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Section I.—RecENT CHANGE oF VIEW AS TO THE PROPERTIES TO BE
ASSIGNED TO AN ELASTIC LUMINIFERoUS ETHER.

Deduction of the form of the wave-surface for biaxal crystals.

RESNEI'S representation of the laws of transmission of rays of light

in biaxal crystals, by reference to the surface distinguished by his

name, has long been regarded as one of the greatest achievements in the

domain of Physical Science. In his memoir! on Double Refraction, Fresnel
proceeded as follows :—

1. He assumed that the transmission of a ray of light is effected by
means of an elastic ether vibrating transversely to its direction,

To the ether is thus assigned a property not belonging to a perfectly
fluid body in a state of rest: perfect fluidity of a body at rest involves
incapacity of resistance to mere change of shape, and it is to such dis-
tortional resistance that fransverse vibrations must be due.

2. He assumed that the ether of a crystal, when undisturbed, is a system
of equal particles, in stable equilibrium under their mutual attractions;
and that, for each pair of particles, the latter depend solely on some func-
tion of the distance between them and act in the line joining the centres.

He showed that in a medium so constituted there arc at least three
directions, at right angles to each other, such that the force necessary to
the maintenance of a small displacement of a single particle of the ether
along any one of them will act in the line of the displacement,
and be proportional to it in magnitude: that the elastic force
evoked. by the displacement of a single particle of the ether through
unit distance along each of these directions may be different, say
ab, b, ¢, respectively : that in this case, which is assumed to be that of the

1 Mémoires de V' dcad, de U'Inatitut de France, 1827, vol. 7, pp. 45-176,
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ether in a biaxal crystal, the elastic force due to the displacement of a
single particle of ether in any direction distinet from the three. already
mentioned will act in a direction different from that of the displacement ;
that if the direction of a radius vector of the surface a*® 4- V3 + % =
(+2 4 2® + 2%)? represent that of the displacement of an ethereal particle,
and the corresponding elastic force for a displacement through unit dis-
tance be resolved along and perpendicular to the line of displacement,

“ the former compounent is proportional to the square of the radius vector
in magnitude ; that for displacements of a single Jparticle in directions
lying in a given plane passing through the centre -of the above surface,
the elastic force is generally obliquely inclined to the plane, but that
there are always two directions, namely those of the longest and shortest
diameters of the section of the above surface by the given plane, for which
the resolved component of the elastic force in the given plane acts in the
line of displacement.

8. He assumed that the ether is virtually incompressible for the ferces
concerned in the transmission of light.

Neglecting, therefore, the component of the elastic force normal o a
plane containing a set of similarly displaced particles (wave-front) as being
without effeet by reason of the incompressibility of the ether, Fresnel in-
forred that, for particles in the given plane, vibrations parallel to either
the longest or shortest diameter of the corresponding section of the above
surface must be persistent, since the only effective component of the elastic
force for each particle then acts in the direction of the displacement.

4. From a suggested but forced analogy of a line of vibrating ether-
particles to a vibrating string, Fresnel assumed that the velocity of trans.
ference of a wave-front along its normal is directly proportional to the
length of that principal diameter of the section of the above surface by
the wave-front which is parallel to the direction of vibration,

Hence finding, by the usual mathematical process, the envelope of planes
representing the positions to which wave-fronts, with every possible diree-
tion, would arrive after the lapse of the same interval of time, Fresnel
concluded that the wave-surface for a biaxal erystal is represented by the
equation

st b I* (:2 2

poateoptEe=0

further, as the front correspondmg to any ray is parallel to the tangent
plane to the wave-surface at the point where the ray meets it, the vibra-
tion is, in general, obliquely not perpendicularly transverse to the direc-

tion of the ray.
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5. Hence Fresnel also inferrad that the velocities of the tworays which.
can be transmitted along a given direction are directly proportional to the

2 2 2
axes of the ellipse in which the ellipsoid :ﬁ""%"“%‘ = 1 is intersected by

a plane normal to the common direction of the rays.

Its singularities of form.

The closed surface represented by the above equation is of very peculiar
form, and consists of two concentric ellipsoid-like sheets, which are symme-
trical with respect to three rectangular planes. There are four points com-
mon to both sheets ; they are situated at the extremities of two diameters
lying in one of the planes of symmetry : in the neighbourhood of each
of these points the sheets are drawn towards each other, and the surface
has there the shape of a double cone; an infinite number of tangent
planes to the- surface can thus be drawn at each of them. Further,
two planes and their parallels respectively touch the surface, not at one
point nor at two points, but at an infinite number of points which lie on
the circumnference of a circle.

These geometrical singularities of the wave-surface, first noticed by Rir
William Hamilton five years after the death of Fresnel, point to the
existence in'biaxal crystals of certain optical characters which had up
to that time remained undiscovered, and seemed too strange to be real :
the establishment of their actuality by Lloyd has been regarded as the
crowning triumph of Fresnel’s theory of double refraction; for not only
are the phenomena strange, but their observation demands a combination
of circumstances which places them beyond the range of accidental dis-
eovery.

Dynamical difficulties of Fresnel's theory of double refraction.

As continued experiment and precise observation have served only to
establish the high degree of accuracy of the form assigned to the wave-
surface by Fresnel,! it might naturally be inferred that the assumptions
which lead, after so elaborate a course of reasoning, to a surface presenting
these singnlarities must be themselves beyond cavil. Yet, strange to say,
the mathematical process, by which the surface is thus arrived at, is one
of which the weakness was recognised by the author himself, and the

1 Kohlrausch : Wied. Ann.; 1879, vol. 6, p. 86; vol. 7, p. 427.

Glazebrook: Phil. Trans.; 1879, vol. 170, part 1, p. 287. Proc. Roy. Soc,;
1883, vol. 34, p. 393,
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theory has long been regarded as dynamically unsound; further, the
characters assumed for the ether, though they lead to the true wave-
surface," have since been found to have for necessary consequences other
optical laws which arc inconsistent with the results of experiment. On
the other hand, the same form of wave-surface can be arrived at from other
sets of assumptions, which have thus the same claim to recognition;' yet
they are inconsistent with those of Fresnel, and with each other. As the
later hypotheses which lead to Fresnel’s wave-surface have been found to
have other consequences which are contradicted by experimental results,
the comparative simplicity and the historical interest of the method
of Fresnel have sufficed to secure the adoption of his assumptions and
corresponding terminology in the general literature relating to the optical
characters of crystals.

The fact that Fresnel's wave-surface has been deduced from several
inconsistent sets of assumptions as to the characters of the ethereal
motion suggests that the form may really depend on the feature common
to all, namely, the transmission of a periodic change of state differently
related to different sides of the ray, and is otherwise independent of the
physical character of the transmitted change: the suggestion is discussed
in Section V.

Results of the rigorous calculation of the vibratory motion
of an elastic solid.

The rigorous caleulation® of the vibratory motion of the parts of an iso-
tropic elastic solid is found to involve two quantities, which are generally
denoted by A and B: the latter, B, measures the rigidity, or the resistance
of the body to simple change of shape, or the elasticity of figure; the
former, 4, is connected with B, and with % (which measures the resistance
to simple change of volume, or the elasticity of volume), by the relation
k=A—4B. Further, it can be shown that a vibratory motion of the
parts of an elastic medium generally gives rise to two kinds of waves,
due respectively to distortional and condensational-rarefactional vibra-

tions; the former travelling with velocity / —? , the latter (which correspond

A4 . . .
to those of sound) with velocity \/»F, where p is the density of the medium.

Now, if the transmission of light throngh a singly refractive medinm be

1 ¢.g. Challis in the Trans. Camb. Phil. Soc.; 1847, vol. 8, p. 524.

2 A most Valuable Report by Glazebrook on Optical Theories is published in the
Rep. Brit. Assoc. for 1885, pp. 1567-261.
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due to the vibratory motion of an isotropic eclastic solid, all the energy
persists in the form of distortional vibrations perpendicular to the ray ;
hence the characters of the ether must be so assumed as to secure the
absence of the condensational-rarefactional vibrations. For this purpose
we may make either of two assumptions, nﬂ.mely, that 4 is virtually zero
or that A4 is virtually infinite as compared with B: in the former case
the condensational-rarefactjonal wave is got rid of by making its
velocity zero ; in the latter case by making the velocity infinite. But it
was long believed that the former assumption was otherwise inadmissible :
for it was supposed by Green and later mathematicians that the quantity
A'— 4B is necessarily positive, if the equilibrium of the parts of an
élastic body is stable; and this is impossible if 4 is zero, for B is
essentially a positive quantity : hence it only remained to assume .4 and
therefore also & infinite, and thus the ether to be virtually incompressible.

Double refraction could then be consistently explained by a variation of
the rigidity of the ether of a bi-refractive crystal with the direction ; but
it was necessary, for dynamieal reasons, to assume the vibrations to be in,
not perpendicular to, the plane of polarisation.

On the other hand, Lord Rayleigh! has proved that the phenomena due
to the scattering of light by small particles require the vibrations of the
ether to be perpendicular to the plane of polarisation; he has further
shown that no theory based on varying rigidity can possibly be satisfactory,
and that the variation of density in different directions in a biaxal crys-
tal would lead dynamically to a form of wave-surface different from that
of Fresnel, if the ether be incompressible for the forces involved in the
propagation of the vibrations.

8ir William Thomson’s version of the elastic theory,

From this position of dead-lock, according to which the ether must be
both compressible and incompressible, the theory that the transmission of
light is effected by the vibrations of an elastic medium has only recently
been extricated. At the end of 1888 Sir William Thomson,? re-examining
the problem of the stability of the equilibrium, found that the condition
that 4—4B is n positive quantity becomes unnecessary, * provided we
cither suppose the medium to extend all through boundless space, or give
it a fixed containing vessel as its boundary :”” with either of these provi-
sions, the stability only requires that 4 should not be negative, and it is
therefore possible to get rid of the condensational-rarefactional wave by

U Lond. Edin. and Dub. Philos. Magaz., 1871, ser, 4, vol. 41, p. 431,
2 Ibid., 1888, ser. 5, vol. 26, p. 414.
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the assumption hitherto deemed inadmissible, namely, that 4 is zero ; this
involves the compressibility of the ether for the forces concerned in the
propagation of light. As a mechanical illustration, Sir William points
out that *“ homogeneous air-less foam held from collapse by adhesion fo a
containing vessel, which may be infinitely distant all round, exactly ful-
fils the condition of zero-velocity for the condensational-rarefactional
wave; while it has a definite rigidity and elasticity of form, and a de-
finite velocity of distortional wave, which can easily be caleulated with a
fair spproximation to absolute accuracy.”

Starting with the new assumption, Sir William Thomson was able to
deduce correct expressions for the intensities of ordinarily reflected or re-
fracted light: and Glazebrook® has since shown that the clastic theory
in its new form fully accounts for dispersion, including anomalous dis-
persion (like that of cyanin), double refraction, and metallic reflection, and
further that it leads to a correct expression for the velocity of light in a
moving medium. -According to the new version, the vibrations of the ether
are perpendicular to the plane of polarisation, even in biaxal crystals, and
thus always perpendicularly transverse to the ray: further, the matter-
particles and ether-particles are supposed to react on each other : and if
their vibrationsare synchronous, the former may even be sct in appreciable
motion by the latter. As the reaction of the matter and ether may produce
the same effect on the motion of the ether-particles as would result from
a simple variation of the rigidity or density of the ethereal medium, it be-
comes convenient to distinguish between the actual and effective values
of the rigidity and density.

It is clear that the new version of the properties of the elastic ether,
whether really true or not,? is far more satisfactory than any hitherto sug-
gested, and must replace the older versions until a better one is proposed.
Hence it becomes necessary, for those who adopt an elastic ether as the
basis of the undulatory theory, to regard (1) the ether as compressible,
even for the forces concerned in the propagation of light; (2) the actual
density and rigidity of the ether as identical for all bodies ; (8) the effective
rigidity as invariable ; (4) the effective density as different in different
bodies, and, in the case of doubly refractive crystals, in different directions
within the same body.

