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Cement is likely to be used extensively in the 
geological disposal of radioactive wastes since its 
high-pH pore fluids will minimise the corrosion of 
metal canisters and the solubility of certain radio- 
nuclide-bearing solids. High pH is a function of the 
solubility and mass of pH-controlling solids within 
the cement, groundwater-cement reactions, and the 
rate of flow of groundwater through the system. The 
principal cement phase believed to be controlling pH 
in the long-term is calcium silicate hydrate (CSH) 
gel. 

CSH gel does not have a fixed chemical 
composition and has a variable Ca/Si ratio up to 
~3. At solid Ca/Si ratios > 1, CSH gel dissolves 
incongruently in water with aqueous Ca concentra- 
tions being much higher than those of Si. The extent 
of incongruent dissolution behaviour increases with 
the Ca/Si ratio of the solid. Despite the non- 
stoichiometric dissolution behaviour, there is good 

evidence that thermodynamic equilibrium holds. 
Kersten (1996) has suggested a model which treats 
CSH gel as a solid-solution with a silicate end- 
member of general composition CaH4SiO5 ('CS'), 
and a calcium end-member represented by portlan- 
dite, Ca(OH)2 ('CH'). Both these end-members are 
assumed to be congruently soluble. Applying solid- 
solution theory developed by Lippmann (1980) and 
Glynn and co-workers (e.g. Glynn, 1991) allows 
definition of the total solubility product constant 
(2I'Ieq) and the total solubility product variable (Eli)  
for the solid-solution: 

~l'-[eq = KcsXcsYcs + KcHXcHXcHTCH 
El l  = [Ca(OH)+][(HaSi04] + [OH-]) 

where K, X, and ~, are the equilibrium constant, mole 
fraction, and solid phase activity coefficient respec- 
tively, of the subscripted end-member. Square 
brackets refer to activities of aqueous species. 

TABLE 1. Equilibrium constants for portlandite (CH) and Ca-silicate (CS) end-members of a CSH gel solid- 
solution input to PHREEQC for calculation of coexisting fluid composition (in moles/litre) 

Gel XcH log K CH log K CS pH [CaOH-] [H3SiO4] [OH-] 

0.67 -4.01 -8.97 12.45 3.4E-3 3.2E-7 0.310 
0.60 -4.05 -8.90 12.44 3.2E-3 3.9E-7 0.027 
0.55 -4.11 -8.83 12.42 3.0E-3 5.0E-7 0.026 
0.50 -4.19 -8.74 12.39 2.7E-3 6.9E-7 0.025 
0.45 -4.30 -8.64 12.35 2.2E-3 1.0E-6 0.022 
0.40 -4.45 -8.53 12.29 1.8E-3 1.7E-6 0.020 
0.35 -4.65 -8.41 12.22 1.4E-3 2.9E-6 0.017 
0.30 -4.89 -8.29 12.13 9.5E-4 5.4E-6 0.014 
0.25 -5.19 -8.18 12.03 6.1E-4 1.1E-5 0.011 
0.20 -5.56 -8.07 11.89 3.5E-4 2.4E-5 0.008 
0.15 -6.02 -7.98 11.73 1.8E-4 5.9E-5 0.005 
0.10 -6.58 -7.90 11.53 7.8E- 5 1.6E-4 0.003 
0.05 -7.33 -7.84 11.24 2.7E-5 5.4E-4 0.002 
0.00 -7.80 11.04 1.6E-5 1.0E-3 0.001 
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FIr. 1. Comparison of fluid phase compositions 
calculated for a CSH gel solid-solution model (starred 
data points) with those determined in laboratory CSH 
gel-water equilibration experiments (Jennings, 1986). 

gap between Xcu = 0.67 and Xcn = 0.95 was chosen. 
Equilibrium constants of the two pure end-members 
Kcs and Kcr~, were log -7 .8  and log -4.0,  
respectively. Compositions of the aqueous phase 
coexisting with a CSH gel solid solution have been 
calculated using values of Zl-leq derived from the 
MBSSAS calculations using PHREEQC (Parldaurst, 
1995). Since PHREEQC cannot explicitly deal with 
solid-solutions as input data, solid solution behaviour 
was treated as two discrete phases, calcium silicate 
and portlandite. Equilibrium constants for these two 
phases were calculated to satisfy the solid-solution 
relationships and are presented in Table 1. 

Calculated fluid compositional data have been 
compared with solubility data for CSH gels compiled 
by Jennings (1986) [Fig. 1]. It may be seen from 
Fig. 1 that there is a reasonable fit of the model data 
to those from laboratory studies of the CSH gel 
system. This provides confidence in the use of the 
model to simulate cement-groundwater interactions 
in the long-term. However, the divergence in the 
modelled and experimental data suggests that 
boundary conditions for the modelling (gel misci- 
bility gap, solubility constants for the two end- 
members) could be re-evaluated to attempt to provide 
a better fit to the experimental data. 

R e f e r e n c e s  

The computer code 'MBSSAS' (Glynn, 1991) was 
used to investigate solid-solution behaviour in the 
CSH gel-H20 system. MBSSAS uses a Guggenheim 
sub-regular solid-solution model to calculate free 
energies of mixing of the two components within the 
solid-solution. For input to MBSSAS, a miscibility 
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