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Although experimental studies of  the surface 
protonation of oxides in electrolyte solutions have 
been carried out for many years (Davis and Kent, 
1990), few attempts have been made to place the 
experimental measurements into a coherent frame- 
work that permits prediction for systems that have yet 
to be studied experimentally. The enormous range of 
different natural and synthetic oxides of interest, and 
the correspondingly large range of electrolyte types 
and ionic strengths of relevence to industrial and 
natural processes, accentuate the need for such a 
predictive model. The purpose of the present study is 
to review progress made towards a comprehensive 
model for the prediction of surface charge on oxides 
in electrolyte solutions. 

Experimental data clearly show that surface charge 
depends on pH, ionic strength, and on the specific 
electrolyte in solution. Consequently, the triple layer 
model is used to analyse existing experimental data. 
It is extended with crystal chemical and Born 
solvation theory to make predictions of surface 
charge for an oxide in any specific 1:1 electrolyte 
over a wide range of ionic strengths. In order to do 
this, the key parameters of the triple layer model 
(Westall and Hohl, 1980) must be estimated in a 
consistent way. These include a site density for each 
mineral; the surface protonation equilibrium 
constants Kt and K2; the electrolyte adsorption 
constants KM+ and KL-; and the inner layer integral 
capacitance Cv 

Prediction of surface site densities 

Although idealized, the bulk crystal structure is our 
best clue as to the nature of the solid surface in water. 
By choosing specific cleavage or growth planes, it is 
possible to evaluate the total number of protonatable 
sites with minimal assumptions about the reactivities 
of the sites. However, the choice of cleavage or 
growth planes referring only to orientation, without a 
precise specification of where in the structure these 
planes occur, will yield inconsistent, meaningless 
results for estimates of site densities. The precise 

location of growth or cleavage planes in many oxide 
and silicate structures can be specified by requiring 
that the total Brown bond strengths are minimized on 
neutral or nearly neutral exposed surfaces (Koretsky 
et al., 1998). Based on these criteria, different 
methods of counting the number of surface sites 
can be compared with the results of tritium exchange 
experiments. The method that best matches the 
tritium exchange results involves counting all 
dangling bonds on the surface. For example, for 
goethite with this method a range of values from 
14.4. to 20.0 sites.nm -2 was obtained. Numerous site 
types and site densities for oxides and silicates in 
water have been established (Koretsky et al., 1998). 

Prediction of surface protonation equilibrium 
constants 

Surface protonation of oxides in aqueous solutions 
> + has typically been represented by >SOH, SOH2, and 

>SO-. These species permit representation of proton 
adsorption and desorption by equilibria such as 

>SOH + H(+aq) = >SOH~ (1) 
>SO- + H~q) = >SOH (2) 

Corresponding to these equilibria are expressions 
of the law of mass action in systems subject to an 
electric field, which can be written 

+ / 2 . 3 0 3 R T  
KI = (a>SOH2/a>soHaH&ql)10(F~0 ) (3) 

-- + /2.303RT and K 2 = (a>soH/a>SO aH(,q))10(F~o ) (4) 

In Eqns. (3) and (4), K1 and K2 represent intrinsic 
equilibrium constants and ~ represents the mean 
potential at the oxide surface in an electrolyte solution. 

The variation of experimental surface protonation 
constants for a variety of different oxides can be 
accurately described by explicitly taking account of 
crystal chemical and solvation theory for the 
adsorbing protons (Sverjensky and Sabai, 1996). 
The standard Gibbs free energy of the vth reaction is 
broken up into three contributions: an electrostatic 

o proton interaction term (AGpi,v), a Born solvation 
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0 term (AG~,v), and a term intrinsic to the aqueous 
proton itself (AGO,v) where 

A G L =  o o aGO,~ (5) AGpi,v + AGs,v + 

It follows that the logarithms of the equilibrium 
constants can be calculated from the following 
equations (where v is equal to 1 or 2): 

logK1 = - (A~'~r, 1/2'303RT)(1/Sk) -- 
BI(S/rM-OH) + logKii, l" (6) 

logK2 = - (f~r,2/2.303RT)(1/Sk) -- 
B2(S/rM-OH) + logKii,2" (7) 

