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Phase transitions in silicate perovskites from first principles 
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A B S T R A C T  I 
I 

The equilibrium structures of cubic, tetragonal and orthorhombic phases of magnesium silicate 
perovskite are found from first principles electronic structure calculations. Zone centre and zone 
boundary phonons of each phase are also calculated from ab initio forces from finite displacments, and 
phase transitions between the phases are analysed in terms of phonon instabilities, and coupling 
between modes. Both the cubic and tetragonal phases have strongly unstable modes dominated by 
rotation of the SiO6 octahedra, which freeze in to ultimately form the orthorhombic phase. First 
priniciples molecular dynamics simulations at finite temperatures are used to further investigate the 
stability of the intermediate tetragonal phase and the coupling between participating phonon modes. 
The implications for a transition temperature between orthorhombic and tetragonal phases are 
discussed. 
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I n t r o d u c t i o n  

MAGNESIUM silicate perovskite makes up most of 
the material in the Earth's lower mantle, and its 
properties and phase transitions have important 
implications for the macroscopic behaviour of the 
mantle (Catlow and Price, 1990; Navrotsky and 
Weidner, 1989). Despite this, studies using a 
variety of theoretical and experimental techniques 
(Navrotsky and Weidner, 1989; Hemley and 
Cohen, 1992; Hemley et al., 1987; Mao et al., 
1991; Ross and Hazen, 1990) have yet to 
completely determine the properties of MgSiO3 
or understand its structural and thermodynamic 
behaviour. However, by comparison with other 
perovskites, especially SrTiO3, an orthorhombic- 
tetragonal--cubic series of transitions may be 
envisaged. This has had some support from 
observations of twinning in the orthorhombic 
phase, after quenching from high temperature 
(Wang et al., 1992). We describe here investiga- 
tions into the possibility of such transitions under 
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mantle conditions, using first principles electronic 
structure simulations. 

We consider three phases related by successive 
symmetry-breaking transitions: the hypothetical 
cubic phase (Pm3m) at high T, the observed 
orthorhombic (Pbnm) phase (low 7) and an 
in termedia te  te t ragonal  phase ( I4 /mcm) .  
Transitions between these phases involve only 
small displacements of the atoms, and do not 
involve changes in coordination. They are thus 
likely to proceed via soft-mode mechanisms 
(Hemley and Cohen, 1992), in which a vibrational 
mode of  a high-symmetry phase becomes 
unstable, precipitating a permanent distortion. 
The zone-centre phonons of several other 
perovskites found from first principles have 
already been shown to correspond to observed 
phase transitions (Cohen and Krakauer, 1990; 
Postnikov et al.,  1994; King-Smith and 
Vanderbilt, 1994). However, in MgSiO3 the 
orthorhombic unit cell is related to the cubic by 
two 'cell-doubling' procedures (Lines and Glass, 
1977), so any phonons involved in the transition 
between these phases must lie at either the zone 
centre or the zone boundary of the cubic phase. A 
simulation of more than one cubic unit cell is 
required to calculate the relevant phonons within 
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the constraints of periodic boundary conditions. 
Recently a similar phase transition has been 
proposed in CaSiO3 (Stixrude et al., 1996). 

The coruer-sharing octahedral units comprised 
of oxygen ions which form all three phases are 
shown in Fig. 1, and each contains a silicon (B) 
ion in the centre. In the voids between the 
octahedra there are 12-fold coordinated magne- 
sium (A) ions. In the cubic phase (Pm3m), the 
octahedra are aligned along the cubic axes, but in 
the orthorhombic structure they are rotated around 
the silicon ions, and the magnesium ions are 
displaced, giving space group Pbnm. This is the 
form of MgSiO3 assumed to be dominant in the 
lower mantle. The tetrahedral structure is a 
hypothetical intermediate structure, and will be 
described further below. 

The CASTEP (Payne et al., 1992) and CETEP 
(Clarke et al., 1992) total energy codes were used, 
employing norm-conserving, nonlocal, Kleinman- 
Bylander pseudopotentials (Kleinman and 

Bylander, 1982; Kerker, 1980). Details are given 
elsewhere (Warren and Ackland, 1996). A fully 
transferable pseudopotential for magnesium has 
been found hard to generate, due to the lack ofp 
electrons in the ground state, and recently we 
repeated some of our calculations with a more 
satisfactory pseudopotential, which treats equally 
all angular momentum components of the 
wavefunctions (Karki et al., 1997). This lead to 
an equilibrium volume much closer to the 
experimental value and has been used in all 
subsequent work. This potential is used in the 
latter section of this paper, with an energy cutoff 
of 700 eV and generalised gradients corrections 
for electron exchange and correlation. Phonon 
frequencies were affected by less than 10% by the 
change of potential, and were consistent with the 
change in equilibrium volume. 

