinements should not become a
routine precursor to the publication and use of
powder diffraction data. Indeed, Smith (1989) has
already pointed out that any laboratory planning to
prepare data for publication or for inclusion in
databases such as the Powder Diffraction File or
the NIST Crystal Data File should screen their data
for errors and poorly-fitting values. The statistical
tests described here provide a simple mechanism for
carrying out such screening, using regression
diagnostics for the first time. It also very important
that the refinement is based on minimization of the
differences between the true measured quantity and
its calculated value (rather than a linearized derived
function). R.C. Jenkins (1995, pers. comm.) recently
pointed out that of the 5000 powder diffraction
datasets culled from the published literature each
year, the ICDD find that only 1000 or so are
acceptable for inclusion in the Powder Diffraction
File. With the early use of regression diagnostics
provided here this ‘hit-rate’ could be significantly
improved.

The program UnitCell, which implements the
regressions (with regression diagnostics) discussed
above, is available free to users from non-profit-
making institutions. The executable code (for
Macintosh or Windows) may be obtained by
anonymous ftp from rock.esc.cam.ac.uk, where it
resides in directory pub/minp/UnitCell/. Download
the file README for further instructions. The
programs and further details may be obtained from
the appropriate part of the World Wide Web server at
Department of Earth Sciences, Cambridge University
(http://www.esc.cam.ac.uk).
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