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Abstract

Perovskite group minerals, general formula ABX;, from the intrusive ultramafic alkaline Gardiner Complex,
East Greenland, range from almost pure CaTiQ; (perovskite, sensu stricto), to the rare earth element (REE)
variety, loparite-(Ce). Chemical zonation in the perovskites (sensu lato), is described by the substitutions
2Ca®* = (Na* + REE>") on the A-site and 2Ti*" = (Fe®* + Nb™) on the B-site. Other trace elements detected
include Th, Sr, Al, Si, Zr, Ta and Sn. Excellent agreement was found between the determinations of the REE
by electron microprobe and neutron activation analysis. Chondrite-normalized REE patterns display
enrichment in the light rare earths for perovskite, loparite, apatite, melilite and diopside. Mean perovskite/
apatite partition coefficients from four of the Gardiner rocks were calculated as La = 10.4, Ce = 13.8, Nd =
139, Sm=99,Eu=77,Gd=52,Tb =56, Tm = 5.5, Yb=2.7 and Lu = 1.6, indicating that perovskite
concentrates all REE to a much greater extent than apatite. Light-REE enrichment occurs in both perovskite

and apatite.

KEYwoRDS: rare earth elements, perovskite, apatite, loparite, Gardiner Complex, Greenland.

Introduction

THE Gardiner Complex, East Greenland is an alkaline
igneous intrusion of Tertiary age consisting of an
ultramafic suite and a later ring-dyke system of
melilitolites, syenites and carbonatites. It has been
described by Frisch and Keusen, (1977), Nielsen,
(1979, 1980, 1981, 1994), Johnsen et al. (1985),
Nielsen and Holm, (1993) and Nielsen et al. (in press).
The age of the magmatic activity, by a fission track
method, is 50 Ma (Gleadow and Brooks, 1979).
Perovskite occurs in the dunites of the ultramafic suite,
the later magmatic melilitolites and associated rocks.
In these later rocks, it may attain significant modal
percentages (up to about 20%), while occasionally

* Present address: School of Geological Sciences,
Kingston University, Penrhyn Road, Kingston upon
Thames, Surrey KT1 2EE, UK.

very high abundances occur, resulting in perovskitite.
A brief description of the occurrence of perovskite in
the Gardiner Complex is given by Frisch and Keusen
(1977) who also provided an analysis of perovskite
from a melanite~perovskite rock together with a
microprobe profile of a zoned grain. Their data show
that this perovskite is calcium titanate with minor
substitution of Na, Nb and the light rare earth elements
(REE) at about 7 wt.% REE,QOs.

Models for the classification of perovskite group
minerals have been provided by Nickel and McAdam
(1963) and Mitchell (1996) but there is still much to
be learned about their chemical systematics with
respect to both major and trace element substitutions.
The rocks of the Gardiner intrusion offer an ideal
starting point for a study of the mineral chemistry of
perovskite because the perovskite is relatively
abundant, there is some variation in composition
from pure CaTiO; towards loparite, it occurs in
association with other well-characterised minerals
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(e.g. melilite) and it is recognised to be of a primary
igneous origin in the melilitolite (Nielsen, 1980, and
Nielsen et al., in press). Furthermore, the mineralogy
of the melilitolite has been described in detail for
most minerals, but only briefly for perovskite and
apatite (Nielsen, 1980).

The aims of this work are to describe the
composition of perovskite in a variety of selected
rock types and to establish the partitioning behaviour
of rare earth elements (REE) between perovskite and
coexisting minerals (apatite, melilite, amphibole,
diopside). From this it should be possible to assess
the role of perovskite in controlling rare earth and other
trace element distributions in the selected rock types.