Tresnel’s line of reasoning, and the terms based upon it, must be abandoned.
For the great majority of mineralogical students, the chief value of the

1 Ibid., 1888, ser. 5, vol. 26, p. 521.
% 1bid., p. 538; 1889, vol. 27, pp: 240, 253: Nature, 1889, vol. 40, p\ 32
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hypothesis of an elastic ether is in the correlation of the phenomena
observed when light is transmitted through crystals; for which purpose it
is very desirable that the student should be able to reach the wave-surface,
if practicable, by means of elementary reasoning based on observed facts
of a simple character. The rigorous calculation of the motions of a
vibrating elastic medium is not a simple process: it involves, indeed,
mathematics of so high an order that the derivation of the wave-surface in
this way will always be unintelligible to the ordinary student of crystals.
On the other hand, the only comparatively simple mode of -derivation of
the wave-surface, as yet invented, that of Fresnel, depends upon assump-
tions of incompressibility and varying elasticity which are now deemed
untrue ; and further, involves for biaxal crystals a general obliquity of
trangverse vibration, not in accordance with the latest version of the
elastic theory, Under present circumstances, the process of Fresnel, even
if adopted on account of its great historical interest, must be puzzling
to the student, and inevitably lead to the acquisition of wrong views as to
the properties to be assigned to the luminiferous ether ; hence it becomes
necessary to abandon the whole process, and all those terms now in com-
mon use (ellipsoid of optic elasticity, axes of optic clasticity, coefficients of
optic elasticity) which are based upon it.

The form of the wave-surface for biaxal erystuls was really discovered in
another way.

The great difficulty in the correlation of the phenomena of the transmission
of light through biaxal erystals, as already stated, lies in the derivation of
the wave-surface, The form of the surface is too cxtraordinary to be
directly assumed either as a probable one a priori, or as suggested by ex-
perimental results. If it can be shown that the form of the wave-surface for
biaxal erystals is suggested by a simple generalisation, independently of any
particular version of the undulatory theory, and might have been brought
in this way within the province of experimental investigation, the greater
part of the present educational difficulty will be removed from the path of the
student. In fact, we shall find that it was really by a process of generali-
sation, though not indicated in the composite memoir of 1827, that Fresnel
himself was first led to the true form of the wave-surface for biaxal erystals.
The properties of an incompressible clastic ether werc mathematically
developed by him after the digcovery of the true form of the wave-surface
had been made,
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Secrion II.—Evorution oF THE OPTIcAL INDICATKIX.

In the present Section it is sought to show that a certain surface, here
termed the Optical Indicatrix, naturally suggests itself as a means of
correlation of the laws of transmission of light in uniaxal crystals; a
simple generalisation then suggests the possible existence of biaxal erystals,
and the general nature of their optical properties. The reasoning may be
arranged as follows :—

General nature of light,

Light travels with finite veloeity.

A flash of light transmitted from one body to another may thus for a
time be wholly in the intervening space ; hence the transmission of light
must be one either of matter or of change of state of matter.

Liglt 1s due to the change of state of matter.

Two rays of light of the same colour, travelling in the same direction
along the same line, may annihilate each other.

Hence the transmission of light eannot be one of matter ; it must be a
transmission of change of state of matter, and the change must be capable
of representation by positive and negative quantities.

An ether is necessary.

Light travels across interplanetary space.

Hence interplanetary space must be filled with one or more kinds of
matter, capable of transmitting a particular kind of change of state with an
enormous but finite velocity (186,000 miles a second), and for distances
amounting to millions of millions of miles. We may conveniently assume
that the exiraordinary matter is wholly of one kind, and designate it by a
special name, ether ; it must be extremely subtle, for itoffers no appreciable
resistance to the motion of the planets.

Dermeation of ordinary matter by the ether,

Light is transmitted, but with different velocities, through ordinary
matter.
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Hence either ordinary matter is itself capable of transmitting this
particular kind of change of state, or it is permeated by an ether capable
of so doing. Having regard to the enormous velocity with which light is
propagated through interplanetary ether and different kinds of ordinery
matter, we may assume that the same kind of cthor is concerned in the
transmission, and that the variation of velocity and other characters is due
to the influence of the ordinary matter on the properties of the permeating
ether.

The change of state is periodic.

If two rays, continually transmitted along the same line, annihilate each
other, annihilation again takes place if either ray is transferred through
any maultiple of a certain measurable distance along the direction of traus-
mission.

Hence, 50 long as a single ray of light is being transmitted along a line,
the state of the ether at a given instant is the same at all points distant
from each other by a certain measurable quantity, which we may denote
by A. But the continual uniform transmission of the change of state
along the line involves a continual and periodic change of state at cach
point of the line; the duration of the period being the same at all points,
and always equal to the time necessary for the transmission of the change
through the distance A along the line: if v be the distance of transmission

during the unit of time, the period will thus be %. During a single period,

the ether at any point in the line of transmission experiences all thosc
changes which belong at a given instant to all points in a length X of the
line of transmission.

The characters of an undulation.

Whatever be its physical nature, a periodic change of character at any
point is termed a vibration of the character: its maximum value, the
amplitude of the vibration: the interval of time required for a complete
vibration, its period: the state at a given instant, the phase of the vibration :
the relation between the phase and the time, the law of the vibration.
If, further, the change is being transmitted along a line or ray, the con-
figuration of the states at all points of the ray at a given instant is termed
an undulation : the least part of an undulation which includes all varictics
of phase is termed a wave, and the distance occupied by a wave, & wave-
length.

Light is an undulatory phenomenon.

Tt follows from the above that, in this general sense, light is undoubtedly

an undulatory phenomenon of some kind or other.
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Sound ts also an undulatory phenomenon.,

By similar reasoning, it follows that sound is an undulatory phenomenon.
Experiment shows that the transmission of sound is effected by ordinary
matter, and that the change of  character is one of oscillation of the material
particles, the oscillation being generally solely in the direction of the
transmission. The properties at any point of a line of transmission of
a continued uniform sound, namely intensity, note and timbre, must de-
pend on the characters of the vibration at the point, and thus on the
amplitude, period and law: experiment proves that the intensity of a
simple sound depends solely on the amplitude, and the note solely on the
period.

Intensity of light depends on the amplitude, eolour on the period of the

vibration,

Similarly, the corresponding properties at any point of a ray of ordinary
light, intensity and colour, may be assumed to depend on the characters
of the vibration at the point, and thus on the amplitude, period and law:
we may tentatively assume, from analogy with sound, that the intensity
of a simple ray depends solely on the amplitude, the colour solely on the
period,

Polarisation of light: plane of polarisation : transverss plane.

But ordinary light is capable of & change to which there is no parallel
in the case of sound. A ray of ordinary light transmitted through air
acquires distinctive characters by reflection at a certain angle of incidence
from a sheet of glass: as tested by reflection at the same angle of inci-
dence from a second plate of glass, it has different properties on different
sides ; its properties being symmetrical, however, at every point of the
path to the same two perpendicular planes intersecting in the ray: one
of the planes of symmetry is the plane of incidence and reflection from
the first plate. As the planes of symmetry of the ray are dissimilar and
can bo cxperimentally distinguished from each other, that which coincides
with the plane of incidence and reflection may conveniently be termed
the plane of polarisation; the second plane of symmetry may be dis-
tinguished as the transverse plane. A ray having the same characters,
however induced, is said to be plane-polarised.

Henee the periodic change of the cther at any point of an serially
transmitted plane-polarised ray of light is not solely related to the
direction of transmission, and thus differs in kind from that which charac-
terises sound. For the suggestion of the laws of double refraction,
preciser knowledge of the character of the change is unnecessary
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Transmission of plane-polarised rays in gluss and analogous medic.

If a plate of ordinary glass or any analogous medium be placed with its
faces perpendicular to an aerially transmitted plane-polarised ray, the light
which emerges from the glass is found to be still plane-polarised, and the
position of the plane of polarisation is found to be unaltered whatever the
thickness of the plate : this is still true, if the plate be turned through
any angle round its own normal.

As the direction of the ray within the plateis coincident with the dirce-
tion of the ray before incidence and after emergence, we may thus reason-
ably assume that, at all points of the line of transmission within the plate
itself, the periodic change of the ether is symmetrical to the same two
planes ; in which case the position of the symmetral planes of the periodic
change is wholly independent of the glass and depends only on the direce-
tion of the plane of polarisation of the incident ray., A plane-polarised
ray transmissible in any direction within such & medium may have any
azimuth of plane of polarisation whatever.

Geometrical representation of the characters of a ray of plane-polarised light.

In representing the transmission of a ray of plane-polarised light, of a

R

B
£
2,

\4

=

Plane of polarisulien
Fia. 1.

7

single given colour and given intensity, within a given medium, we have
thus three characters to consider i—

1. The line of transmission of the ray,

2. The direction of the plane of polarisation,

8. The velocity of transmission.

The direction of a plane being most conveniently defined by the direction
of its normal, the above three characters may be geometrically repre-
sented by means of two intersecting perpendicular lines, one of them
definite in position, the other only in direction: and any definite function
of the length of either may represent the velocity.

The direction of transmission O r, and the plane of polarisation O pg#
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of a given ray (Fig. 1), may thus be represented by two lines Or RN,
where B N is any line perpendicular to the plane O p q 7, and therefore
also to the ray Or: the velocity of transmission may be represented by
any function of either of the lines Or RN.

If O, 3 point on the ray, be given, and the normal of the plane of
polarisation be thken to.intersect the ray, all the characters may be
represented by means of & single line R N, not passing through the given
point;-for the line Or is then known, since it passes through O aud
interseets BN perpendicularly,

The laws of ordinary reflection and refraction accounted for by an
undulatory theory,

Two hundred years ago (1678-90), Huygens showed, by reasoning which
is really independent of the physical nature of the periodic change, though
he imagined it to be identical in character with that involved in the trans-
mission of sound, that the laws of ordinary reflection and refraction of
light are compatible with an undulatory theory. He assumed that a
general disturbance of the ether at any given point must eventually produce
disturbances at all other points of .the medium, and that in a transparent
body showing ordinary refraction the velocity of transmission of the dis-
turbance is independent of the direction ; all points on & spherical surface
having the given point for centre are thus ot any moment in a similar
state of disturbance. 1f we have regard to the arrival of the disturbance
from its origin, we may say that in this case the front of the disturbance
at any epoch is a sphere. The front of the disturbance due to a single
centre may, for the sake of brevity and generality, be ealled the ware-
surface. If the disturbance at the centre be persistent and periodie, the
surface which defines the front of the disturbance at a, given epoch passes
through points of the medium at which, notwithstanding the continual
change at each point, there is persistent identity of phase of vibration.

Huygens gave a goometrical construction for the determination of the
dircction of the refracted ray by means of the spherical wave-surface, the
direction being that of a line joining the point of incidenco of the ray to
the point of contact of a tangent planc of the wave-surface, drawn thr ough
a corresponding line which lies in the refracting surface and is normal to
the plane of incidence: if v be the velocity in the first medium, ¢ the
angle of incidence of the ray, and the size of the sphere correspond to
the lapse of a unit of time, the distance of the corresponding line from

. - .
the point of incidence iy ——:,
sin g’
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The laws of refraction of light by a crystal of calcite accounted for by an
undulatory theory,

In the case of calcite, the refraction is in general not single but double.
One of the rays, and only one, follows the laws of ordinary refraction for
all directions: hence Huygens inferred that the surface of disturbance
corresponding to this ray is the same as for ordinary media, namely a
sphere. It was necessary to assume a different form of surface of dis-
turbance to account for the extraordinary refraction of the other ray, and
the surface which first suggests itself, after a sphere, is an ellipsoid :
further, since the refraction of the second ray is the same for all diréctions
equally inclined to a special direction in the calcite-crystal, or since rays
lying in a plane perpendicular to this line obey the laws of ordinary
refraction, it is necessary for the surface of disturbance to be one of
revolution about that direction as axis. Testing this hypothesis and finding
it satisfactory, Huygens inferred from his observations that the surface of
disturbance corresponding to the second ray is really a spheroid, touching
at the extremities of its axis the spherical surface of disturbance corres-
ponding to the first ray. This relation between the surfaces has been
confirmed by later experimenters and found to hold for other crystals
analogous to those of calcite: it is undoubtedly a Law of Nature.!