The probable mechanism of any transitions 
between the three phases is deduced from our 
investigations (Warren and Ackland, 1996) which 
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F~6. 1. Cubic, tetragonal and orthorhombic structures of MgSiO3 perovskite. Twenty atoms of each structure are 
drawn (four unit cells of the cubic phase; one of the orthorhombic). 
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are summarised here. However, since only the 
zero temperature state is simulated, transition 
temperatures are not obtained, nor is it possible to 
determine if the tetragonal phase does in fact form 
a distinct intermediate phase over any temperature 
range. Molecular dynamics simulations at finite 
temperatures may be able to solve some of these 
problems, and initial results and methodology are 
presented here. 

Traditionally, molecular dynamics simulations 
have used an empirical potential to calculate the 
forces between atoms in any given configuration 
so that the equations of motion may be integrated 
forwards in time. Time-averaged system proper- 
ties may then be measured and analysed. 
However, in 1985 the Hellmann-Feynman forces 
obtained from plane-wave pseudopotential calcu- 
lations were first used instead (Car and Parrinello, 
1985), and ab in i t io  MD has become an 
established technique (Oguchi and Sasaki, 1991; 
Clark and Ackland, 1997). The large computa- 
tional requirements of such simulations still mean 
that only modest numbers of atoms may be 
considered, rather than the more realistic samples 
which may be simulated using empirical poten- 
tials. However, with increasing computational 
power such first-principles simulations are 
becoming more routine. Alternative strategies 
include using ab initio calculations to parame- 
terise model potentials, which may be used to 
perform much larger simulations (Rabe and 
Waghmare, 1996), but in that case the appropriate 
variables must be deduced without loss of 
potentially important secondary effects. Detailed 
first principles calculations therefore also have a 
role to play in identifying suitable variables. 

Equilibrium structures from first principles 

The plane-wave basis set used to expand the 
electronic wavefunctious is independent of the 
positions of the ions, so the forces on the ions in 
any given configuration may be calculated to 
arbitrary accuracy using the Hellmann-Feynman 
theorem (Payne et al., 1992). The internal stress 
on the unit cell may also be calculated from first 
principles. However, the plane wave basis set is 
determined by the reciprocal lattice, so there is an 
energy change associated with a change of unit 
cell and thus a spurious stress. A Pulay correction 
has been implemented (Francis and Payne, 1990; 
Hsueh et al., 1996) to correct for this effect. 

The complete structure of each phase may thus 
be relaxed to equilibrium under first principles 

forces and stresses, using a combination of 
conjugate gradients and quenched molecular 
dynamics algorithms (Warren and Ackland, 
1996). The initial symmetry of each phase may 
be preserved by symmetrising the forces and 
stresses. However, this approach means that 
lower-symmetry phases will need to be explicitly 
considered since the symmetry will not be broken 
spontaneously. Suitable distortions may be 
determined by finding either low energy, or 
unstable, phonon modes of the structure. 
Reconstructive phase transitions involving more 
drastic changes of bonding topology will not be 
indicated by this process although they may still 
be studied if the end-points are known. 

The structural parameters obtained for MgSiO3 
were presented and discussed elsewhere (Warren 
and Aekland, 1996; Karki et al., 1997); the 
orthorhombic phase was found to be 8% denser 
than the cubic. The structural parameters still 
followed the reported trend of an increase in 
distortion under compression (Hemley et al., 
1987; Wentzcovitch et al., 1993; Matsui, 1988), 
although the Si -O bondlength was only 1% 
smaller than that observed. 