Analytical methods
Electron probe microanalysis (EPMA)

All mineral compositions were determined by
EPMA. The perovskites and apatites were analysed
using a Cameca SX50 wavelength dispersive electron
probe microanalyser; operating conditions are given
in Table la along with other specifications. Peak
overlap determinations were undertaken, and correc-
tions were applied for elements affected by the
Ti-Ka, Ba-La, Ce-Lo and La-La lines, (Table 1b).
The silicates were analysed using a Hitachi S2500
SEM equipped with a Link ANI10/555 energy
dispersive spectrometer, operated at 15 kV and
1 nA specimen current on a V calibration standard.

Instrumental neutron activation analysis (INAA)

Separated grains, ultimately by hand-picking, of
perovskite and other minerals were also analysed
for most of the REE by instrumental neutron
activation analysis (INAA). Pure powder or grain
samples were first sealed into polyethene ampoules
and then irradiated in a 100kW reactor. Appropriate
decay periods were allowed before y-rays were
counted twice using an intrinsic Ge detector, and
twice using a Ge (Li) detector. The details of the
procedures, standards and quality control are
described in Williams and Wall (1991). However, it
should be mentioned here that although the
perovskites are known to contain inclusions of
apatites and silicates, small quantities of these low-
REE-bearing phases would not significantly affect
the measured REE concentrations of the perovskites.

Results and discussion
Perovskite composition

Major and trace element compositions, determined
by EPMA are given in Table 2, together with cation

L. S. CAMPBELL ET AL.

numbers on the basis of 24 oxygen atoms. These data
show that perovskite from the rocks of the melilitolite
ring dyke (GM 55205 and MM 2553) and the dyke in
the pegmatite zone (GM 29977) is perovskite sensu
stricto (calcium titanate), the only exception being a
REE variety, loparite, which is from the syenite (GM
29910 B).The analyses compare well with the single
published analysis of Gardiner perovskite, by Frisch
and Keusen (1977). Small differences of Frisch and
Keusen’s (1977) analysis of perovskite include lower
Nb and REE contents (by 1—2 wt.% oxides) than in
the present study, and slightly higher Fe and Al

Many published compositions of perovskites have
a small cation excess, e.g. Boctor and Yoder (1982)
and Dawson et al. (1994). In addition, the Gardiner
loparites display a cation excess on the A site and a
cation deficiency on the B site relative to the ideal
ABX; stoichiometry (Table 2). This phenomenon is
tolerated to a certain extent by the perovskite
structure, as are small degrees of oxygen excess or
deficiency (Mitchell, 1996). Mitchell, (1996), in a
detailed discussion of non-stoichiometry, states that
perovskites need to be considered as defect structures
to explain why many natural compositions plot in the
‘forbidden region’ of Nickel and McAdam (1963).
For the Gardiner compositions, cations have been
assigned to A and B sites as follows, on the basis of
charge and ionic radius.

A: Ca, Sr, Y, REE, Th, U, Na
B: Ti, Si, Al, Zr, Sn, Nb, Ta, Fe>*

Iron is thought to occupy mainly the B-site as
ferric Fe. Muir ef al. (1984) produced Mdossbauer
spectra of Fe in perovskite from Magnet Cove
(USA), and showed that Fe** was octahedrally co-
ordinated. Further evidence is in the perovskite-
latrappite coupled substitution; 2Ti% = Nb™* + Fe**,
as described below in relation to the present
analytical findings. The Gardiner perovskites were
also analysed by EPMA for Mg, Mn, K, Cr, Ba, Hf,
W and Pb, but none of these elements was detected.

Substitutions. In the perovskites, minor amounts of
Na + REE (up to about 0.36 atoms of rare earths to 24
oxygens) substitute for Ca, (Fig. 1a), and minor
amounts of Nb + Fe (up to about 0.09 atoms of Nb to
24 oxygens) substitute for Ti (Fig. 15). The simple,
well-known, perovskite-lueshite (Ca + Ti = Na + Nb)
substitution of Nickel and McAdam (1963) is shown
in Fig. 2 to have an improved correlation for the
Gardiner perovskites with the addition of REE and Fe
to the equation. Hence, the correlation coefficient (o)
for the combined substitutions, Ca + Ti = (Na + REE)
+ (Nb + Fe), is 0.960. When loparite from the syenite
is included, r* = 1.000 (Fig. 2). Substitution of Sr for
Ca is greatest in the loparite, at 0.47 atoms to 24
oxygens, and ranges from approximately 0.05 to 0.13
in the perovskites. Over 1 atom of Nb and over
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FiG. 1. Minor element substitutions in perovskite and loparite. (@) Na + REE in the A-site; () Nb + Fe in the B-site.

