Compound-specific isotope analysis across the Frasnian-Famennian boundary

M. M. Joachimski

R. D. Pancost K. H. Freeman

C. Ostertag-Henning

Institut für Geologie und Mineralogie, Universität Erlangen, 91054 Erlangen, Germany

Pennsylvania State University, 503 Deike Building, University Park, PA 16802-2714, USA

Institut für Geologie und Mineralogie, Universität Erlangen, 91054 Erlangen, Germany

The Frasnian-Famennian extinction events represents one of the big five mass extinction events during the Phanerozoic with the decline of the Devonian stromatoporoid-coral reef ecosystem representing one of the most prominent crises in reef history. Inorganic carbon isotope investigations of Frasnian-Famennian boundary sections show two +3‰ excursions during the late Frasnian with the second excursion marking the Frasnian-Famennian boundary. The δ^{13} C excursions are observed on a global scale and in part coincide with the deposition of black shales (Kellwasser horizons). An increased burial of ¹³C depleted organic carbon was interpreted to enrich surface waters in ¹³C and to lower oceanic dissolved CO₂ and atmospheric CO₂ concentrations (Joachimski and Buggisch 1993). The latter may result in climatic changes that may have stressed in particular the shallow water ecosystems.

Results

Organic carbon was investigated in a basinal Frasnian-Famennian boundary section from the Holy Cross Mountains (Poland). The conodont alteration index (1 to 1.5), vitrinite reflectance data (R% = 0.5) and T_{max} (418–435°C) document the immature character of the organic material that consists of 75 to 95% of bituminite and up to 20% of alginite with only minor amounts of vitrinite. TOC values range from 0.2 to 6.4% with most samples having around 2% TOC. The $\delta^{13}C_{TOC}$ record shows a +3% excursion across the Frasnian-Famennian transition starting at -31% in the latest Frasnian and peaking at +28‰ immediately above the Frasnian-Famennian boundary. $\delta^{13}C_{TOC}$ decreases to -30% during the earliest Famennian. Thus, $\delta^{13}C_{TOC}$ parallels the inorganic carbon isotope pattern measured in carbonate-rich sections. Shortchain n-alkanes (n-C₁₅ to n-C₃₁) and acyclic isoprenoids pristane and phytane are depleted by -2.7 to -2.5% in comparison to TOC, but parallel the $\delta^{13}C_{TOC}$ record perfectly. Isotopic compositions of pristane and phytane do not differ significantly, are well correlated and thus are used as estimate of the isotopic composition of primary organic carbon ($\delta^{13}C_p$). Most important, the general pattern of $\delta^{13}C_p$ and $\delta^{13}C_{carb}$ does not differ substantially with both records showing a +3% excursion.

The isotopic composition of primary organic carbon is mainly determined by the $\delta^{13}C$ of the carbon source and by the photosynthetic fractionation factor ε_p . ε_p may depend on the growth rate of phytoplankton and the concentration of oceanic dissolved CO₂ (e.g. Laws et al., 1995; Bidigare et al., 1997). The measured $\delta^{13}C_{carb}$ record reflects an increase in $\delta^{13}C$ of DIC as consequence of an enhanced Corg carbon burial rate. Since an intensification of Corg burial is expected to lower the CO2 concentration of surface waters and of the atmosphere, $\varepsilon_{\rm p}$ should change as well assuming that phytoplankton growth rate had been more or less constant. Accordingly, $\delta^{13}C_p$ should become more enriched in ¹³C than $\delta^{13}C_{carb}$. The fact that the $\delta^{13}C_p$ excursion parallels the $\delta^{13}C_{carb}$ record demonstrates that ε_p did not change. This is to be expected if CO₂ concentrations were relatively high (>2000 ppmV) since $\varepsilon_{\rm p}$ is assumed not to vary at high CO₂ concentrations. The Devonian atmospheric CO₂ concentration was modeled to be higher than 2500 ppmV (Berner 1994) and thus, oceanic dissolved CO₂ concentrations would have been above the threshold to affect ε_p by changes in the CO₂ concentration, i.e. due to a change in Corg burial. In conclusion, compound-specific isotope analysis that were used in the Mesozoic to decipher changes in $\varepsilon_{\rm p}$ and oceanic CO₂ concentration (Hayes et al. 1989) will not help during time periods when CO_2 concentrations were higher than 2000 ppmV.

References

- Berner, R.A. (1994) Amer. J. Sci., 294, 56-91.
- Bidigare et al. (1997) Global Geochemical Cycles, 11, 279–92.
- Hayes, J.M., Popp, B.N., Takigiku, R. and Johnson, M.W. (1989) Geochim. Cosmochim. Acta, 53,

2961-72.

- Joachimski, M.M. and Buggisch, W. (1993) *Geology*, **21**, 675–8.
- Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C. and Macko, S.A. (1995) *Geochim. Cosmochim. Acta*, 59, 1131–8.