Phonons 

To find a set of zone-centre and zone-boundary 
phonons, the dynamical matrix of effective spring 
constants qb is required for four formula units of 
each phase. In the harmonic approximation these 
may be defined according to the force acting on 
the nth atom in the lth supercell when all atoms 
are displaced by u~(~,): 

= *~(K'~')U~(K')  (1)  

The set of spring constants may thus be 
obtained by finding the Hellmann-Feynman 
forces when each atom is displaced in turn by a 
small amount, using a scheme we have presented 
elsewhere (Warren and Ackland, 1996; Hsueh et 
al., 1996). Not all ionic coordinates need to be 
perturbed since the space-group symmetry may be 
used to complete the matrix from a minimal set of 
simulations. This scheme gives reliable informa- 
tion about phonons at wavevectors which are 
reciprocal lattice vectors of the simulation cell, 
due to the only use of periodic boundary 
conditions over a distance smaller than the 
range of the interatomic interactions. 

Phonons at the zone centre have strictly k = 0, 
and macroscopic dipoles are not possible in a 
scheme with periodic boundary conditions. The 
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calculated phonons are thus TO and TA modes, 
i.e. LO/TO splitting due to long-range dipole 
interactions is not accessible. However, LO/TO 
splitting will stiffen the LO frequency but not 
affect the TO modes. The most unstable modes 
are thus calculated accurately in this scheme, and 
are the modes of interest for possible soft-mode 
transitions. The twenty-atom cell shown in Fig. 1 
allows direct calculation of phonons at the F, X, 
M and R points of the cubic Brillouin Zone. 

Cubic phase 

The cubic phase has an unstable mode at the zone 
centre, having an imaginary frequency, which is 
dominated by motion of the magnesium (A) ions 
against the rest of the crystal. This is in contrast to 
many other perovskites, in which it is the B atoms 
which 'rattle' inside the oxygen cage (King-Smith 
and Vanderbilt, 1994; Lines and Glass, 1977). 

Since there is no evidence of strong covalent 
S i - O  bonds in MgSiO3, this motion is probably 
due to the relative sizes of the oxygen, silicon and 
magnesium ions (Hemley et al., 1987; King- 
Smith and Vanderbilt, 1994): magnesium is one 
of the smallest cations. The frequencies obtained 
are shown in Fig. 2. 

The eigenvectors of all the phonons were also 
obtained from the dynamical matrix. The most 
unstable modes were found at R and M (around 
12i THz), consisting of rotations of near-rigid 
octahedra around the silicon atoms. At M, the 
mode involves rotation about z, and has M2 
symmetry; rotations at R are around all three axes 
and denoted R25. These modes have been 
previously predicted to be the only zone-boundary 
rigid unit modes in cubic perovskites (Giddy et 
al., 1993) and were also found in other theoretical 
studies (Hemley et al., 1987; Stixrude and Cohen, 
1993; Bukowinski and Wolf, 1988). 
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F]o. 2. Cubic, tetragonal and orthorhombic phonons at each part of tile Brillouin Zone of the corresponding cubic 
phonon. There are unstable phonons at all parts of the Brillouin Zone in the cubic phase, but all the phonons in the 
orthorhombic phase are stable. The horizontal axes trace the progression from cubic to orthorhombic; arrows link 
phonons with similar eigenvectors as the structure becomes more distorted. Loss of degeneracy is due to the choice 

of supercell. 
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Larger cells are more unstable with respect to 
the soft magnesium mode, which is consistent 
with a picture in which the Mg ions 'rattle' inside 
the voids in the structure. In contrast, the M2 
unstable mode was found to become more 
unstable under pressure. This coupling between 
the unit cell and a mode involving octahedral 
rotation is compatible with the rigid unit mode 
(RUM) theory (Giddy et al., 1993) which 
approximates the SiO6 octahedra as rigid entities. 
However, detailed studies of the energies, forces 
and stresses involved in a RUM in MgSiO3 
suggested that although the model has some 
qualitative success in describing the behaviour 
of the structure, the phonon extreme which 
preserves the cell volume has a slightly lower 
energy (Warren and Ackland, 1996). 

Intermediate structures 

Introducing some amplitude of either the R25 or 
M2 unstable modes into the cubic phase creates a 
tetragonal structure, with unique axis determined 
by the axis of octahedral rotation. If at some 
amplitude of each mode, the structure stabilises to 
a local equilibrium, a new metastable phase is 
generated. This phase will have lower energy than 
the original structure. However, there may still be 
some unstable phonons, which correspond to 
unstable modes of the cubic phase which have 
not been frozen in. First principles simulation 
techniques allow such possibilities to be investi- 
gated without regard to whether proposed phases 
are sufficiently stable to be observed experimen- 
tally. Since phonon modes strictly imply ionic 
motion at constant volume, the lattice parameters 
of the cubic phase were initially retained when 
generating trial structm:es. 