The direction of the extraordinarily refracted ray is given by the same
geometrical construction as before, the surface of disturbance being taken
as a spheroid instead of a sphere.

The wave-surface is identical with the ray-surface.

Let rs IS (Fig. 2) be two wave-surfaces due to an origin O, and with
the line OrR as axis describe a cone of small angle, determining areas ab
AD upon them, There is great difficulty in imagining the exact nature of
the physical process by which an isolated ray could be propagated through
the cther by means of undnlations: still the conception of a ray of light
comes so natarally, and has been found so serviceable from the very
earliest times, that rays, rather than waves, will be used throughout the
present paper.

Having regard to the apparent rectilinearity of propagation within &
homogeneous medium, we may reasonably assume that, if light is propa-
gated by the disturbances of a medium and the disturbances at all parts of

1 tokes: Proc. Roy. Soc., 1872, vol. 20, p. 443; Comp. Rend., 1878, vol. 77, p. 1150,
Abria: Ibid., p. 814. Glazebrook: Phil. Trans., 1880, vol, 171, part 2, p. 421,
Hastings: dmer. J. Sc,, 1888, ser. 3, vol. 35, p. 60,
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the first surface are allowed to produce their effects at the second surface,
the resultant disturbance of the area 4 B is identical with that which would
directly follow from a rectilinear transference of the disturbanees at points
on the area a b to corresponding points on the area 4 B; and thus that the
length Or, which represents the distance to which the front of disturb-
ance has travelled in the direction Or in a given interval of time, also
represents the velocity of transmission of a ray of light in the same
direction. Regarded from this point of view, the surface of disturbance
or wave-surface may be termed the ray-surface,

ERay-front,

Further, if a pencil of rays having OrR for axis starts simultaneously
from O, the front of the peneil at & certain epoch is a portion of the ray-
surface containing r, and at a subsequent epoch is a portion of the ray-

Flo. 2,

surface containing R: in the limiting case, where the pencil is of extremely
small angle, its front is in the tangent planes at » and Il at successive
epochs. The plane front, which thus belongs to an extremely small penecil
including & given ray, may be briefly denoted as the ray-fromt for that
ray.

Since the ray-surface retains a constant similarity of form and position,
for the ratio OR : Or depends solely on the time, the tangent planes at
1 and r are parallel.

When the ray-surface is not a sphere, the tangent plane at any point is
in general inclined obliquely to the radius vector drawn to the point from
the origin, and a ray-front is then oblique to its corresponding ray.

In the case of calcite, the ray-surface has two sheets and consists of a sphere
and a spheroid.

Huygens was thus led to the discovery that the laws of refraction in
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the case of caleite are consistent with an undulatory theory, if the velocities
of transmission of rays of light within this mineral are determined by a
sphere and a spheroid, touching each other in the axis of revolution of the
latter.

If a line Oryy (Fig. 8), drawn from the common centre O, intersects the
sphere and spheroid in r, and 7; respectively, according to Huygens the
velocity of transmission of one ray in the direction Oy, is measured by
Or,, and of the other by Or;.

For a single direction of Or,r;, namely that of the axis of revolution COC,
the two points », and », coincide, and the rays travel with equal veloeity ;
this direction is called the optic axis of the crystal.

Plane-polarisation of each of the refracted rays.

So far we have had regard merely to the relation of the two velocities
to the direction of ray-transmission within the ealcite-crystal. It did not
escape the notice of Huygens, however, that each of the rays emergent
from a crystal of calcite differs from ordinary light : the difference is one
which he was unable to account for by his version of the undulatory
theory. It was not till more than a century afterwards (1808) that Malus
made the accidental discovery that the same change in the character of the
light may be induced by reflection from a plate of glass: to this altera-
tion, termed by Malus polerisation, the attention of physicists was largely
directed during the immediately succeeding years.

If a plate of caleite be placed with its faces perpendicular to an aerially
transmitted plane-polarised ray, the latter is in general divided at the first
surface intotwo: the two rays travel through the plate in directions mutually
inclined to each other, and, emerging from it, are transmitted through the
air with the same direction as that of the original ray : each of the emer-
gent rays is plane-polarised, but the planes of polarisation of the rays have
not the same direction; they are, in fact, perpendicular {to each other.
Further, when the plate is turned round its normal through any angle, the
plane of polarisation of each emergent ray is also displaced through
exactly the same angle : the direction of the plane of polarisation is thus
dependent on characters belonging to the plate itself: it is found to be in-
dependent of the direction of the plane of polarisation of the ray incident
on the plate.

For one of the emergent rays, the line of transmission within the plate
is continuous with the path of the ray before incidence and after emer-
gence : as the position of the plane of polarisation of the emergent ray is
independent of the thickness of the plate, we may reasonably assume, as
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before in the case of glass, that the ray transmitted within the plate is like-
wise plane-polarised, and that the plane of polarisation during such trans-
mission is identical in direction with that of the emergent ray, thus rotating
with the plate as the plate is turned round its normal.

As the emergent rays are indistinguishable from each other in charac-
ter and only differ in the positions in space of their planes of polarisation,
we may likewise assume that the second emergent ray is also transmitted
within the plate as a plane-polarised ray, but with a direction of plane of
polarisation perpendicular to that of the first. ,

It will be found that the characters of rays which have been transmitted-
through a plate of caleite can be accounted for, if we imagine that in such
a medium a plane-polarised ray transmissible in any given direction has
its plane of polarisation in one or other of two rectangular positions, which
depend on the erystal itself.

As in the case of air, glass, and analogous media, the periodic change of
the ether at every point of a plane-polarised ray transmitted within any
bi-refractive medium may be assumed to be dissimilarly symmetrieal to
two perpendicular planes; but it may be remarked that it is only the
disturbed ether which is assumed to be dissimilarly symmetrical in the
distribution of its characters.'

The plane of polarisation is related to the radius vector of the ray-surface,

Malus? discovered that the direction of the plane of polarisation of any
ray transmitted within a erystal of calcite {s determined by the direction
of thé¢ corresponding radius veetor -of the ray-surface: he showed that
the plane of polarisation for the ray Or, (Fig. 8) corresponding to the
spheroid is always perpendicular to the plane @r,C, which contains the
ray-(irection and the optic axis, and for the ray Or, corresponding to the
sphere is the plane Or,C, which also contains the ray-direction and the
optic axis: in other words, the plane containing the ray-dircction and the
optic axis is the plane of polarisation of the ray belonging to the sphere
and the transverse plane of the ray belonging to the spheroid.

The above might have led to the recognition of the possible ewistence and
the optical characters of biazal crystals,

The above facts and reasoning were known to physicists before the exis-
tence of biaxal crystals had been discovered ; further, the reasoning .is
really independent of the physical nature of the vibratory change which
constitutes light'. We proceed to prove that though the geometrical

1 See also pages 283, 3565. o
t Mém. prés, a Ulnstitut : Paris, 1811, vol, 2, p. 413
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representation of the laws of transmission of light in biaxal erystals was
suggested to Fresnel by ideas in which elasticity had a great part,
the possible existence of such erystals, and the corresponding laws of
transmission of light, might have been deduced from the above by a simple
generalisation, involving no reference either to the constitution of the
luminiferous ether or to the nature of the physical change involved in the
transmission of light; and -further, that the step was so natural a one to
take that the discovery of the true form of the wave-surface for biaxal
erystals could scarcely have been long avoided.

Another mode of geometrically representing the characters of the extra-
ordinarily refracted ray, by reference to the same spheroid, naturally
presents itself,

Draw OR, parallel to »V (Fig. 8), the tangent at r, fo the ellipse in

v

Fre. 8.

which the spheroid is cut by the plane ,0C'; OR, and Or, are said to be
conjugate to each other, and the tangent at R, is parallel to Or,, By a
well-known property of the ellipse, the area of the parallelogram of which
OR, Or, are adjacent sides is constant, whatever the direction of Or,: hence
the areais 04:00; 04 and OC being the prineipal axes of the ellipse, and
therefore conjugate to each other. But if RN, is perpendicular to Or,,
meeting it in N, and is thus normal to the ellipse and therefore also
to the spheroid at 1, the area of the parallelogram is also Or;'I,N,.
O——I‘; Z\? 0, whatever the direction of Or,.

In other words, the velocity of aray transmitted inthe direction Or, may
be represented, not only by On, but 'by the inverse of E,N,. But the

Hence Or, =
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same line R, N, determines the plane of polarisation of the ray Or,, for as
already stated, the line RN, is normal to that plane. Further, the same
line I!;N, determines the direction of the ray, for the ray passes through O
and is perpendicular to B,.V,.

Hence the direction, velocity and plane of polarisation of the ray Or,can
all be represented by means of a single corresponding line R,N,, which is
at onee normal to the spheroid and the ray.

This mode of representation naturally presents itself as soon as the
plane of polarisation is irdicated by its normal ; in fact, any attempt to
represent geometrically the observed facts of the double refraction of cal-
cite almost inevitably leads to it.

The same mode also suffices to represent the characters of the ordinavily
refracted ray without necessitating the use of a second surface.

But for any radius veotor Or, of a spheroid there are always two normals
of the spheroid which intersect it perpendicularly : one of them has just been
indicated, namely I,N,; the other is normal to the plane »,0C, at the
centre of the spheroid, and therefore always lies in the equatorial plane,
As already stated, the plane of polarisation of the ray. Or, is r,0C or r,0C :
and the normal of its plane of polarisation thus lies in the equatorial plane,
and is normal both to the spheroid and the ray. Further, the intercept
made by the ray Org upon this normal of the spheroid is 04, whatever the
direction of Oryr,: hence, if the same law as before holds for the relation of
the velocity to the intercept upon the normal of the spheroid, the velocity of

)y g
the ray Ory is —-40—3—6-' , or OC; and this is exactly the velocity required.

Hence the velocity and plane of polarisation of the ray Ur, can likewise
be represented by means of a corresponding line which is at onee normal to
the spheroid and the ray*: and this line indicates the plane in which the
ray having these characters will lie,

The characters of the refracted rays can be simply expressed by veference to
the spheroid alone,

All the characters of rays transmitted in various directions through a
crystal of caleite may thus be simply cxpressed by means of a single sur-
face, the spheroid. The relation of the optical characters of the erystal
to the geometrical characters of the spheroid is as follows :—

To every given point on a single surface, a spheroid, there in general
corresponds one ray: the direction of the ray is that of a diameter
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intersecting perpendicuiarly the normal drawn at the point to the
spheroid ; the velocity of the ray is inversely proportional to the length of
the normal intercepted between the surface and the ray ; the plane of
polarisation of the ray is perpendicular to the same normal.

For points of the spheroid lying on the equatorial circle or at the ends
of the axis of revolution, the normal passes through the centre, and the
dircetion of the ray becomes indeterminate: such a point may be re-
garded as the limiting case of a small circle ; and thus corresponds, not to
a single ray, but to an infinity of rays lying in a plane perpendicular
to the normal, all transmitted with the same velocity, and all having the
same plane of polarisation.

In the case of singly refractive substances there is a spherical surface of
reference for which the same general relations are true,

Generalisation,

But it immediately snggests itself that in the case of a erystal like
barytes, of which the morphological development and the physical charac-
ters are dissimilarly symmetrical to three rectangular planes, the surface
of reference, if such a surface exists, is more likely to be an ellipsoid with
three unequal axes than an ellipsoid of which two axes are equal. In fact,
the correspondence cf the optical and the morphological symmetry of
erystals was announced by Brewster in 1819.

In the fourth Section are deduced the laws of transmission of light in
a crystal for which the surface of reference is an ellipsoid having three
unequal axes ; starting with the hypothesis that the relations between the
geometrical characters of the surface of reference and the optical characters
of the medium are identical with those which have just been found to
obtain when the surface of reference is either a spheroid or a sphere,

The Optical Indicatriz.

To the surface of reference the term Optical Indicatriz may be assigned ;
this suggestive term has the advantage of being equally applicable whether
the surface of reference is an ellipsoid, a spheroid, or a sphere, and it i
independent of all versions of the undulatory theory; the adjectival prefix
may be omitted when the term Indieatrix involves no ambignity, The
Indieatrix is identical in form with the ellipsoid of elasticity of varioug
authors, the ellipsoid of polarisation of Cauchy, the ellipsoid of indices of
Mac Cullagh, and the index-ellipsoid of Liebisch,
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Relation of the optical indicatriz to the general symmetry of the crystal.