4 atoms of Na, to 24 oxygens, occur in the loparite,
but Fe is lower in loparite than in perovskite, at 0.03
atoms to 24 oxygens. Some other trace elements
detected include Th and Ta, (up to 0.06 and 0.04
atoms, respectively, in loparite), U, Sn, Si, Al and Zr
(Table 2). A positive correlation between Sr and Th
@ = 0.667), was revealed for the loparite from
specimen GM 29910B (Fig. 3). The concentration of
Al, assigned to the B-site and negatively correlated
with Ti, tends to be higher in perovskite than in
loparite and this is probably related to the small size
of the AI** ion.

Trace amounts of F are commonly found in
perovskite-group minerals at Gardiner, constituting
up to 0.2 wt.% F. However, no relationships between
F and any other constituent of perovskite-group
minerals of the Gardiner Complex have been
identified. The X site anion is therefore given as O°~.

Zonation. The complex zonation patterns observed
in the perovskites by backscattered electron imaging
(supported by EPMA spot-analyses), indicate
changes in the crystallization environment during
perovskite formation. These patterns have been
rationalized into four episodes, best represented by

(a) o
9 N 1.2
Na+REE Nb+Fe) = Ca+Ti:
8 4 (Ia+REE) + (NbuFe) = GarTh (Na+REE) + (Nb+Fe} (Na+REE)+{Nb+Fe) = Ca+Ti:
£y rsquared = 1.000 s N " squared — 0.960
7 Na+Nb .
-
6 PN 0.8 -
«a : i inset, Figure 2 (t)
5 iy
0.6+
4]
31 0.4
il
24 MNbiNa=Ca+Ti: O g
r-squared = 0.998 . 0.2+ H '
1 Na+Nb = Ca+Ti: -
& r-squared = 0.752
[ - : . : : .

a 6 8 10 12 14 16
Ca+Ti

Q
145 15

Atoms to 24 oxygens

FiG. 2. Minor element substitutions in (a) perovskite and loparite and (b) perovskite sensu stricto. The simple Ca+Ti
= Na+Nb type substitution of Nickel and McAdam (1963) is improved with the addition of REE and Fe to the
equation.
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Fic. 3. Correlation of Th and Sr in loparite of rock GM
29910B.

zone types A to D in specimen GM 29977, the dyke
rock:

A Central, fairly homogeneous, with ZREE,03
about 2—4.5 wt.%. Minor, fine scale oscillatory
zonation towards rim areas (Figs. 4 and 5).

B Central, homogeneous, blocky, discontinuous
zones (Figs. 4b and 5). ZREE,O; over 4 wt.%.

Cations to 24 oxygens

0,01-L—m., ..... T

Centre

Point spacings approx. 1.3 microns

203

C Rim areas, and mantling magnetite (Figs. 4b
and 6). Mostly pure CaTiO; with virtually no
detectable trace element substitutions.

D 20—-40 pm bands associated with grain
boundaries of perovskite (Fig. 6), and containing
around 5 wt.% XREE,O;.