When the cubic R25 mode is frozen into the 
cubic supercell, a twenty atom body-centred cell 
(space group I4/mcm) is generated, which reflects 
the geometry of the orthorhombic phase. The 
cubic R25 mode is triply degenerate; rotation was 
chosen to follow that observed in the orthor- 
hombic phase. Coupling to motion of the Mg ions 
along x was found, so this coordinate was also 
allowed to relax, inducing displacements closely 
following the eigenvector of another unstable 
mode of the cubic phase at R. The phase formed 
in this way may thus be described by two ionic 
structural parameters, or, alternatively, by intro- 
ducing non-zero amplitudes of two cubic 
phonons. There is a further slight deviation from 
the exact symmetry of the R25 mode such that 

there are two independent oxygen displacements, 
which should strictly be considered as a third 
active mode, but in practice this has only a very 
small anaplitude. 

This structure has lower energy than the 
corresponding phase formed by freezing in the 
M2 phase. This structure was thus chosen as a 
possible intermediate tetragonal phase between 
cubic and orthorhombic. We therefore consider 
the possibility that it might form a distinct 
thermodynamic phase. 

The sixty phonons commensurate with this cell 
were found. These are the F and X modes of this 
phase, but the eigenvectors will be linear 
combinations of the F, X, M and R phonons of 
the cubic phase. They were thus compared to 
those in the cubic phase, by taking scalar products 
between eigenvectors of the two phases, so that 
each phonon of the tetragonal phase may be 
identified with its closest match in the cubic 
structure. In what follows phonons of all phases 
are denoted by the location in the cubic Brillouin 
Zone of the most similar cubic mode. The 
tetragonat and orthorhombic phonons are plotted 
against this part of the cubic Briltouin Zone in 
Fig. 2. This procedure was designed to enable 
comparisons and determinations of the effects of 
phase transitions on the vibrational properties. 

Only two unstable modes were found in this 
structure: the R and M modes corresponding to 
rotation about the z axis, with the latter slightly 
more unstable. The eigenvector of the M mode is 
strongly related to that of the original cubic M2 
mode, although it is much less unstable. All other 
modes which were unstable in the cubic structure 
were stabilised on transformation to this tetra- 
gonal phase. 

Phonons of orthorhombic phase 

As expected, there were no unstable modes in the 
orthorhombic phase. Only the F phonons of the 
orthorhombic Brillouin Zone can be found, since 
only one unit cell is simulated, but again this 
corresponds to the F, X, M and R points of the 
cubic phase, due to the quadrupling of the unit 
cell. Like those of the tetragonal phase, these 
phonons were also matched with their closest 
cubic modes and are plotted in Fig. 2 as solid 
diamonds. The octahedral rotation modes 
described in the cubic and tetragonal phases 
were still clearly identifiable, and were further 
stabilised in frequency. The deviation from zero 
of the acoustic modes at F indicates the 
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inaccuracies in the phonon calculation due to 
anharmonicity and noise (Ackland et al., 1997). 

Roles of individual phonons 

The tetragonal phase described above was 
formed by freezing a permanent amplitude of 
two phonons into the cubic phase. Likewise, the 
positions {R~} of the ions in the stable 
orthorhombic phase may also be described in 
terms of introducing a combination of phonons 
into the cubic phase; this is merely a change of 
variables. Pure phonon modes involve only 
displacements at constant volume, so only the 
fractional atomic positions in the orthorhombic 
cell were used (i.e. as if it had the same cell 
parameters as the cubic cell) and a small change 
in cell parameters could in principle be 
considered separately. The mass-reduced displa- 
cement from the cubic configuration, d~, is found 
for each atom in the stable orthorhombic 
structure: 

dK = x/~7[R~(orth) - R~(cubic)] (2) 

Phonon coefficients cj are then defined such 
that: 

= Z ejp,  (31 
J 

where p are the mass-reduced eigenvectors of the 
cubic crystal, deduced previously. The ortho- 
normality of the eigenvectors p allows {cj} to 
easily be found from scalar products of d and 
{If}. For the orthorhombic cell these coefficients 
are denoted Co, and are shown in Table 1. Since 

F, X, M and R cubic phonon eigenvectors span 
the complete set of all possible ionic distortions 
in the twenty atom cell, all distortions not 
involving strain may be expressed in this way, 
although a harmonic eigenvector 1~ will not 
necessarily describe the individual mode at large 
displacement. 