In regard to the arrangement of its faces, every crystal i found to
belong to one or other of six types of symmetry, distinguished as cubic,
tetragonal, hexagonal, ortho-rhotnbie, mono-symmetric, and anorthic :
farther, it has been demonstrated by the mathematician that the types of
crystalline symmetry thus met with are precisely those which are pre-
sented by systems of planes of which the relative positions can be ex-
pressed by means of whole numbers, a law to which the faces of crystals
are found to conform. Further, we are led by experiment to the induction
that a type of symmetry is such, not only for the arrangement of the faces
of a erystal, but for all the physical characters : the planes of symmetry
characteristic of the types are thus planes of general symmetry.

On the other hand, a plane may be one of symmetry for a particular
character withont being a plane of general symmetry of the crystal : the
type is thus not necessarily determinable from the symmetry of the erystal
with respect to a single character. For example, a crystal may have the
six faces of o cube and really belong, not to the cubic, but to the tetra-
gonal, or even the ortho-rhombic type; observation of some character
other than the geometrical being thus necessary to the distinction : again,
o plane inclined at any angles to the planes of general symmetry of a
cubic crystal, and any plane containing the morphological axis of a tetra-
gonal or hexagonal crystal, is a plane of symmetry for the changes pro-
duced by dilatation on change of temperature, and is generally not a plane
of symmetry for the facial arrangement.

The above induction requires a plane of general symmetry to be a plane
of symmetry of every indicatrix : on the other hand, a plane of symmetry
of an indicatrix is not necessarily a plane of gencral symmetry of the
cerystal.

Hence, if the most general form of the indicatrix be an ellipsoid, it wiil
follow that in the ease of an ortho-rhombie erystal the axes of any indica-
irix must coincide with the three azes of general symmetry. For a tetra-
gonal or hexagonal erystal, the symmetry of the indicatrix with respect to
the general planes of symmetry requires two of the axes of the ellipsoid to
be equal, and the ellipsoid to be one of revolution about the morphelo-
gical axis, For a cubic crystal, the symmetry of the indicatrix with respect
to the general planes of symmetry necessitates the equality of all the axes
of the ellipsoid, and the surface becomes a sphere,

The above is true for ali colours of the light, though the relative mag-
pitudes of the axes, both for the general ellipsoid and the ellipsoid of revo-
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lution, may vary with the colour : further, it is true for all temperatures
of the erystal consistent with the stability of the structure, for a plane of
general symmetry must retain that character between the assumed limits
of temperature.

In the case of a mono-symmetric crystal, the induction still requires the
plane of general symmetry to be aplane of symmetry of the indicatrix for
all colours of light and for all temperatures consistent with ecrystalline
stability; but the positions and dimensions of the two axes of the ellipsoid
lying in the plane of general symmetry are otherwise mdependent of the
latter, and will in general vary both with the colour of the light and the
temperature of the erystal,

And in the case of an anorthic erystal, in which there is a centre, but no
plane, of general symmetry, the positions and dimensions of all three rec-
tangular axes of the indicatrix corresponding to a given colour or tempera-
ture are free from limitations by a plane of general symmetry, and will
likewise vary both with the colour of the light and the temperature at
which the determinations are made,

Secrion I1I,—NATURALNESS OF THE METHOD,
Objections,

To the above reasoning, by which it is sought to prove that in the case
of calcite the reference of the two sheets to the spheroid alome is one
whieh it is natural to make, and not a mere geometrical artifice only to
be discovered after the truth of the generalisation has been established,
it may be objected that the reference would in such case- have been made
long before the present century. It must be remembered, however, that
the consequent generalisation would have been a barren speculation at a
time when the polarisation of light by reflection was still undiscovered
(1808), and the optical charaeters of most doubly refractive crystals were
still beyond the powers of observation; indeed, it was not till the decade
1810-20 that any serics of numerical data were available for the testing of
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& theory: even the accuracy of the construction given by HMuygens for
the determination of the directions of the refracted rays in calcite was
discredited by most physicists at the beginning of this century.

But it may be fairly objected that if the above reference and generalisa-
tion be natural, the discovery of the process would have preceded the
development of any elastic theory of double refraction, And, in fact, it
was really by a process of generaligation that Fresnel’s discovery of the
true form of the ray-surface for biaxal erystals was made. When the
above argument was written, the detailed history of Fresnel’s theory had
not come to the notice of the aunthor: as. the facts are not generally
known, and have an important bearing on the true significance of the
elastic theory of double refraction, it becomes desirable to explain the
position.

The development of Fresnel's theory.

T'resnel's celebrated memoir on Double Refraction was not printed till
1827: in that year, and before the issue of the mentoir, Fresnel died at
the early age of 89, after years of illness, In the memoir are incorporated
papers submitted to the Academy at different dates in the years 1821
and 1822, and it oceupies no less than 182 pages of large size. For the
sake of brevity, Fresnel made many omissions from the papers as origin-
ally submitted to the Academy, and for the sake of clearness adopted a
synthetic mode of treatment: the result is that the memoir as printed
gives 1o clue to the real order of discovery, and the reader is apt to infer
that Fresnel discovered the true form of the ray-surface a priori by means
of equations relative to the elastic forces evoked by the disturbance of
an incompressible elastic ether. The following statement by Aldis! exem-
plifies this, which is still a very general impression :—

“ Fresnel's theory is undoubtedly not a sound dynamical theory. It
has, however, the great merit of representing accurately the facts of
double refraction as far as experiment at present has tested them, and in
one instance has led to the discovery of facts (the conical refractions) pre-
viously unobserved. Probably, when the Newton of Physieal Optics has
succeeded in linking together all the phenomena of Light into one
continuous chain, the name of Fresnel will yet be remembered with a
reverence akin to that which astronomers feel for Copernicus and Kepler.”

The real order of development was of course known to some of Fresnel’s

18170W- Sg'sAldis' A Chapter on Fresnel's Theory of Double Refraction. Cambridge,
) Do 40,
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contemporaries, but to the next generation it was a mystery ; it was not
till forty years after Fresnel's death that the mystery was dispelled by the
publication of the original memoirs, which had been carefully preserved
in the family. Verdet,' one of the editors of Fresnel’s collected papers,
makes the following remarks:—

It may seem odd that reasoning which is incomplete and inexact in
two points should have for result one of the best confirmed of the Laws of
Nature. But we have seen that this law became manifest to Fresnel as the
result of a generalisation quite similar to the generalisations which have led
to most great discoveries, When he wished afterwards to account for the
law by a mechanical theory, it is not astonishing that he should have
led the theory, perhaps unwittingly, towards the end which he already
knew of, and that, in his choice of hypotheses, he should have been de-
termined, less by their intrinsic probability, than by their agreement with
what he was justified in believing to be true. We have seen some traces
of the progress of his ideas in the marginal notes which he had added to
the manuscript of memoir No. 88, a memoir here printed for the first
time. In the later memoirs we find nothing but the explanation, in
different forms, of the mechanical theory by which he tried to' demon-
strate a posteriort the laws which direct intuition had revealed to him.”

After this clear statement on the part of his editor, it is obvious that
Fresnel’s theory of double refraction, however ingenious, has no claim
to credit for its predictions: the latter are rcally a direct consequence
of the generalisation which had preceded the theoretical development of
the vibratory properties of an elastic but incompressible ether.

Preliminary attempts at generalisation.

The first attempt at the generalisation of Huygens’ construction had sug-
gested a sphere combined with a concentric ellipsoid having three unequal
axes as the most general form of ray-surface: this assumed that in the
most general case one of the rays obeys the ordinary laws of refraction.

It was found, however, that the refraction of the second ray as experi-
mentally determined is inconsistent with an ellipsoidal form of ray-
surface. Nor would such a combination of ray-surfaces account for the
optical characters of a biaxal erystal: for if a concentric sphere and
ellipsoid meet each other, they must either touch at the extremitics of a
principal diameter, or intersect in two curves; in the former case there
would be only one direction of equal ray-velocity; in the latter case this

i Euvres Completes d’A. Fresnel : Paris. 1868, vol. 2, p. 827,
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character would belong to every diameter which passes through the curves
of intersection, and thus to an infinity of lines lying on the surface of a
cone.

In 1819 Biot made the important discovery that the results of optical
measurement are consistent with two empirical laws, both of them
reached by processes of generalisation : in combination with the assump-
tion that one of the rays obeys the laws of ordinary refraction, they
completely express the polarisation and velocity of the second ray in terms
of its direction in the crystal.!

Ist law. We have seen that in the case of a uniaxal erystal, two rays
transmitted along any given direction had been shown by Malus to have
their planes of polarisation respectively coincident and at right angles with
the plane containing the ray-direction and the optic axis : from this Biot
was led by generalisation to the discovery that in the ease of a biaxal crystal
the planes of polarisation are the internal and external bisectors of the
angle between the two planes which contain the ray-direction and pass
each through one of the optic axes.

2nd law. Ip the case of a uniaxal erystal, if v, and v, be the velocities
of transmission of the two rays transmissible in a direction inclined at an
angle o to the optic axis, it follows from Huygens’ construction that the
ratio (»')'11/.4—' é):sinﬁo- is constant for all directions : noticing this, Biot
was led by generalisation to the discovery that in the case of a biaxal
crystal the ratio (;1;;-5?) sin o, sin o, is eoustant, o, o, being the ineli-
nations of the ray to the optic axes.

The second law, combined with the assumption that the velocity of ono
of the rays is independent of its direction, leads to a surface of the fourth
degree, tangent {0 a concentric sphere at the ends of two diameters, as the
ray-surface corresponding to the second ray.

For,let 1 0n 10 n A v bedirection-cosines of the optic axes and of the
second ray respectively (Fig. 9) :

then cos o, ==\ 4+ nv,and coso, = — IXN +nv.

If » be the variable velocity of the second ray, and @ be the constant

veloeity of the first ray, it follows from the above law that

1 .
F-;é';ksm oy 8in oy,

where % is a constant.

1 Mémoires de UAcad, de Ulnstitut de France, 1820, vol, 3, pp. 228, 233,
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1 1\?

Hence 3, (}2—- ) =(1+-cos o) (1 —cos o) (1+cos o) (1 —cos o).
Bubstituting the values of cos o, and cos o, and writing

z %

=2 pu =."{, v==—, we have for the equation of the
r r r

“3

second ray-surface,
1 2\ 2

8 (1 - gl) =(le+nz+7) (letna—r) (le—nz+r) (le—nz—r),
an equation of the fourth degree. The sccond ray-surface meets the
first ray-surface (r=a) at the intersection of the latter with the four
planes, lr +=nz=+a=0, and these planes are tangent to the sphere at the
extremities of the optic axes: hence the two surfaces are; tangent to each
other at the same points,

The Ristory of the ray-surface.

At the advent of Fresnel, the emissive theory of light still held almost
undisputed sway in the scientific world, notwithstanding the interference
discoveries which had been made by Dr. Thomas Young, many years
before. Convinced that the true explanation of interference was furnished
by the undulatory theory, Fresnel devoted himself with ardour to its
theoretical and experimental development, in which he had to sustain
the attacks of Laplace, Poisson and Biot, who were firm believers in the
truth of the older theory. After successful explanation of diffraction and
of the polarisation-colours of thin plates on the undulatory hypothesis,
Fresnel in 1821 attempted to solve the problem of double refraction.

Young had already suggested {12 Jan. 1817) that the vibrations of the
Iuminiferous ether are motions transverse to the ray, and had compared
the trapsmission of a ray of light to the fransmission of a transverse
vibration along a stretched cord:® Fresnel himself, in conjunction with
Arago, had shown experimentaily that two rays polarised in perpendicular
plancs are incapable of mutual interference, thus confirming the idea that
the motion of the ether of a plane-polarised ray is wholly perpendicular to
the direction of transmission, so long, at least, as the medium is singly
refractive.