The ‘A’ core zones are ubiquitous in the specimens
studied and the ‘C’ rim zones are also very common.
The REE-bearing rim zones (D), of GM 29714 and
BM 1978,403a perovskites are very similar in
composition to the central, ‘A’ zones of the other
specimens, with over 2.7 wt.% REE,O;.
Compositional profiles across some grains were
undertaken. Figure 4 shows one example where the
‘A’ core zonation becomes oscillatory toward the ‘C’
rim adjacent to magnetite. In sample MM 2553, a
single, narrow (<5 pm), euhedral growth zone was
observed on several large crystals, approximately 300
pm from the rims. This zone was found to be
composed of perovskite with over 5 wt.% REE,O;,
0.8% Nb,Os 1.1% Fe,03, and 0.6 Na,O (Fig. 7). The
asymmetry of the zone suggests a sudden increase in
REE, either as a back reaction with REE-enriched
residua, or from a new influx of fluid. This was
immediately followed by a gradual decrease as re-
equilibration took place. The irregular, patchy
zonation of the rim areas of MM 2553 perovskites
indicates further precipitation from REE-enriched
fluids at a late stage of formation of this rock.

PEROVSKITE

MAGNETITE
N

FiG. 4. (a) Compositional profile across perovskite from rock GM 29977. The location of the scan is shown in the
backscattered-electron image, (b).



Fic. 5. Homogeneous and blocky central zones (centres
A and B respectively) of perovskite in specimen GM
29977.

Rare earth element chemistry and partitioning

Perovskite. Chondrite-normalized rare earth plots
were constructed (Fig. 8a—g), using both EPMA
spot-analysis data (Table 2), and INAA bulk-analysis
data (Table 3). Core and rim compositions are
represented using the EPMA data, and for specimen
GM 29977, the REE patterns displayed in three of the

@

Cations to 24 oxygens

+ e e R B
e + . . "
-4

. 5 . Contre
Point spacings approx. 1.4 microns

L. S. CAMPBELL ET AL.

- PEROVSKITE

FiG. 6. Perovskite mantling magnetite (rim C), and as

scparate grains (centre A, with rim D associated with

grain boundaries). Magnetite is streaked out along
cleavage planes of phlogopite.

four types of zones are shown (Fig. 8a). For each
specimen there is excellent agreement between the
EPMA and the INAA data. As would be expected
from the analysis of bulk samples of perovskite, the
results from the INAA lie somewhere between the

(b)

4.4
4.3
4.2
4.1+
#
3.9
3.8
3.7
3.61
3.59

3.4 ™ T T T
La Ce Nd Sm Gd

Log sample/chondrite

l —&— Centre ~==- Narrow zone —++ Towards fim

Fi6. 7. Narrow growth zone in perovskite of rock MM 2553. (a) compositional profile and (b) chondrite-normalized
rare earth plot of the centre of the grain, the narrow zone, and the rim area.
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core and rim values obtained by EPMA. This is
especially apparent in specimens BM 1978,403a and
GM 29714. In the specimens which indicated (from
BSE images) that the perovskites were mostly
homogeneous with narrow or absent rim zones, the
INAA data plot close to the ‘core’ values (e.g. in GM
29919 and MM 2553, obtained by EPMA). Since a
wider range of REE (Tb to Lu) are detectable by
INAA, the data extending to Lu by this method can
be considered representative of the Gardiner
perovskite compositions.

Apatite. In Fig. 8a,c,e the chondrite-normalized
REE data for apatite indicate LREE enrichment
relative to HREE, as in the perovskites, and there is
good agreement between the INAA data and the
partial EPMA results. No zonation was detected in
Gardiner apatite.

Rare earth partitioning. The common co-existence
of perovskite and apatite in alkaline igneous rocks
allows the comparison of rare earth element
partitioning in the Gardiner specimens with partition-
ing recorded for other occurrences and by experi-
ment. The partition coefficient, K = (M)peeov./
(M)apatite, Where M is weight concentration of a trace
element in perovskite or apatite, is given for the REE
in Table 4. The plots in Fig. 9a—f show the
partitioning of the REE between several minerals,
perovskite, apatite, melilite, amphibole and diopside.
Magnetite was not suitable since it is re-equilibrated,
with Ti being expelled from Ti-magnetite. It is likely,
also, that Nb, REE and other trace elements leave the
magnetite. In addition, Gardiner magnetite is always
intimately associated with perovskite, and full
separation for bulk analysis would not be possible.