Only four of the fifteen unstable modes and two 
of the 42 stable phonons of the cubic phase have 
significant non-zero coefficients. Phonons 
consisting predominantly of magnesium displace- 
ment contribute much more weakly than those 
involving octahedral rotations, and were found to 
be strongly coupled to the rotational modes. We 
assume, therefore, that the two rotational modes 
dominate the transitions. The energy has been 
parameterised in terms of the amplitudes of these 
modes as described elsewhere (Warren and 
Ackland, 1996). 

The tetragonal phase proposed above may only 
contain non-zero amplitudes of phonons at F and 
R of the cubic phase, and the two non-zero co at R 
are exactly those used to form this structure. The 
other four modes (at X and M) can therefore be 
assumed to freeze in from the tetragonal 
intermediate to form the orthorhombic phase, 
providing a natural pathway for a cubic- 
tetragonal-orthorhombic series of transitions; the 
rotational M2 mode, which is one of these four, 
was found to still be unstable in the tetragonal 
phase. The final degree of freedom required to 
account for the seven positional parameters in the 
orthorhombic MgSiO3 is that due to the two 
independent oxygen displacements in the tetra- 
gonal phase. The unstable modes of the higher- 
symmetry structures are therefore sufficient to 
account for the observed phase. 

TABLE l. Calculation of the coefficients of cubic phonons frozen into the orthorhombic distorted phase. 
Phonons are labelled by the point of the cubic Brillouin Zone at which they occur, and their rank out of all 
sixty phonons, where two ranks are indicated, phonons form degenerate pairs, but the amplitude is for the 
active combination 

Rank according Frequency Co Description 
to frequency (YHz) ( ~  A.) 

R (59-60) 11.8i 6.48 
M (57) 11. li 4.35 
X (50+51) 4.73i 3.24 
R (47-48) 3.48i 0.841 
X (30+31) 10.5 0.780 
M (13) 19.6 0.210 

Octahedral rotation about xy 
Octahedral rotation about z 
Mostly Mg displacement 
Mostly Mg displacement 
Mg and O1 displacement 
Octahedral squash 
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Molecular dynamics simulations 

In order to follow the dynamics of the MgSiO3 
perovskite system at finite temperatures, the same 
supercell configuration as before was used, 
containing four formula units. Since this cell has 
the appropriate geometry to contain the orthor- 
hombic, tetragonal and cubic phases it should in 
principle be possible to detect any transitions 
between these phases. 

The ions were initially assigned their positions 
in the tetragonal phase, with the cell vectors of the 
cubic phase. Since the maximum phonon 
frequencies are around 30 THz, i.e. minimum 
period than 33 fs, a timestep of 1.0 fs was used, 
and should be sufficient to accurately follow all 
ionic motion. All ions were initially given a 
random velocity according to a prescribed 
temperature, and the equations of motion inte- 
grated forwards in time with a Verlet algorithm. 
The random initial velocities assigned to the ions 
are chosen such that the centre of mass is 
stationary, but a small amount of motion does 
develop due to the use of a finite timestep. Such 
drifting was corrected by subtracting the displace- 
ment of the centre of mass before further analysis. 
The lattice vectors were not changed in response 
to the stress during the simulations as this would 
have required impracticable amounts of computer 
time. 

After an initial period of equilibration, the 
temperature may be measured from the time- 
averaged kinetic energy. If the atoms start from 
their equilibrium positions, equipartition would 
be expected but any phase transitions during the 
simulation will of course release additional 
energy. It is expected that the tetragonal-cubic 
phase transition would require a temperature 
above the melting point (Warren and Ackland, 
1996) (T,n is around 1800 K at 0 GPa), so instead 
we are interested in the orthorhombic-tetragonal 
phase transition, with some transition tempera- 
ture Tc. 

The CETEP code was used on the T3D parallel 
supercomputer at the Edinburgh Parallel 
Computing Centre. These simulations require 
extremely large amounts of CPU time, so it was 
not possible to perform as many iterations as 
might be desired at each temperature to produce 
highly accurate statistics. However, the initial 
results presented here should be sufficient to 
detect the transition into the orthorhombic state, 
and illustrate the methodology which will be 
continued in further calculations. 

