Biological versus abiological mechanisms explaining isotopically heavy Isua organic matter

M. T. J. van der Meer S. Schouten J. W. de Leeuw

D. M. Ward

Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands

Montana State University, Department of Microbiology, MT 59717-0352, Bozeman, Montana, USA

The anomalously heavy organic carbon from Isua rocks of 3.8 billion years ago has been explained as an artifact of metamorphism (Schidlowski, 1988). The δ^{13} C value of $-13.0 \pm 4.9\%$ does not fit within the δ^{13} C values 'characteristic' for biological debris (Hayes, 1996). The relatively small ¹³C content of organic matter considered 'typical' for biological CO_2 fixation is based on the assumption that the Calvin cycle is the major CO₂ fixation pathway and that other carbon fixation pathways with different carbon isotope fractionation effects have played a minor role in the Earth's history. However, assuming that the Isua organic matter is of a Calvin cycle origin the effect of metamorphism on the ¹³C content of the organic matter must have been large, an increase of more than 10%. Recently the effect of metamorphism on the ¹³C content of organic matter is

being discussed and an increase in 13 C of 2–3‰ due to metamorphism has been suggested (Watanabe *et al.*, 1997; DesMarais, 1997). This implies that the δ^{13} C value of the original Isua organic matter of -15 to -16‰.

Based on analyses of organic matter produced by green non-sulphur bacteria preserved in modern laminated microbial mat systems resembling stromatolites, a biological alternative for the heavy organic matter in the Isua formation is suggested. The organic matter produced by these bacteria, representing an early divergence from the tree of life, is substantially enriched in ¹³C relative to organic matter assimilated via the Calvin cycle. *Chloroflexus aurantiacus*, such a green non-sulphur bacterium, uses the 3-hydroxypropionate pathway for carbon fixation (Holo and Sirevag, 1986). This pathway

FIG. 1. Lipid distribution of the total extracts of the 'New Mound Annex' source (a) and downstream (b) mats. The numbers 1 to 28 relate to the lipids summarised in Table 1.

T.	ABLE	1.	Sumn	iary	of	differe	nt	lipids	fou	nd :	in	the
	NM	A	source	and	dc	wnstre	am	mat	and	the	ir	¹³ C
	cont	en	ts inclu	ding	st	andard	dev	viatio	ns			

Compound	Nr.	δ^{13} C (‰) Source (Fig. 1A)	δ^{13} C (‰) Downstream (Fig. 1B)
Bulk		-14.9 (0.0)	-23.5 (0.5)
n-C ₁₇ alkane	1		-36.3(0.2)
i-C15:0 fatty acid	2		
C _{15:0} fatty acid	3		-23.4(3.3)
i-C _{16:0} fatty acid	4		· · · ·
C _{16:0} fatty acid	5		-34.5(1.4)
n-C _{16:0} alkanol	6		
C _{17:0} fatty acid	7		-22.1(0.6)
i-C _{17:0} alkanol	8		~ /
n-C _{17:0} alkanol	9	-15.2(0.3)	-22.0(0.4)
C ₁₈₋₁ fatty acid	10	. /	-32.7(1.8)
C _{18:0} fatty acid	11		-33.9(0.2)
i-C _{18:0} alkanol	12		× ,
n-C _{18:0} alkanol	13	-15.2(0.4)	-24.3(0.8)
C ₁₉₁ fatty acid	14	()	-34.2(1.1)
$C_{20:1}$ fatty acid	15		()
C ₃₁₋₃ alkatriene	16	-8.9(0.3)	-15.1(0.1)
C ₃₀ wax ester	17	· · · ·	()
i-C ₃₁ wax ester	18		
C ₃₁ wax ester	19	-17.7(0.8)	-22.6(2.0)
i-C ₃₂ wax ester	20	-18.5(0.7)	-22.7 (0.4)
C ₃₂ wax ester	21	-17.7(0.7)	-22.7(1.0)
i-C ₃₃ wax ester	22	-18.2(0.5)	-23.0 (1.5)
C ₃₃ wax ester	23	-17.9(0.6)	-24.1(0.3)
i-C ₃₄ wax ester	24	-18.0(0.4)	-21.9(0.3)
C ₃₄ wax ester	25	-17.4(0.6)	-23.4(0.0)
i-C ₃₅ wax ester	26		_ ())
C ₃₅ wax ester	27	-17.7 (1.0)	-25.1(0.8)
C ₃₆ wax ester	28	-15.4(0.5)	()(0)
		()	

discriminates less against ¹³C.

The bulk ¹³C content of the Yellowstone hot spring New Mound annex source mat consiting of *Chloroflexus* spp. is -14.9%. Based on previous studies of the lipids of *Chloroflexus* (Shiea *et al.*, 1991), it was possible to determine the isotopic signatures of specific biomarkers produced by this type of organism using isotope-ratio-monitoring GC-MS (irm-GC-MS). For example, the δ^{13} C values for hentriacontriene (C_{31:3} alkatriene) and C_{31 to 36} wax esters are -9 and -18%, respectively (Table 1, Fig. 1a).

We presume that the differences in isotopic composition reflect differences in biosynthetic pathways by which these compounds are produced. In contrast, the bulk ¹³C contents of the downstream mat consisting of Chloroflexus spp. and cyanobacteria is -23.5%. The cyanobacterial biomarkers, *n*-C₁₇ alkane and *n*-C₁₆ and *n*-C₁₈ fatty acids, have δ^{13} C values of -36, -34.5 and -33.9%, respectively (Table 1, Fig. 1b). In this downstream mat the $C_{31:3}$ alkatriene and $C_{31 to 36}$ wax esters have $\delta^{13}C$ values of -15 and -23%, respectively. The lighter values for Chloroflexus biomarkers in the downstream mat compared to those of the source mat presumably result from cross-feeding of cyanobacterial fixed carbon. However, the ¹³C values of the Chloroflexus biomarkers are much heavier than those of the cyanobacterial biomarkers. Apparently, a significant amount of Chloroflexus autotrophy via the 3-hydroxypropionate pathway also occurs in the presence of cyanobacteria. This might be due to the presence of residual sulphide.

Based on the early divergence of green nonsulphur bacteria from the tree of life it can be concluded that the 3-hydroxypropionate pathway evolved before the Calvin cycle. This provides not only a biological explanation for isotopically heavy organic matter from the Archaean but also shows that organic matter does not have to be isotopically light to be considered 'biological debris'.

Our results thus strongly indicate that Isua organic matter is of biological origin, thereby stretching the record of life on Earth to 3.8 billion years ago.

References

DesMarais, D.J. (1997) Organic Geochemistry, 27, 185-93.

- Hayes, J.M. (1996) Nature, 384, 21-2.
- Holo, H. and Sirevag, R. (1986) Archives of Microbiology, 145, 173-80.
- Schidlowski, M. (1988) Nature, 333, 313-8.
- Shiea, J., Brassell, S.C. and Ward, D.M. (1991) Organic Geochemistry, 17, 309–19.
- Watanabe, Y., Naraoka, H., Wronkiewizs, D.J., Condie, K.C. and Ohmoto, H. (1997) Geochim. et Cosmochim. Acta, 61, 3441–59.