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Despite considerable differences in their source,
observations in the isotope ratios of short to
intermediate residence time tracers ('°Be/’Be,
206.207.208p,2049ph) show a high degree of homo-
genisation in oceanic basins (von Blanckenburg et
al., 1996a; von Blanckenburg et al., 1996b). We
assess the feasibility of tracer mixing by lateral
advection and eddy mixing in a basin-sized oceanic
gyre by solving the advection diffusion reaction
equation numerically in two dimensions (similar to
Richards et al, 1995, but incorporating reactivity,
Fig. 1). For Be, strong cross-streamline diffusion is
required to achieve homogenisation of the interior
19Be with the margin-sourced *Be (Fig. 2a,b). This is
favoured by long scavenging residence times T,
which is the case in both thermocline waters and deep

Symmetric gyre (and input)
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waters. For Pb, all of which is margin-sourced,
isotopic homogenisation is favoured by high stream-
line velocities (Peclet Numbers) in the gyre and t of
at least 20 y. This is the case in thermocline waters
(Fig. 2¢,d).

If short-residence time tracers are dispersed
efficiently within an entire ocean basin important
implications for the use of these isotopes in
palacoceanography are: 1) sites of tracer input (e.g.
dust) might not necessarily correlate spatially with
the distribution of such input in either seawater or
marine sediments; 2) basin-wide responses might
arise from relatively local changes in the provenance
of isotopes, and need not necessarily result from
global climatic changes, or variations in the deep
thermohaline circulation.

Asymmetric gyre (and removal)
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FiG. 1. Setup of model. Streamlines (dotted) and relative velocities (arrows) of symmetric gyre (left) and a gyre with
strong western boundary intensification (right). Left figure also shows input of continent-sourced tracers, right figure
shows zones of enhanced boundary scavenging.
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Fic. 2. (a) NS and EW cross sections through gyre showing steady state '°Be/°Be ratios. The open ocean residence

time is 250 a. (b) Same conditions, but the longer residence time of 1000 y results in strong smoothing of 1Be/*Be

ratios. The mean water velocity is 3.2cm/sec, the eddy mixing coefficient is 5 x 10° cm”s™'. ¢) Dispersion of Pb

from a continental source by deep water (Mean velocity is 0.15 cm.sec™" , the open ocean residence time is 80 a,

numbers give conc ranges. d) Dispersion of Pb from a continental source by deep water (Mean velocity is 3.2
cm.sec” !, the open ocean residence time is 20 a).
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