Following transitions using normal modes 
Any configuration may be described in terms of 
freezing selected phonons into cubic phase. All 
modes are referred to by their location in the 
cubic Brillouin Zone and rank according to 
frequency (from w to w and as given in Table 
1). According to this scheme, one combination of 
each of the degenerate pairs w (Mg 
displacement) and w (R25 octahedral rota- 
tion) form the tetragonal phase. To then form the 
orthorhombic phase requires contributions from 
w w (M2 rotation) and one combination each 
of the degenerate pairs w and w all at X 
or M in the cubic phase (see Table 1). 

The state of the system during a simulation is 
described in terms of the average coefficients 
{ (cj(t))t} of the cubic normal modes (rather than 
the positions of the ions (R1,K(t)}) by projecting 
the ionic displacement from the cubic phase at 
time onto each cubic phonon eigenvector in turn, 
in the same way as in the analysis of the 
constituent modes of the orthorhombic structure. 
A total distortion Id(t)l 2 may also be defined, 
using (3), 

Id(t)l 2 = Ec2(t)  = Zm~[RK(t) RK(cubic)] 2 
J 

(4) 

which when time-averaged indicates the average 
deviation from the cubic structure. The term 
'coefficient' is used in preference to 'amplitude' 
since it is the time-averaged displacement which 
is most relevant, rather than the amplitude of 
oscillations about it. 

If a single set of phonons corresponded to 
perfectly harmonic normal modes of all three 
phases, then pure harmonic oscillation in each of 
these coefficients would be observed, possibly 
around some non-zero value. However, some 
mode mixing and degeneracy breaking occurs, in 
addition to anharmonicity. The coefficients cj(t) 
of cubic phonons will thus vary non-sinusoidally 
for any modes j" which are far from normal 
modes of the orthorhombic phase. However, 
most modes are close enough to lead to useful 
analysis, and so the cubic phonons are retained 
as reference modes for consistency with other 
sections of this work. The coefficients of the six 
important modes are thus taken as order 
parameters. However, they may be grouped 
into two sets according to the points of the 
cubic Brillouin Zone at which they are found, 
and whether they are invoked in forming the 
tetragonal or orthorhombic phase. 
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In principle, the Fourier transform of each 
coefficient cj(t) should generate a partial density 
of states (DOS) gj(v), which for a perfectly 
harmonic mode would show a single frequency. 
However, a MD simulation of time x will give a 
frequency resolution of l/c, typically 1 THz in 
these simulations. Furthermore, few of the phonons 
are perfectly harmonic, and phase transformations 
during the simulation introduce other Fourier 
components and frequency shifts. The longest 
simulation was done at a temperature of around 
850 K, and the two phonons found to give the 
clearest partial DOS are shown in Fig. 3 by way of 
example. These modes are thus the least affected 
by the transition to the orthorhombic phase which 
takes place during the simulation. Both modes 
involve Mg displacements along z, so would be 

expected to be only weakly coupled to those 
involved in the transition which are in the xy plane. 
Longer simulations would, however, be required 
for definitive results from such a process. 

Low temperature 

At temperatures below To, the orthorhombic phase 
is expected to be stable; this requires freezing in 
the four modes listed above. From an assigned 
temperature of 800 K the system first appeared to 
equilibrate around 430+5 K (as might be 
expected by equipartition), but after 300 fs the 
temperature increased to 550+5 K. This was 
accompanied by a distinct increase in the total 
distortion lldle>t from 40.82+_0.09 to 52.0-t-0.5 
a.m.u. ~2, as shown in Fig. 4. 
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Fla. 3. Phonon coefficients cl(t ) and partial density of states (Fourier transform) ?j(v) for two modes which give the 
clearest single frequencies in a MD simulation around 850 K. Both modes involve Mg displacement along the z axis. 

The plotted points demonstrate the maximum resolution available from a 1 ps simulation. 
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FIG. 4. Total distortion from cubic Id(t)l 2 (upper graph) and temperature as found from kinetic energy (lower) during 
a simulation at low temperature. 