Perovskite clearly takes up the REE preferentially
to the other minerals, as would be expected from
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previous studies on perovskite and REE partitioning,
such as in Dawson et al. (1994). Most of the phases
in the Gardiner samples that were studied display
pronounced LREE enrichment. Apatite, in turn, has
higher concentrations of REE than melilite, pyroxene
and amphibole. It was not possible (due to quantity of
samples available) to determine whole-rock concen-
trations of REE in the specimens. However, it is
reported in Wilson et al. (1995) that typical
melilitites (extrusive equivalents of melilitolites)
contain 156 ppm Ce and 1.8 ppm Yb (mean of six
rocks from the Upper Rhine graben, Germany) while
the perovskites of the Gardiner rocks have up to 2.8
x 10* ppm Ce and 108 ppm Yb. Thus perovskites
can be a significant contributor to both the
abundances and profile of the rare earths in a rock,
even when only at minor (about 5%) modal amounts.
The perovskites from the Gardiner melilitolites all
have similar chondrite-normalized REE abundances
and patterns, which could suggest an equilibrium
distribution. The chemical zonation in perovskite as
described earlier is thought to be associated with
small, localized fluctuations in magma composition.

The occurrence of loparite in the syenite allows a
comparison with the chondrite-normalized REE
patterns of pyroxene and amphibole in the syenite
(Fig. 9f). Loparite displays strong LREE enrichment,
and strong partitioning of REE over the silicate
phases. According to Veksler and Teptelev (1990)
loparite can crystallize directly from natural agpaitic
parental magmas. The syenite also contains titanite,
indicating that the silica activity and oxygen fugacity
of the magma were inappropriate for perovskite
(sensu stricto) to form (Smith, 1970, and Veksler and
Teptelev, 1990). Titanite is also known to accept
many trace elements, and it would certainly influence

TABLE 4. Perovskite/apatite partition coefficients, K, for the REE in four Gardiner rocks from INAA
bulk analyses

Standard
BM1978,403a GM29714 GM29977 GMS55205 Mean K deviation

(n—1)
La 8.16 16.64 6.92 9.82 104 43
Ce 14.17 18.97 8.82 13.25 13.8 42
Pr
Nd 13.13 21.31 852 12.79 139 53
Sm 10.10 13.50 7.06 8.98 9.9 2.7
Eu 9.87 8.21 5.66 7.09 7.7 1.8
Gd 6.90 5.78 4.60 3.55 52 1.5
Tb 7.88 5.44 4.12 4.96 5.6 1.6
Tm 10.00 3.54 2.97 55 39
Yb 2.50 1.33 1.60 5.29 2.7 18
Lu 1.57 1.6
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the partitioning behaviour of the REE in the presence
of perovskite (Dawson et al., 1994), but no data for
Gardiner titanites are available.

Rare earth partition coefficients for apatite-silicate
melt systems have been determined by several
authors (e.g. Nagasawa, 1970; Nagasawa and
Schnetzler, 1971; Watson and Green, 1981; and
Worner et al., 1983). The values recorded by
Nagasawa (1970) for an apatite—dacite system are
similar to those reported by Worner et al. (1983) for

an apatite—phonolite system. However, the data of
Worner et al. (1983) show greater fractionation
between middle members of the REE (such as Sm
and Tb) and both light and heavy REE.

In order to obtain an approximate value for the REE
partition between Gardiner perovskite and melt we
have averaged the four INAA data sets from Table 4
for perovskite/apatite partition and then related this
average to the experimental data of Watson and Green
(1981), for apatite/liquid partition in their basanite-
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811. The calculated perovskite/liquid partition coeffi-
cients for Gardiner are given in Table 5 and are similar
to those of Onuma et al. (1981) for perovskite in a
melilite-nepheline basaltic melt. However, the data
differ significantly from those of Simon et al. (1994)
on experimental Ca,Al-rich compositions.