Fresnel therefore suggested that the difference of velocities of the two
rays transmissible in the same direction in a doubly refractive medium may
be due to differences of elastic force evoked by equal displacements of
cthereal particles in different directions: the same suggestion bad been

1 Burres Complites d’A. Fresnel : vol. 1, p. 684 ; vol, 2, p. 742,
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published by Young'in 1809, before -the idea of transverse vibrations
had presented itself. Assuming that the ethereal elasticity, in the
case of a uniaxal crystal, is the same for all directions of displace-
ment perpendicular to the optic axis, and different from that evoked by
displacements parallel to- i, and that the vibrations are always perpendi-
cularly transverse to the ray’ (an assumption he departed from later),
Fresnel showed that the vibration of the ordinary ray miust be perpendicular
to its plane of polarisation; for in this case the vibration, being always
perpendicular to the optic axis, evokes an elastic force of which the
magnitude is the same whatever the direction of the ray, The vibration
of the extraordinary ray being likewise assumed to be perpendicular both
to the ray and its plane of polarisation, the elastic force evoked by it will
vary with the direction of the vibration, and thus the velocity will depend
on the inclination of the ray to the optic axis.

But Fresnel® soon saw that, if such an explanation ig true, neither of the
rays transmitted in a biaxal crystal can have a velocity independent of
the direction, for in such a crystal there is no direction smch that the
optical characters are the same in all directions equally inclined to it.
Having submitted this- inference to the test of experimeht, Fresnel
announced its confirmation in September 1821, thus completely upsetting
the ideas which then prevailed as to the forms and relations of the two
ray-surfaces of a biaxal crystal.

Further developing the theory, Fresnel' showed (November 19, 1821)
that if the ethereal elasticity be proportional to the square of the velocity,
a8 in the case of the longitudinal vibrations of an elastic medium, a
surface such that any radius vector represents the square of the elastic
force evoked by a unit displacement in its direction is, in the case of a
uniaxal crystal, a spheroid (distinet from the spheroidal ray-surface itself),
if the double refraction is small. Conversely, lines measured in a direction
perpendicular to a diametral plane of the auxiliary spheroid, and having
lengths equal to the maximum and minimum radii vectores of the section,
would approximately represent the velocities with which vibrations, parallel
to those radii vectores, would be transmitted along the normal of the plaue.

It then suggested itself to Fresnel that-an ellipsoid with three unequal
axes might be a more general” form of this surface of elasticity, and that
the same construction might hold for the determination of the approwi-
mate velocities of the rays having a given direction, The two circunlar

Y History of the Inductive Sciences ; by Whewell: London, 1857, vol. 2, p. 329,

8 Euvres Completes &’A. Fresnel : vol. 2, p. 281,

8 Ibid., p. 257.

¢ Ibid., pp. 285, 304, 306,
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sections of the cllipsoid immediatoly account for the existence of two
optic axes, for there will be only one velocity of transmission along their
normals: again, the planes of polarisation for a given ray-direction are at
right angles, for the corresponding vibrations are parallei to the axes of the
diametral section perpendicular to the common direction. It remained to
discover whether the two empirical laws established by Biot were geome-
trically consistent with the form of ray-surface suggested by the above con-
struction: and this being found by Fresnel to be very approximately the
ease, the true form of ray-surface was at last determined.

In this way, however, it presented itself as an approximation, truc only
when the double refraction is small : it was not till later (26 Nov, 1821)
that the hypothetical form of the surface of elasticity' was changed from an
cllipsoid to a surface of the fourth degree: with this hypothesis the ray-
surface already obtained as an approximation appeared as the true ray-
surface, independently of the amount of the double refraction of the
medium,

It follows from the above that Fresnel’s discovery of the form of the
ray-surface for biaxal crystals was really arrived at by a geometrical
generaligation of Huygens’ ray-surface for uniaxal crystals, and that the
geometrical relation used in the generalisation was suggested by the con-
ception of a plane-polarised ray as due to vibratory motion perpendicular
to its direction.

The true nature of the luminiferous ether,

Notwithstanding the success with which so many optical properties have
been explained on the hypothesis that light is a vibratory motion of an
clastic ether of which the effective density depends on the permeated
matter, it would be wrong to infer that light is actually due to such a
vibratory motion. It is conceivable that other hypotheses may likewise
lead to similar results: and, indeed, any other quantities about which the
same general assertions may be made and which obey the same mathe-
matical laws will satisfy the equations and furnish other analogies, In
fact, Gibbs® has lately shown that the equations which result from the last
version of the elastic theory have a corresponding electrical interpretation.

Again, acecording to Clerk Magwell, light is not a vibratory motion due
to elasticity, but an electro-magnetic vibration (whatever that may be) ; and
he showed that the velocity of transmission of electro-magnetic action in

L (Euvres Complétes d'A. Fresnel : vol. 2, p. 338,
¥ Phil. Mag. 1889, ser. 5, vol. 27, p. 238,
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free ether is identical with that of light. The recent experiments of Hertz
have placed the undulatory character of electro-magnetic radiation beyond
the region of hypothesis, and it is now experimentally established that
olectro-magnetic waves and light-waves differ only in length; while the
wave-length for sodium-light is *000589 millimetres, the short electro-
magnetic waves produced by Hertz had still a length of 2 metres. On
the other hand, it seems that electro-magnetic actions are inexplicable as
mere vibratory motion of an elastic ether : Professor Fitzgerald,! who has
given much thought to the mechanical representation of the ether, points
out that ¢ if magnetic forces are analogops to the rotation of the elements
of & wave, an ordinary solid cannot be analogous to the ether, because
the latter may have a constant magnetic force existing in it for any length
of time, while an elastic solid cannot have continuous rotation of its
elements in one direction existing within it.”

The educational difficulty.

Taking everything into consideration, it secems undesivable, from the
purely educational point of view, to continue such a synthetic mode of
treatment as was adopted by Fresnel in the memoir of 1827, The
subject of the optical properties of crystals is so extensive that it is un-
satisfactory to make all the laws appear to depend upon an hypothesis of-
the truth of which we are not convinced : otherwise it becomes necessary
cither o keep the student in ignorance of the doubts as to the truth of
the hypothesis, or to raise a feeling of distrust as to the accuracy of every -
deduection therefrom. It would seem better to develop the subject by
means of analogy and experiment, and to assign a subordinate importance
to the mechanism of the ether.

Three other modes of generalisation.

In addition to the method explained in the last Section there are at least
three others by which a generalisation of Huygens' construction may
be arrived at. One of them depends on the fact that the wave-surface is
an envelope.

If Of.f, (Fig. 4) be any line intersecting the sphere and spheroid,
and we consider a section of the surface by a plane containing the optic

axis and the given line, it follows that Of, = Q%J—P.O—C , where OR, is per-
1

1 Nature, 1890, vol. 42, p, 173.
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04-0C

04
lines Of; Of,, which represent the veloeities of the wave-fronts /i1, f.g, are
inversely proportional to the lines OR,; and OAd, or to the axes of the
ellipse in which the spheroid is intersected by a plane parallel te the
wave-fronts f17; £, ¢,.

Huygen's wave-surface is thus the envelope of planes which are
parallel fo the same central section of the spheroid, and pass through
those two points on' the common central normal which aré distant from
the centre by lengths inversely proportional to the axes of the section.
On generalising this result, by the substitution of an ellipsoid with three
unequal axes for the spheroid, Fresnel's wave-sarface is obtained :

pendicular to Of,, and that O, is equal to OC or Hence the

N

P
Fie. 4.

this generalised construction is virtnally identical with the one employed

by Fresnel in the memoir of 1827 ; the only difference being that he

used the inverse of the ellipsoid instead of the ellipsoid itself.

The two other geometrical constructions, which present themselves for
the generalisation of Huygens' construction, only appear indirectly : they
depend on corresponding relations between the rays or ray-fronts and the
polar reciprocal of the indicatric,

Advantages of the method lere suggested.

There are thus two purely geometrical processes, which directly pre-
sent themselves for trial as being possible modes of representing the
optical characters of those erystals which belong to a lower type of general
symmeiry than the uniaxal; both lead fo identical results, If we are
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compelled to select one or other of fhese processes for use as an educa-
tional instrument, there can be no doubt on which the choice must fall.

The method based on an envelope is ‘so far wanting in simplicily that
Fresnel himself gave no rigorous solution of the equations: this was sup-
plied by Ampére, and it was not till even a decade later that the less
complicated mode of elimination, now generzlly given, was invented by
Archibald Smith., Further, the construction yields the wave-surface in
such a way that its singularities are not obvious, and were only remarked
by Sir William Hamilton several years after Fresnel's death,

On the other hand, as was shown in Bection II, the geometrical basis
here advocated naturally suggests itself as soon as any attempt. is made
to represent geometrically the observed optical properties of uniaxal
crystals: we shall further show that it readily furnishes the equation of
the ray-surface without demanding any knowledge of the differential
calculus or any determination of maxima and minima; that it im-
mediately suggests all the singularities of the ray-surface; and that,
in faect, most-optical problems are reduced to a form in which their solu-
tion can be effected by the elementary geometry of the ellipsoid. We may
add that the employment of au additional ellipsoid, the polar reciprocal of
the first, is rendered unnecessary, and a continual source of confusion to
the student is thereby removed,

SectioN IV.—Debucrion oF THE OpTica. CHARACTERS CORRESPONDING
TO AN ELLIPSOIDAL INDICATRIX.

General Relation.

The characters of a ray of plane-polarised homogeneous light transmitted
within a medium are indicated by geometrical characters at a corresponding
point on an ellipsoid ; the direction of the ray is that of a diameter in-
tersecting perpendicularly the mormal drawn to the ellipsoid at the cor-
responding point ; the velocity is inversely proportional to the length of the
normal intercepted by the ray ; the plane of polarisation is perpendicular to
ihe normal,

It is required fo deduce the relations of the optical characters for
different directions in the medium,
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The order of deduction is as follows :—

Arts. 1-15 relate to rays in general; Arts. 16-20, to the particular ray-
directions here termed bi-radials; Arts. 21-40, to ray-fronts in general;
Arts, 41-44, to the particular front-normals here termed di-normals ;
Arts, 45-52, to the bi-radial and bi-normal cones.

1. The construction of the ray-surface.

Lt a%® 4 0y + ¢*:* = 1 De the equation of the indieatrix; a, b, ¢
being in descending order of magnitude: O the centre of the indicatrix :
2’ y' 2' the co-ordinates of R, a point on the indicatrix: NOr a line
intersecting the normal EN perpendicularly (Fig. 5).

‘According to the above relation, the direction of the ray corresponding to
the point B of the indicatrix is given by the line NOr, the velocity of the

ray is measured by 7{17\7 : the plane of polarisation is perpendicular to BN,

Fia. 5,

1
Take the length Or ecqual to BN the locus of the points », eor-

responding to all positions of R on the indicatrix, will be the ray-surface
of the medium for the given simple colour: since the veloeity of trans-
mission of a ray of light of that colour along any radius vector of the
surface is measured by the length of the radius vector.

The propositions of the present Section are stated in'a form which is
independent of any particular version of the undulatory theory: it may
be remarked, however, that according to the latest version of the elastic
theory, RN is the direction of vibration for the ray Or; according to
Fresnel's version of the elastic theory and the present statement of the
electro-magnetic theory, the direction of vibration is R0),!

1 Philos. Magazine, 1888, ser. 5, vol, 26, p. 628: Electricity and Magnetism, bt/
J Clerk Mazwell ; Oxford, 1881, yol. 2, p. 404; Nature, 1890, vol. 42, p. 174.
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., The symmetry of the ray-surface.

From the mode of econstruction, it is evident that the planes of symmetry
of the indicatrix are also planes of symmetry of the ray-surface.

8. The sections of the ray-surface by the planes of symmetry.

The section of the ray-surface by each plane of symmetry consists
of a circle and an ellipse ; the radius of the eircle is the inverse of that
axis of the indicatrix which is perpendicular to the plane of the section ;
the ellipse is similar and similarly situated to the section of the indicatrix
by the same plane. This may be proved as follows:—

Let 404, BOB, COC, be the principal axes of the. indicatrix, and
1
b
the ray-surface by one of the planes of symmetry, say 40C (Fig. 6).