The coefficients of selected phonons during this 
simulation are shown in Fig. 5. The R modes 
which form the tetragonal phase, w and 
w have significant coeff• throughout, 
as would be expected. During the first half of the 
simulation, the third Ra5 rotational phonon w 
which is still unstable in the tetragonal phase, 
acquires a large amplitude, whilst the M2 mode 
w is present only weakly. However, after 300 fs 
the M2 mode acquires a large average coefficient, 
and oscillates around that value without crossing 
c(t) - 0, whilst mode w returns to small 
oscillations about zero. Accompanying this 
change are increases in the coefficients of w 
w and w i.e. those known to be present 
in the orthorhombic phase. The system is thus 
identified as orthorhombic in this part of the 
simulation. The transition into the orthorhombic 
phase is also manifested by an increase in the total 
distortion and explains the increase in temperature 
at this point. The observation that the four modes 
contributing to the orthorhombic phase freeze into 

the structure simultaneously is further confirma- 
tion that these modes are strongly coupled 
together, and that there it is unlikely that there 
are further intermediate phases between the 
tetragonal and orthorhombic phases with compa- 
tible symmetry. 

The M2 phonon w as shown here has a 
frequency of approximately 6.9 THz. This is 
about half of the frequency calculated in the 
orthorhombic phase; the difference may be 
ascribed to anharmonicity and coupling, since 
the oscillations are by no means small. Although 
different pseudopotentials were also used in the 
initial calculations, the changes in frequency of 
the rotational phonons in the cubic phases were 
relatively small (Warren and Ackland, 1996). 

Intermediate temperatures 

A simulation at an intermediate temperature 
appeared to equilibrate around 850 K after about 
300 fs, after an inital average displacement (Idl2}t 
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F~. 5. Phonon coefficients (in a.m.u. ,~2) for all modes with significant (c(t))t during the low-temperature MD 
simulation. The modes in (d) primarily involve rotations of the SiO 6 octahedra. 

of 43.6_+0.1 a.m.u. ~2 increased to 52.7_+0.3 
a.m.u. /~2. The dominant phonons are shown in 
Fig. 6. It can be seen that the M2 mode w freezes 
in but almost immediately changes sign, as does 
w and to a less dramatic extent, w and 
w The coupling between these four modes is 
again evident from the simultaneous switching of  
sign. This jump from one of  the orthorhombic 
phases to an equivalent  demonstrates  the 
increasing thermal energy invested in these 
modes. In contrast, the modes at R which 
constitute the tetragonal phase, w w and 
w are mostly unaffected by these changes. 

High temperature 

At 1750 K, a significant contribution from w and 
related modes is seen (Fig. 7), indicating that the 

system is still orthorhombic. A distinct increase in 
total displacement was again observed, from 
(pdr2)t - 48.7+0.3 to 56.9+0.4 a.m.u. ~2. 

However, the metastable tetragonal phase is 
observed for the first 650 ps of  the simulation, 
and includes significant contributions from mode 
w This is not surprising, since modes w w 
and w are triply degenerate in the cubic phase, 
and w is almost as unstable as w in the 
tetragonal. It can be seen that the coefficient of  
w increases at the expense of  w so only 
one mode constitutes the tetragonal phase. The 
structure formed by freezing in all three of  these 
modes also has lower symmetry than the 
tetragonal, so would be considered as an 
alternative to the orthorhombic phase, rather 
than as a possible intermediate towards the 
cubic. 
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FIG. 6. Phonon coefficients (in a.m.u. ,~z) for all modes with significant average amplitude during the intermediate 
MD simulation. The modes in (d) primarily involve rotations of the SiO 6 octahedra. 

Implications for Tc 
It appears that at zero pressure an orthorhombic- 
tetragonal transition would require a higher 
temperature than 1750 K, and thus higher than 
the melting temperature. If coupling to the strain 
is allowed, the energy difference between lhese 
phases increases (Warren and Ackland, 1996), 
thus further increasing To. At higher pressures, 
such as those found in the mantle, the denser 
orthorhombic phase would be increasingly 
favoured, although the melting temperature also 
increases. These MD studies thus suggest that the 
transition does not occur in the mmatle. 