Using the Onuma et al. (1981) data we may
establish the approximate nature of the chondrite-
normalized REE pattern in the Gardiner magma.
Based on the GM 29714 perovskite analyses, the
pattern for the magma shows significant relative
enrichment in the light rare earths, with a chondrite-
normalized La/Lu of 235, La/Sm of 6.2 and Sm/Lu of
41. However, fractional crystallisation of only a
small volume of perovskite causes a significant
change in the liquid composition. For example,
crystailisation of 2.5% of perovskite alone would
change the chondrite-normalized La/Lu ratio to about
165, and reduce the La concentration to about 0.6 of
its previous value. Thus, perovskite can play a
determining role in magma composition during
fractional crystallisation processes, even when at
the abundance levels found in the Gardiner intrusion.

Conclusions

The excellent agreement between the INAA and the
EPMA results for the REE demonstrates that the full
range of REE as well as their zoned distribution, can

be readily investigated. Using the calculated mineral/
mineral partition coefficients and data from other
published studies, some of the LREE enrichment in
perovskite can be attributed to a crystal chemical
control, but with enrichment occurring in all the
phases studied, magmatic fractionation is also
indicated. Perovskite has provided a sink for a
multitude of other trace elements, reaffirming the
known ability of the perovskite structure to be able to
accept a wide range of trace elements.
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Appendix: Rock descriptions and mineral
assemblages

GM 55205 Layered melilitolite.

Medium to coarse grained, layered on scale of 2-10 mm,
contains melilite (~60%), magnetite (~20%), perovskite
(~10%), phlogopite (~6%) and apatite (~4%).
Additionally, minor diopside, Mg-hastingsite, and monti-
cellite. Subhedral perovskite, with minimal, diffuse zonation
is closely associated with anhedral magnetite, frequently
mantling magnetite grains. Perovskite forms discontinuous
layers alternating with melilite-rich areas, and often
contains inclusions. Anhedral, inclusion-free apatite, and
large phlogopite grains (<1 cm), are concentrated in
perovskite-magnetite layers.

Melilite
(Cap gsNag,15)2(Mgo.21Fep.02Alp. 1181066307

Phlogopite
(Na().31K().Gsca()ﬂlBa().03)2(Mg().SFeOA()ﬁTiO.()lAlO.!3)6
(Sig76Alp.24)3020(0OH.F)a

Diopside
Ca(Mgo.91Fe0.07Tip.02)(Sioe7Al.03)206

Mg-hastingsite
(Nag 93Ky g7)Car(Mgg 76Feo. 12y, 11 Tig 01)s(Sio.52A1.18)8
022(0H),

Monticellite
Ca(Mgg 75Fe0.21Mng,01)Si04

MM 2553 Coarse-grained perovskitite within
melilitolite

Perovskite (~95%) cumulate within melilitolite. Zoned,
sub- to euhedral crystals up to 1 cm, with interstitial
nepheline(?), vesuvianite(?), calcite and 50 pm titanite
rosettes concentrated on perovskite surfaces. Perovskite is
concentrically zoned; central inclusions of acicular apatite,
surrounded by a zone rich in inclusions of titanite, pectolite,
baryte, strontianite and Fe-Ti oxides, and a rim area
relatively inclusion-free. Fine-scale (1—2 um), discontin-
uous compositional zonation mostly restricted to frag-
mented rims and fractures. A single, 5 um zone marks an
earlier, euhedral growth close to rims, and is crosscut by the
fine scale zonation.

GM 29919 Melilitolite rock

Melilite (~50%), perovskite (~25%), magnetite
(~10—15%), and Mg-hastingsite, (<10%). Monticellite,
widespread but minor (<1%), and ubiquitously associated
with fragmented melilite rims. Unzoned, prismatic melilites
(<2 mm wide), display a preferred alignment altemating
with, and parallel to, string-clusters of perovskite-magnetite,
forming a discontinuous layered fabric on a scale of 0.5-3
mm. Anhedral, secondary Mg-hastingsite (<1 mm), is
patchy and restricted to edges of melilites and perovskite-
magnetite clusters. Perovskite, as subhedral, rounded
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octahedra, occurs both in string clusters alternating with,
and as discrete grains within, melilite. Rounded, multiphase
inclusions, considered to be crystalline melt inclusions, are
described by Nielsen et al., (in press) and occupy central
regions of perovskites. Some of the phases in these melt
inclusions do not occur in the main rock. Irregular zonation
is minimal in perovskite rims. Pure CaTiO,; as the late
product of ilmenite/ulvospinel reaction, mantles magnetite
as well as earlier perovskite.