OA= l, OB = —, 0C= l: it is required to determine the section of
a 14

=}

L
C
Fia. 6.

a. By considering & geries of points in a small ring surrounding the
point B on the indicatrix, it is seen that in the limit the point D itself
corresponds, not to one ray, but to an infinity of rays, all lying in the
plane 40C; for the agis OB is the normal of the indicatrix at B, and
intersects perpendicularly all radii vectores of the indicatrix which licin the
plane 40C. Further, the length of the normal at B intercepted by each
of the raysis OB : hence the velocity of each ray corresponding to the
point B is Ol-gor b, and a circle of radius b, situated in the plane 40C,
is on the ray-surface (Fig 7c).
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b. For a point B on the indicatrix, lying in the plane 4 0C; the normal
RN of the indicatrix lies in the plane 40C, and is also normal at the point

R to the elliptic section ACAC: if ONris perpendicular to RN and
1 . . . .
Or= BN Or ig by construction a radius vector of the ray-surface (Fig. 6).

If R' be a point.in which Op intersects the indicatrix, OR and OIY are
conjugate to each other, for Or being perpendicular to BN is parallel to
the tangent of the ellipse at R: hence the product OR"RN, which
measures the area of the parallelogram of which OR OR' are adjacent

sides, is constant, and equals the product OA4-0C or %é'

Hence, Or = ac OR'
The locus of r is thus an ellipse, similar and similarly situated to the
ellipse 4 CAC, and having ac times its dimensions : its semi-axis in the
line 04 will thus be ¢, and its semi-axis in the line OC will be « (Fig. 7c).

*
el

°~‘lll\lﬂlﬂ ([ud

"«umum

%

Fre. 7a. Fie. 78. Fre. 7c.

¢. To any ray lying in the plane 40C no other normal of the indicatrix
is perpendicular : hence no radius vector of the ray-surface, other than

the above, lies in the plane 40C; the circle 2°+2?=8% and the ellipse
2
§+% =] are thus the only curves of intersection of the ray-surface with

the plane 40C (Fig. 7c).
d. And the section of the ray-surface by the plane of symmetiry

2 3
BOA is a circle 2%4-y*=¢ and an ellipse %+Z—2=1 (Fig. 7a).
e. Similarly, the section of the ray-surface by the plane of symmetry

2 3
COB is a cirele y*+22=4%, and an ellipse %+§;=1 (Fig. Ts).
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f. On consideration of the relative magnitudes of «, b, ¢, it will be seen
that in one of the planes of symmetry the circle falls wholly within the
ellipse ; in another, the ellipse falls wholly within the cirele ; in the third,
containing the longest and shortest axes of the indicatrix, the cirele and
ellipse intersect each other in four points lying at the extremities of two
diameters s, 3, 3, s,

g. TFor any direction of ray lying in a plane of symmetry, there are
thus two possible directions for the plane of polarisation, perpendicular to
each other ; and in general each plane of polarisation corresponds to a
different velocity of transmission in the given direction. For two directions
of the ray, those of the diameters s,s,, s.8; the two velocities are equal
(Fig. 7o),

If 20 2 be the co-ordinates of one of the points s, we have

w2
%+§2= 1 and 2® - 2* = b*: hence
a? 2?
& (a“ — %) =R ® = 02)'

If A O v be the direction-cosines of a diameter Os, the relation may also

be written as

[ a2x2 021'2
¥ - a? + b - ¢
The angle 5,00 ig given by the relation

of(a® = %) N/(l_}’)

tan 5,00=20m— ) J(x T

=0,

b
h. In each of the planes OBC 004 OA4B a pla.ne-polarised ray is
thus transmissible with the velocity @ & or ¢ respectively, whatever its
direction in the plane: hence, by the general principle of undulations,
the refraction of these rays by a surface perpendicular to the symmetral

4 v
plane will be ordinary, aud the index of refraction will be %, %, = respec-

tively; v being the constant velocity of transmission in the other
medium. If a3y be the values of the index of refraction of the rays in
each of the above planes, for which the index of refraction is independent
of the direction, we must have

1 11
b o._---"--
“ [V

af3 vy ave termed the prmetpal indices of refroction,
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4. Given the co-ordinates a'y'z' of R, to find the velocity r of the
corresponding ray Or.

The velocity of the ray Or is measured by R!Z”V (Fig. 5): but RN,
being the normal of the indicatrix at the point B and perpendicular to OV,
by construction is equal to the perpendicular drawn from the origin O to
the plane %'z 4 b%'y -+ ¢%'2 = 1 which touches the indicatrix at R. If
p be the length of this perpendicular

= N(ata"? 4 by + "),

1 1
Henee P pin e = 0% My ok

oS3 I

7 being the length of that radius vector . the ray-surface which corresponds
to the point I? of the indicatrix.

B. Given the co-ordinates o' y' 2’ of R, to find the direction-cosines of
the normal of the plane of polarisation of the corresponding ray Or.

The plane of polarisation, being perpendicular to the normal N (Fig.
5), is parallel to the tangent plane of the indicatrix at the point B ; the
equation of the tangent plane may be written in the form

e w+pb%y'y - pc'z=p.
Hence the direction-cosines of the normal of the plane of polarisation
are
pa’a!, pby', pe'';
ale b‘.’.yl 82»3' .
oo —, L, 1=
r r r
where 72 =atp'? 4 bYy'2 4 ct2",

8. Given the co-ordinates z'y's' of R, to find the direction-cosines of

the corresponding ray Or,
.. . . . . o’ by %
The direction-cosines of RN (Fig. 5) being ——, ——, —» and
sy . 2y 2 .
those of OI! being il where 7' = OR, the direction-cosines Akl
of a line perpendicular to both RN and OR, and therefore to the plane
RON and all lines therein, are given by the equations:—
ha' 4+ Ly'4 12'=0
ha’s' 4 kD' +lc%'=0:
hence
ok k l
‘I/TQ" (bz’;‘éz) POy (02 — a;»,) =wlyl ((l"’ _ b:’)'
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If X u v be the direction-cosines of any line whatsoever in the same plane
Mo+ pli+v1=0
or \y'? (*— ) 4-p2'a’ (F—a®) +va'y' (a—1%)=0.
Let the line A u v coincide with Or, in which case it is at right angles to
2 2 2,7
BN, of which the direction-cosines are a—;—, 1)7, 0—: ; we thus have
APz -+ pbPy' Hve®' =
Determining the ratios A : p: v from the last two equations, we get
A
4 B 0C
where
4 = ' HP—a?) ~ 2y W (a?-0) =o' (r*—d7),
B = y'2"a(a®—=1*) = y'2" A% =y'(r’—b7),
0 — Zryvz b2 (62__62) I l2a (C _”2) =z'(,r.. ..) ;
A v
r x'(?"‘—az): e —Ii‘) = Z(F=¢)
in which 2= a*a'?4-b*y"* 4 ¢*2'%, as before.
These equations determine the direction-cosines Ap v of the ray Or cor-
responding to the point &'y'2’ or R,

7. The equation of the ray-surface.

The co-ordinates of 7 being vz, we havex=\r, y=pur, 2=vr: Apv
being the direction-cosines of the ray Or.

Hence, substituting these values in the last set of equations,

[

& y 2
et r:—0b? g
g yl -

— =
Each of these fractions is equa] to
2

a*x +I'!/ bz+"~ — &

a’rx +b2yJ gy
But the denominator of the last expression is zero; for by construetion

. . z 2 . .
the line Or, of which the direction-cosines are o % —, is perpendicular

b
to I'N, of which the direction-cosines are — s (A t. B).
Henece the numerator is also zero; for the fractmns equivalent fo the
expression are never all of them indeterminate, and are never infinite.

atr? bap X
Thus., 2+ zy+ 0;
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this is the equation of the ray-surface, for it expresses a relation
between the co-ordinates x y £ of any point » lying in it.
The equation may also be written in the form
@' ay U0 oy O e s
+t S e a A=,

P

or
22

a? s 2
S + ey + ,,.2_02=1'
8. Given \pv, the direction-cosines of a line of transmission, to
Jind r; v, the velocities of the corresponding rays Or, Or,
Substituting the values #=\r, y=pr, 2=»r in the equation of the ray-
surface, we have

2y 2 2. .2 2,,2
L e
and, multiplying out,

™ (@34 bt-c%?) — 72 {a? (B2 c?) A2 12 (e2-+a?) i B (a2+82) o3} 22 =0,

This being a quadratic equation in #3, there are in general, for given
values of X p v, two solutions, say r,* 7% and thus two velocities of trans-
mission in the given direction.

A geometrical solution is given in Art, 15.

The above equation may sometimes be conveniently written in the form

Aﬂ ’L2 1/7
T it 1t 1=
PR RTR AT

9. Given \ p v, the direction-cosines of a line of transmission, to find
the co-ordinates ' y,' z,', ' yy' 2)' of the points B, I}, of the indicatvixw which
correspond to the rays Ory, Or, respectively.

Having found r® and % as indieated in the last Article, the co-

ordinates ' ¥, 2/, @' y,' 2’ are given by the equations (Art. 6):—

171' _ :1/1 14 z17
== e =L, (),
ri—a? PP ri—ct
and
z,! Yo' N
I - S S ) (say):
A v

P s Sy
remembering that
@'z, - Vy," 2,7 =1,
a'nd alw"s_*_ bﬁy.‘lz_}_clzzﬂ:l,
since the points R, R, are on the indieatrix,
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10. The points R, R,, corresponding to the rays Or, Or, transmissible
along theline Nuv, are in a plane conjugate to that line.

Since the normals of the indicatrix at R; B, are both perpendicular to
the line A u » we have

A@%xy 4+ pby, 4 veizy =
Aatzy 4+ pbPyy' + vetz' =0,
Hence the points IR, R, are in the plane
A+ by + ve*z =0,

This is the equation of a plane passing through the centre of the indicatrix
and parallel to the planes which touch the indicatrix at either of the points
where the line \ i » interseets it.

It is also obvious geometrically that the tangent planes at I?, I, are
both of them parallel to Or, and that Or is therefore parallel to their line
of intersection; Or is thus conjugate to the plane containing the points
0, Ry, B

And it is geometrically evident that at al! points of the section made by
the conjugate plane the tangent planes o the indicatrix are parallel to, and
therefore their normals perpendicular to, the conjugate line Apv: the
points B, R, are those of the section for which the normals of the indicatrix
are not only perpendicular to the line X x », but intersect it.

11. Given the direciion of transmission, to find the positions of the cor-
responding points Ry I, in the conjugate plane.

From the last Article, it follows that the tangent planes to the indica-
trix at its intersection with the conjugate plane form a tangent cylinder,
having its axis parallel to the direction of transmission. Let UKV be the
curve of contact of the eylinder and indicatrix (Fig. 8) : R, Ii, are some-
where on the curve UKV.

As a line is only perpendicular to its conjugate plane when it coincides
with an axis of the indicatrix, Or, the axis of the cylinder, is in general
oblique to UKV, the conjugate plane,

Let U'K'V', U”K"V" be sections of the eylinder by two planes per-
pendicular to its axis ; they are in general ellipses: let K"KK' be any
line on the cylinder parallel to the axis, and K''L”, KL, K'L', be the normals
of the cylinder at the points K", K, K’, respectively ; they are evidently
parallel to each other.

But KL is also the normal of the indicatriz at K, for the eylinder and
indicatrix are tangent to each other at that point: also K'L’ lies in.the
plane U'K'V", since that plane is perpendicular to the axis of the cylinder
hence K'L' is & normal of the ellipse U'K'V’ at the point X,
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The line KL will thus only intersect the axis of the cylinder when K'L’
is an axis of the section U'K'V’,

Hence the points E, Ii, R, E, are the four positions of K, on the curve
UKV, for which the normal of the indicatrix intersects the axis of the
cylinder: and these four positions are projections, by lines parallel to
the axis of the cylinder, of the extremities of the axes of its ¢ base; " the
base being taken as perpendicular fo the axis of the cylinder,

In other words, the points R, R, and the normals BN, RN, lie in the
planes of symmetry of that tangent eylinder of the indicatrix Which has its
axis in the common direction of transmission of the rays.

Fig, 8.

12. The planes of polarisation of the two rays Or, Or, transmissible
along the same line are perpendicular to each other.