The first term on the right hand side of each 
equation involves the inverse of the dielectric 
constant of the mineral (1/gk) which arises from the 
solvation term in Eqn. (5). The second term involves 
the Pauling bond strength per angstrom. For an oxide 
containing only one kind of cation polyhedron, the 
Pauling electrostatic bond strength (s) is calculated 
from the cation charge (Z) and the coordination 
number of the cation (no) using 

s = Z/nc (8) 

It is assumed that the distance from the centre of 
the metal M to the adsorbed proton is given by rM-on 
according to 

r>M-OH = rM.O + 1.01 (9) 

In Eqn. (9), rM-O represents the mean value of the 
metal-oxygen bond length around the cation in the 
bulk solid and the O-H bond length was taken to be 
1.0l ,~. The standard Gibbs free energy of adsorption 
of the proton is then assumed to be proportional to 
the Pauling bond strength per angstrom (s/r>M-OH). 
The numerical coefficients, e.g. Af~,l, Ba, and 
logKii, l", are known from calibration of the equations 
with experimental results. Based on Eqns. (6) and (7), 
and known values of the dielectric constant and 
Pauling bond strength per angstrom, numerous 
predictions of Kl and K2 for oxides and silicates 
can be made. 

Prediction of electrolyte adsorption 
equilibrium constants 

Equilibria for the adsorption of a 1:1 electrolyte (NIL) 
can be written 

+ 
>SO- + M(aq) = >SO-M* (10) 

>SOH~ + L(aq) = >SOH~L- (11) 

Corresponding to these equilibria are expressions 
of the law of mass action which can be written 

KM+ = (a>SO-ra+/a>SO-aM~aq))10 (F*W2'303RT) (12) 
and 

KL = (a>SOH~L-/a>SOH~aL~q)10 (-F~I3/2"303RT) (13) 

where ~ refers to the mean potential on a plane at a 
distance 13 from the surface (Davis and Kent, 1990). 
The surface equilibrium constants KM§ and KL- refer 
to adsorption of the electrolyte cation M + and anion 
L -  on the 13-plane in the triple layer model. Based on 
Born solvation theory, it would be expected that sets 
of values of logKM and 1OgKL on a range of different 
solids would correlate with 1/e of  the solids 
consistent with equations of the form 

logKM+ = --(Af~r,M+/2.303RT)(1/~k)  + logKii,M§ (14) 

logKz = -(Af~r,L-/2.303RT)(I&k) + 1ogKii,L " (15) 

where the coefficients AtI~,M+, Aflr,L-, Kii ,M+"  a n d  

Ki i ,L  "" were calibrated with experimental data (Sahai 
and Sverjensky, 1996a). Furthermore, from Born 
solvation theory, it is expected that Aflr is a function 
of the inverse of the effective electrostatic radii of the 
cations or anions, which results in predictive 
equations for A~r,M+ and A~r, L- (Sahai and 
Sverjensky, 1996b). Simi!arly, the intrinsic equili- 
brium constants logKii,M+ and logKii,L " correlate 
with the inverse of the effective electrostatic radii of 
the corresponding aqueous cations. Eqns. (14) and 
(15) thus permit prediction of  the electrolyte 
adsorption constants for the triple layer model for a 
wide variety of cations, anions and solids. 

Prediction of the inner layer electrolyte 
capacitance Ci 

The integral capacitance ( e l )  in the triple layer model 
has long been a parameter obtained solely by 
regression of  experimentally determined surface 
charge data as a function of pH and ionic strength 
(Westall and Hohl, 1980; Davis and Kent, 1990). 
Because of the great variety of assumptions used in 
such regressions, such capacitances are often only fit 
parameters. Recent progress towards developing a 
predictive method for estimating C~ values can be 
descibed using the analogy between a parallel plate 
capacitor and the triple layer model of a mineral 
surface in water. This analogy results in the expression 
of C1 in terms of the dielectric constant in the double- 
layer region between the 0- and the 13-planes (%) and 
the separation of these two planes (13) according to, 

C~ = 8ae, o/13 (16) 

where eo is the permittivity of free space. 
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