However, these simulations are not only 
limited by neglecting coupling to the strain, but 

also by the simulation of only twenty atoms. 
Phase transitions usually involve long-range 
fluctuations close to the transition temperature, 
which are explicitly excluded by periodic 
boundary conditions. Furthermore, the finite 
duration of these simulations, necessary 
because of the extreme levels of computational 
resources required, means that the long-term 
behaviour may not be adequately represented. 
More extensive simulations would therefore 
improve the reliability of these predictions. 
Simulations away from Tc could also be used 
to deduce Tr by extrapolation of quantities such 
as the change in free energy, but good statistics 
would again be needed. 
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FIr. 7. Phonon coefficients (in a.m.u. ~2) for all significant modes during the high temperature simulation. The 
modes in (d) primarily involve rotations of the SiO 6 octahedra. 

Calcium silicate 

Recent first-principles studies (Stixrude et al., 
1996) using the Linear Augmented Plane Wave 
(LAPW) method have found that cubic CaSiO3 
perovskite also has an instability with respect to 
tilting of the octahedra, primarily at the R point of 
the Brillouin Zone. CaSiO3 is conventionally 
taken to be stable in the cubic phase, since no 
deviation from the cubic structure has been 
observed experimentally (Wang et al., 1996). In 
contrast, this instability would imply that the 
stable state in fact has lower symmetry. LAPW 
simulations consider all electrons, not just the 
valence electron states which are found with 
pseudopotentials. However, full structural optimi- 

sations using pseudopotentials have found the 
cubic phase to be stable (Wentzcovitch et al., 
1995). Both these sets of calculations used the 
local density approximation (LDA). 

We calculated the phonons at F, X, M or R at 
zero pressure and at 80 GPa, using the CASTEP 
code with the LDA and a basis set converged to 
better than 0.002 eV/unit. No unstable modes 
were found at either pressure, and a trend of 
increasing frequencies with pressure. The R25 
rotation modes did, however, have very low 
frequencies (2.0 THz at 0 GPa, rising to 4.5 
THz at 80 GPa). Furthermore, full structural 
relaxation of a tetragonal phase with an R25 
octahedral rotation reverted to the cubic undis- 
torted phase. An orthorhombic (Pbnm) phase 
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analogous to that in MgSiO3 also returned to 
cubic symmetry on relaxation. Our calculations 
are thus in agreement with the previous 
pseudopotential calculations (Wentzcovitch et 
al., 1995), which are used as a different approach 
in order to determine the stability, and suggest 
that the cubic phase is stable. 

Such instabilities are usually very strongly 
coupled to the cell volume, so further calculations 
currently in progress aim to clarify the effect of 
pressure. 

The instability predicted by the LAPW 
calculations would produce a tetragonal phase 
with energy only 0.12 eV per unit cell lower than 
the cubic phase. This energy difference is large 
enough to be found with pseudopotential plane- 
wave calculations, but only when great care is 
taken to fully converge the calculation with 
respect to k-point sampling of the electronic 
bandstructure and number of plane waves. It may 
be that such weak instabilities are particularly 
sensitive to differences in theoretical techniques. 

Conclusions 

The structures and important sets of phonons of 
cubic, tetragonal and orthorhombic phases of 
MgSiO3 have been found from first principles. 
The unstable phonons of the cubic structure are 
distributed throughout the Brillouin Zone, but all 
become stable after the transition to the 
orthorhombic structure. No such instabilities are 
found in CaSiO3 perovskite. 

By freezing in the most unstable phonon of the 
cubic phase, and another strongly coupled to it, a 
tetragonat intermediate may be formed, which 
displays some of the structural features of the 
orthorhombic phase. The eigenvectors of the most 
unstable phonon of this phase, and those coupled 
to it, contain the remaining distortions necessary 
to reach the orthorhombic phase. Rotations of 
octahedra play the largest part in the transition. 

A two stage transition pathway between the 
cubic and orthorhombic phases may be expressed 
in terms of only six phonons, and small strains of 
the unit cell. Molecular dynamics simulations of 
one of these stages are analysed in terms of these 
phonons, with the result that a transformation 
from a metastable tetragonal phase to the 
orthorhombic is clearly identifiable. However, 
the transition was always observed for tempera- 
tures up to 1750 K, which is close to the melting 
temperature. These results suggest that the 
transition temperature for the tetragonal-orthor- 

hombic transition is thus likely to be too high for 
the tetragonal phase to occur in the mantle. 
Further study would be necessary on larger 
systems for longer times to confirm this predic- 
tion; allowing the unit cell to change size and 
shape during the simulations would also be 
necessary for more realistic simulations. 
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