By the last Article, the normals E,N, RE,N, are in the planes of sym-
metry of the tangent cylinder and at right angles to its axis: hence the
planes of polarisation, to which the two lines are perpendicular, are them-
selves perpendicular to each other.

The following analytical proof is interesting by reason of the elimina-
tions :—

The normals of the planes of polarisation being normals of the indicatrix
at I, R,, their direction-cosines are

a’x,' Wy o
T, 7:‘: ';;’
o ! R4 2. 1
aa , a O respectively (Art. 5);
73 o Ty

hence, if ¢ be the angle between the planes of polarisation,

1
€08 ¢= —y (a%)'x, + gy +o2's).
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Substituting the values of z,'y,'s), 25'ys'%’, from Article 9, we have
L,L, a\? ) - !)4 o AP
OS¢ =——— {G-:i':;é)(_,.z‘i—:a2) + (,.12 - b‘z) (7.22 — bz) + (7'12 — 02) (r22 — 02)} .

iy
Now 7, r,? being the roots of the equation given in Article 8, we have
rapra=tETONTY (P4a) e (@ 45) v
1 2

AP\t b+ c%?
PrLILE]
and riri= P! .
hence ("‘12 w-— 2) (1'22 — 2) = 1'13725 — a? (7-12 + 7’22) + (l‘

_ -aa)\_z ((1,2—-1)2) (b“— 2) (02__a2)
- "bz"_'? ae)\2+b2/42+02v2 .

b (aﬁ—bz) ) (¢2_a2)
Té—ad AN

& (a“’—bﬁ) (bz__ %) (c“—a?)
2 22 =
and (rl _'02)(7‘2 =) POy a2\ b
a'A? bt P B

) =) R e =R =)
and ¢ is a right angle.

Similarly  (r2—83)(r2—?) =

Hence

18. If p be the point in which Or intersecis the indicatriv, the lines
Op OR, OR, form a triad of conjugate diameters of the indicatrix.

The axes of the basal section U'K'V’ (Fig. 8) of the tangent cylinder
of the indicatrix being conjugate to each other, it follows, from the pro-
perties of parallel projection, that the projections of the axes on any
section of the eylinder are conjugate diameters of the curve of section:
hence the line Op and the lines OR, OR,; (which are the projections of
the basal axes on the conjugate plane of Or), form a triad of conjugate

diameters of the indicatrix, each being conjugate to the plane of the other
two.

This may also be proved analytically, as follows:—
Substituting the values of ay' y,' 2/, 2y’ w' 2y, given in Art. 9, we find

that Ay + 0y, 4oy =
{ a®\2 2 ,u.2 &P
Bile | o=y Go=a) + (=) (=) T iy e

The quantity within the brackets is zero, as may be seen from the last
Article, or more directly by subtraction of the equations

aZAQ b2 I"z 02V2 - O
?.12 —— 62 ’.12 — bﬁ ,}vl? _— 02

aB)\? b2 IL2 62 V2
- =0.

7.22 —_ a2 ?.22 — b2 rzz —_ c‘l
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Hence a’v/x,’ + Vy)'y) -+ ¢*4'%'=0; but this is the condition that
the lines ‘OR, OR; may be parallel to the tangent planes at F;and R,
respectively : as those tangent planes are likewise both parallel to the line
Ur, the three lines form a triad of conjugate diameters.

Corollary. The novmal of the indicatrix at the point R, though it
intersects the line Or, only interseets the line OR, when N, coincides with
0 (Fig. 14); hence it follows that if OR, be a line of ray-transmission,
R, i8 not one of the corresponding points on the indicatrix : in general
the lines of the conjugate triad Op OR, OR, are thus not interchangeable
in character.

14. Given 1 1y the velocities of two rays whick are transmitied in the
same direction, lo find A p v the direction-cosinss of the line of transmession.

From Article 8,

22 w o
T ItT 17T 1~°
P a rE B R

Aﬂ ”‘9 v2
T t1TTt1TT1=0

WTE T wRTE
Determining the ratios A® : p? : v from these equations, we find that
I\,2

=a) (w) (@)
(7)? Tc;i 7.?.4 P ,.as a2

is equal to the two corresponding symmetrical fractions.

Each of the fractions is equal to the fraction of which the numerator
is the sum of the three numerators, and the denominator the sum of
the three denominators.

The sum of the numerators of the three fractions is unity: the sum of
the denominators is

A l(E-3) ¢ (53 + (b))
G TG 3 (o) + 3-)

1 /1 1 1,1 1 1/1 1
L (F“?‘) + 3 (;s‘-;e) +a (7—17)
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The coefficients of -l; and —1—, + l, vanish, and the remaining serm
y'ry (5 T

may be iransformed into
1 1 )
(&2

- G-4) (-3

1 1\ 71 1\’
e
-7) (7-3)
R A
(.c—“ -b—‘)(a“ b
1 1\ /1 1
o im3) (5-3)

(52) (3-%)

15, Given the direotion of @ line of transmission, to find the velocities
of the corresponding rays,

If RE' (Fig. 8) be parallel to the axis of the cylinder, and I’ be
the extremity of an axis of the base, it follows from Article 11 that
R is a point on the indicatrix corresponding to a ray transmissible along

the axis of the eylinder. The corresponding velocity being Rl—,\, = -R,lﬁ, it

is seen that the velocities of transmission are inversely proportional to the
axes of the base of the cylinder. An analytical solution is given in Art. 8.

18. The optic bi-radials (secondary optic axes).

From Article 15 it follows that if the two velocities of transmission in a
given direction are equal, the corresponding tangent cylinder has a eircular
base. But at every point K' (Fig. 8) on the edge of the base of such
a cylinder, the normal of the basal section and therefore of the eylinder,
and consequently also the normal of the eylinder and therefore of the
indicatrix at every corresponding point K of the section conjugate to the
ray, intersect the axis of the cylinder perpendicularly, and have the same
length intercepted between the surface and the axis: hence every point on
the conjugate section corresponds to a ray transmissible with the same
velocity along the axis of the eylinder: the normals of the indicatrix at
these points, and therefore the planes.of polarisation, may have any
azimuth whatever,



820 L. FLETCHER ON

That in the plane .4 OC there are two directions, and only two, namely
those of the lines Os, Os, (Fig. 7c), for which the two velocities of trans.
mission are equal, has already been proved (Art. 3).

Along each of these lines Os; Os,, rays can thus be transmitted having any
azimuth of plane of polarisation whatever, and the veloeity of transmission
is b for all of them : in the case of caleite and analogous crystals, such pro-
perties only belong to that single direction which is termed the optic axis.
By reason of this analogy, the directions Os, Os, have been likewise
termed optic axes.

But not being perpendicular to the corresponding ray-fronts, they do
not possess all the characters whieh belong to the optie axis of a uniaxal
crystal : from another pair of directions, of which the optical . characters
are also such ag in the case of a uniaxal crystal only belong to the optic
axis, they have been distinguished as Secondary Optic Axes; and by Sir
William Hamilton as Lines of Single Ray-Velocity.?

In the case of a biaxal erystal, it is experimentally determined that
none of the so-called optic axes, primary or secondary, have directions
which pass permanently through the same lines of erystalline particles ;
the lines of particles through which they pass differ with the colour of the
light and the temperature of the erystal : hence the so-called optic axes
have no material existence, and are in no proper sense of the word awes of
the crystal.

Where precision of thought and language is necessary, the lines may
appropriately be termed the Uptic Bi-radials, for they are directions in
which a line is doubly a radius veetor of the ray-surface: the term wuni-
radial has already been assigued a distinet signification by Mae Cullagh.?

When the indicatrix is a spheroid at all temperatures of the erystal and
for all colours of light, the bi-radial is found to be an axis of mor-
phological and physical symmetry, and an axis of revolution of the ray-
surface ; it always passes throngh the same line of crystalline particles :
such a line may be regarded as a true axis of the crystal.

1%. There cannot be more than one pasr of optic bi-radials.

It has already been proved that Os, Os, are the only directions for
which the velocities of the rays transmissible along the same line, lying
in a plane of symmetry of the indicatrix, are equal : it remains to prove
that there are no other bi-radials in any direction whatever,

! Trans, Roy. Irish Acad. : 1837, vol. 17, p. 182.
2 Jbid.: 1839, vol. 18, p. 40,
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From Article 8 it is seen that the velocity of transmission » is connected
with the values of X\ u » by the equation
a2h2 bﬁ 2 c2 2

: ot =

Fla =0;

whence

a’\* (P2 =07) (P = )+ 0% (r* — ¢*) (r* — a®) + & (r* — a®) (r* = %) =0,
Since @ b ¢ are in descending order of magnitude, the expression on the
left-hand side of the last equation is positive, and therefore cannot be
zero, if » hag any value greater than « or less than ¢: hence no velocity
of transmitted ray can be gredter than a or less than ¢.

Farther, if p is distinct from zero, the above expression is necessarily
negative when r=»&: hence it changes sign and passes through a zero
value as rdecreases from a to b, and again as r decreases from b to c.
If pis distinet from zero, the two values of »® which satisfy the above
equation are thus unequal.

Hence the bi-radials can only lie in the plane 40C.

That in the plane . 4OC there are only two such*lines may also be seen
from the fact that for any direction lying in this plane one veloecity of
transmission is always b, when the two velocities are equal the second

velocity must also be b: hence if Sis a point on the curve ACAC such
that the perpendicular to the radius vector conjugate to S is equal to
OB, the points S correspond to directions Os of single ray-velocity: therc
are four such points lying at the extremities of two diameters.

The directions Os may also be readily found from the above general
equation : for all rays lying in the plane 40C, p is zero, and the general
relation becomes

a*\? M
Featp—p=0
hence, the rays in this plane for which the two velocities of transmission
are both equal to b are given by the equation
ah?  h?
poatip—p=0
which is identical with the equation given in Article 3.
18. Equation of the planes conjugate to the optic bi-radials.
The equation of a plane conjugate to a line Ap v is
AN+ VPyp+ oy =0,
For the bi-radials, ;+=0 and
a*\? vt
FatE—p=0



822 L. FLETCHER ON

Hence their conjugate planes are given by the cquation
z‘l ‘3
FE=) " @y

19. The direction of a line Or being defined by its inelinations o, o,
to the bi-radials Osy Os, to find the planes of polarisation of the two
rays which can be transmitted along it,

Lot [s,], {81, [#] (Fig. 9) be the sections of the indicatrix which are
conjugate to the lines Os,, Os,, Or respectively, and let D, D, be two
adjacent points of intersection of [r] with [s,] and [s,].

D, being common to the sections [#] and [s,], the tangent plane of the
indicatrix at D, is parallel to both Or and 0s,, and therefore to the planc
Ors, containing them. Similarly the tangent plane of the indicatrix at
D, is parallel to the plane Ors,.

Fie. 9.

Also all planes tangent to the indicatrix at points on the sections [s,]
and Ts,] are equidistant from the origin (Art. 18): hence the tangent
plancs of the indieatrix at P, and D, are equidistant from the line Or, and
arc therefore equally inclined to the planes of polarisation, for the latter
are the planes of symmetry of the elliptic cylinder which touches the
ellipsoid in the section [] (Art. 12,).

Hence the planes of polarisation of the two rays transmissible in the
direction Or are the internal and external bisectors of the angle between
the planes Ors, Ors,,

This is the first of the empirical laws of Biot (page 801).
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0. The direction of a line Or being defined by its inelinations oy o,
to the bi-radials 03, Os,, to find the welocities of the two rays which can
be transmitted along it.

If r, », be the respective velocities, it follows from the quadratic equation
of Art, 8 that

1.1 1,1\ ,,, (1,1 1 1)
et (b”+ )A+(c“‘+a) + ( ’
1 I
71'15;2 2 = + + aibt
where A p v are the direction-cosmes of Or

It is necessary to express \ pv in terms of the angles oy 0, and to sub-
stitute their values in the above expressions.

Let 1 0 n, 1 0 n be the direction-cosines of (s, Us, respectively, then

co8 oy = IN4-nv, cosoy= — I\fnv;
and 21\ = cosoy, — €O8 0y 2y = co8 oy 4 COB U,
Also (from Art. 3)
11 1.1
3= ‘-l;——lr, 71,’:5; 5'12 .
@ o @ 2

Substituting 1 — A2 — +* for p* in the expression for ;1-,+ :—,’ we get
1 2

1.1 11 11 11
Lo deton (i) o @)

r? at ¢ a® b
1.1 1
a“+c-’ (E ) (lz}‘z_nz 2)
1
a

1 ,1 1
=2+§+(;‘3 )cos«rlcosa-z.