Melilite
(Cag 35Nay 15)2(Mgo.21Feq 03Alg, 1S10.66)307

Diopside*
(Cag.92570.03Nag 05)Mgo sFeo.19Tio.01) (SiovsAlp02)206

Mg-hastingsite
(Nag 57K0.13)(Cap.05570.05)2(Mgo.74Fe0.16Al0.08 Tio.02)s
(Sig79Alp.21)3022(0OH),

Monticellite
Ca(Mgy.73Fe(.25Mno 01)510;4

Nepheline*
Nag(Nag 96Cag.04)2(Sio.a0Alp 51) 16032

* From crystalline melt inclusions in perovskite.

GM 29977. Dyke rock, glimmerite

Medium grained dyke rock containing phlogopite
(~40—50%), fluorapatite (~15—20%), and magnetite
(~10—15%) clustered with perovskite (~5%). Minor
interstitial diopside encloses traces of Ti-andradite. Mg-
hastingsite, mostly in rim perovskite as prismatic grains
(~100 pm), occasionally crosscuts magnetite-perovskite
boundaries. Perovskite is zoned. Magnetite as anhedral
masses (<1 mm), with rim areas streaked out along
cleavage planes of phlogopite or interstices of perovskite
clusters. Rare inclusions, (perovskite and apatite), but
common exsolution lamellae of spinel (<10 pm) along
(111). Apatite as large (<1 cm), euhedral, prismatic grains,
and rarely as inclusions in perovskite, magnetite and
diopside. Abundant tubular fluid inclusions in most apatites.

Phlogopite

(Nag 1Ko 84Bag 06)2(Mgo.72Feq.12Tio.osAlo. 1 )6
(8ig.72A19.28)3020(OH,F)q

Diopside
(Cap 9751003} (Mg esFe0.25Tip.07)(Sin.32Al0.18)206

Mg-hastingsite
(Nao.saKo_17)(Cao.955fo_05)2(Mg0.651“_6().22A1().03Ti0405)5
(Sip.75Alp 25)5022(0H),

Andradite
(Cap g9Mgq 01 Alg aFeq 44Tig 16)2(S0.95Al0.05)2012

GM 29910B Loparite-bearing syenite.

Coarse-grained syenite with altered, subhedral perthitic
phenocrysts, <1 cm, (~50%), aegirine (~20%), and
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highly altered K-feldspar groundmass, <2 mm (~25%),
with minor loparite, ancylite, Sr-celsian, davyne(?),
delindeite(?), titanite, rutile, and lorenzenite with vinogra-
dovite overgrowths. Subhedral, pseudocubic loparites
(~0.5 mm), are unzoned, and contain inclusions of K-
feldspar and aegirine. Aegirine, usually euhedral, occurs as
elongated, prismatic phenocrysts (€2 x 10 mm), in
random orientation,

Aegirine
(Nag 87Cag.13)(Feg 70Mgy.16Tio.11Alp.03)S1206

GM 29714 (Lens in layered melilitolite) and BM
1978,403a

Coarse-grained perovskite (~50%), apatite (~45%) and
phlogopite (~4%). BM 1978,403a additionally contains
minor diopside. In both rocks perovskite occurs as euhedral,
pseudo-octahedra (<1 cm), with apatite (<2 mm), and
phlogopite (<1 mm). No layering was detectable in the
specimens studied (specimen size; <3 cm?). Large, (~0.3
mm) inclusions of apatite occur in perovskite in both
specimens.