Simila.rly,

1
W a c a‘l (b” (a)
) (l"’)\2 n v’)

72
1 1) (cos oy —cos o,)%_ (cos.0,+cos v,)“]
2 4 44

C
= (,
1
Talet (t-l
and

1\* 1
s B s (- o
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(N EIE\ P

—(1 1 zsingtr sin’o.
pr R 1 2

Hence

1 1 . .
or o —Z= i(l_ Dgin o8I0 0.
ey a ¢

If #, be the larger velocity, we thus have

I 1 /1 1y. .

e (gg)pnoinr
This is the second of the empirical laws of Biot (page 801).
From the above we find that

2 1 1 1 1
=gt (Gt
2 1 1 ¢1 1
=gt (Gmg)eoseton:
whence

1=1 2 010y, 1 . ,0—0y
ke chos 5 +gz sin® —5—
1 1. @0ton 1 et
raT@ Ty et Ty

1. Ths ray-front eorresponding to the ray Or is perpendicular to the
transverse plane KN Or, and intersects that plane in a line parallel to OR.

Geometrical Proof.

(a.) As ususl, let R (Fig. 10) be the point of the indicatrix corres-
ponding to the ray Or, and RN be the normal of the indicatrix at R: and
let RDEN be a plane perpendicular to the plane RNOr; it will intersect
the indicatrix in an ellipse. Let D be a point on this ellipse distant from
R by an arc which is a small quantity of the first order: to this order of
small quantities the normal of the ellipse at D is the normal of the
indicatrix at that point: if OF be drawn to infersect DE perpendicularly,
the line F0V is, to the first order of small quantities, perpendicular to the
plane BN?)r and parallel to D12, and DF is equal to EN. Hence, if Od
be the ray corresponding to the point D of the indicatrix, the plane Ord

1 . 1
is perpendicular to the plane RNOr, and Ud= DE by construction = Vo

=0Or. Hence the line rd is also perpendicular to the plane LN Or,
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But B and D being adjacent points on the indicatrix, » and d are adjacont
points on the ray-surface, and the line rd is thus tangent to the ray-
surface at r.

The tangent plane to the ray-surface at » is the plane of the ray-front
corresponding to the ray Or: it must pass through all lines tangent to
the ray-sarface at r, and thus through the line rd, and be perpendi-
cular therefore to the plane BNOr;

Fia. 10.

(b.) The plane RNOr (Fig. 11) also will intersect the indicatrix in
an ellipse : let G be a point on this ellipse distant from R by an are
which is a small quantity of the first order : to this order of small quanti-
ties G H, the normal of the ellipse at @, is also the normal of the indicatrix

at that point. Hence if yOH be perpendicular to G'H and Og=-G—1H’

Oy is the direction of the ray corresponding to the point @, and gisa
point on the ray-surface: in the same way as before it follows that 7y is
a tangent line of the ray-surface, and is thus the intersection of the
tangent plane at  with the plane ENOr.

Let Or Og intersect the ellipse in the points R’ @' respectively : then
OR' and OG" are respectively conjugate to OR and O@, being perpen-
diculer to RN and GH, and therefore parallel to the tangents at E and G :
the area of a parallelogram of which the adjacent sides are conjugate
radii vectores is constant ; hence

REN:OR'=GH'0G'.
Also, by constraction,

o1 1
EN=, GH=0.;

hence Or: OR' =0y Oé',
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and the line »¢ is therefore parallel to the tangent of the ellipse at R’,
and consequently to the line OR which is conjugate to OR'.

Hence the ray-front corresponding to the ray Or intersects the frams-
verse plane ENOr perpendicularly in a line parallel to OR.

The diametral line Of, perpendicular to OR and lying in the plane ENOr,
is therefore normal to the ray-front corresponding to the ray Or (Fig. 12).

Fro. 11,

Analytical Proof.
The following is interesting to the mathematical student, by reason of
the eliminations :—

From Article 7 we have

5 y z
Pt P—ip A 1
7Ty T = e
=T Ay 47
hence xz —'.‘-:‘—5, Yy -—;2—-_—32, 2 =1'2—(,"“ (1)'
Remembering that
o? e P .
et et =1 (A7),
we have xx' Fyy' 22’ = A. (2).
Also a'ra' Wy + %' =0 (Art. 7). (8)s

It is thus required to determine the tangent plane at a point zy 2 of the
ray-surface in terms of the co-ordinates 2'y'%’, which are connected by the
above equations and also by the relation

Aoy 4 0% =1, ()
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Forming the differential of cach of the equations (1), we have
(P —=a?)du"+-2ra'dr = ddr+add
(P=1%oy’ +2rydr = A4dy+ydd (8)
(P =c%)02" +2720r == 4524264

Multiply these equations by 4%’ %' <%’ respectively and add: the
quantity 84 is thus eliminated, for its coefficient «®v.'+biyy'+ %22’
vanishes by relation (8); we then have

(12— a)aPy' §a' + (7 — )0y by + (r* — )% 8% 4 2rér =
A (a'dw 4+ By’ Sy + ¢22'87).

Remembering that a8’ +0%'dy' +6%'82' = 0, owing to relation (4),

we have
— (@8’ 4 Uy Sy A *2'8") + 2r8r = A (a8 + 8% Sy + ¢*2'82).
But by Article 4
LR Ry A AT L R

whence ' 8a’ 4-bUy' Sy’ 4 *'52 == rdr.

Substitating this value in the preceding equation, we have

1 == A(@%' 80412y Sy 6%'52)
or
(x — da*") oo + (y— 40%') Sy + (v — 46%')82=0.
If I m n be the direction-cosines of ()f, the perpendicular to the tangent
plane of the ray-surface at « y z, we must have
8. 4+ mdy 4+ néz = 0, whence
l m n
T—da T y— AV T T4 (6)-
(a.) Each of these quantitics is equal to
' 4 my' 4-n2'
2 — Ada F gy — AV 2 — A%

o' oy 22’
ar' fyy +2 =4

The denominator of this expression is zero, by relation (2); hence the
numerator L' +my' 4-n2' is also zero, for the three equivalent fractions are
never all of them indeterminate, and are none of them infinite.

From the relation Le' fmy’ +n2 = 0, M.
it follows that Of is perpendicular to OR,

(b.) Also, multiplying both numerator and denominator of each of the
fractions (6) by y'z'(b*—¢%), #'2'(¢*—a?), «'y'(a—0b?) respectively, we find
that each of them is equal to

W's’ (32 —¢2) +me's’ (2 —a?)+-na'y’ (a2—3%)
Y& (B3—c) (x— o) 42'7 (2 - a¥) {y~ A% +2y (0¥~ 1%) s~ Ac%)’

or
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On expanding the denominator, it will be found that the terms involving
A mutually destroy each other, owing to the identity
(U~ )+ — a*)+*(a* =17 =0:
the denominator thus reduces to
‘,vylzl(bﬂ__vﬂ)_l_yzl'vl (02 —_ “2)+z.v'!/'(aﬁ — ])2) ; or
ol st
=) (=) 1) (=) (2= (-1
owing to the equations (1).
When multiplied out, this term is likewise found to be zero.
Hence the numerator of the above expression is also zero, and we have
he relation
W' (B — Y+ m2d (¢ —a?) fna'y' (& — *)=0. (8.

But this is the condition (Art. ) that the line Of may lie in the plane
RON': hence the front-normal Of lics in the plane RNOr and is perpen-
dicular to OR.

Corollary 1. The inclination of a ray Or to its front-normal Of is the
same as the inclination of the normal RN to the radius veetor RO at
the corresponding point R of the indieatrix (Fig. 12).

Corollary 2. If a ray coincides with the central normal to its ray-
front, its direction is perpendicular to an axis of the indicatrix.

Corollary 3. 1If the ray Or lies in one of the symmetral planes of
the indicatrix, the intersection of the corresponding ray-front with the
symmetral plane is parallel to the line OR, which is conjugate to the
line Or. Butif P is any point on an ellipse and @ @ are the extremities
of a diameter, the lines PQ PG are parallel to a pair of conjugate dia-
meters. Hence, if P Q Q lie in a symmetral plane of the indicatrix,
and P represents the direction of a ray, the corresponding ray-front is
a plane perpendicular to the symmetral plane, and intersects the latter

in a linc parallel to PQ.

22. For the ray Or, the plane of polarisation is perpendicular to the
plane containing Or and Of the normal of the corresponding ray-front.

This follows at once from the last Article, for RN, the normal of
the plane of polarisation of the ray, lies in the plane RNOr which has
been shown to contain the line t.

In other words, the plane Orf is the tranverse plane for the ray Or,

23, For the ray Or, corresponding to the point R, the resolved
velocity along the normal to the ray-front is. measured by the inverse of OR.
If Of (Fig. 12) be perpendicular to OF and in the plane RNOr, and
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the angle #/() be a right angle, then, by Article, 1, f is the foot of
the perpendicular drawn from ( to the tangent plane of the ray-surface
at r, and Of is the resolved velocity of the ray ©r along the normal to
the corresponding front.

But Ur OfF are by construction perpendieular respectively to EN and

. . N . BEN_0Of
RO : hence the triangles »fO0 ONE are similar andTﬁ{»@;.
. 1 1
Also, by constraetion, RN——Z;; ; hence Uf:(T[z‘

N

Fie. 12,

24, Theline OR s always a normal of the curve in which the indica-
triz is intersected by a central plane parallel to that ray-front whick cor-
responds to the ray Or : in the general case, OB {s an azis of the curve.

RN (Fig. 12) being the normal of the indicatrix at [i, any line per-
pendicular to BN and to the plane ENOr is tangent both to the in-
dicatrix, and to the seciion of the indicatrix made by any plane which is
perpendicular to the plane ENOr at the point Ii; it is thus tangent to the
particalar section made by that plane of the series which passes through .
Of this section OR is a central radius veetor : henee the tangent at £ o the
section is at right angles to a central radius vector.

The section being in genecral an ellipse, B is in such case the exiromity
of an axis of the section.

Hence it is seen that the ray-surface is the envelope of planes
which are distant from a parallel central section of the indicatrix by the
inverse lengths of the semi-axes of the latter curve : which is Fresnel's
geometrical construction of the surface.

Conversely,
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28. If OR isa central normal (and therefore in general an azis) of
the curve in which the indicatriz is intersected by a plane parallel to a given
direction of 1 ay-front, the plane through OR normal to the direction of the
ray-front contains the ray Or, which corresponds to the point R, and also
the line RN, which is the normal of the plane of polarisation of the ray.

The radius veetor OI (Fig. 12) being a central normal of the curve
of intersection, aline perpendicular to OR and lying in the plane parallel
to the ray-front, is a tangent to the curve of intersection at R : hence
LN the normal of the indicatrix at B must liec somewhero or other in the
plane ROf perpendicular to this line.

And the ray Or must lie in the same plane,

h
1
\
1
1
1
1
[}
.
1

[}
)
1

e
‘z'-—s

7

Fig, 13,

26. The two rays corresponding to a given direction
of front-normal.

Hence if only the direction of a ray-front be given, there are in general
two corresponding positions of the ray-front, or, in other words, of tangent
planes to theray-surface : and for each thereis a correspondingray (Fig. 18).
The rays lie each of them in a plane containing the central normal Of and
one of the axes OR OT of the section of the indicatrix by a plane parallel
to the ray-front; they are thus in two perpendicular planes which inter-
sect in the line Of : the corresponding velocities resolved along the given

1 1
front-normal are measured by OR and oT respectively : the normal of the

plane of polarisation is parallel to RN for the ray O and to TN for the
ray Of, The directions of vibration at points of the respective rays, ac-
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cording to the latest version of the elastic theory, are thus indicated by
the shading in Figure 18.

It may be remarked that the planes of polarisation of the rays Or Of,
though perpendicular to the normals RN T'N', are not perpendicular to
eack other ; for it is the lines RO 70, not the lines RN T'N’, which are
at right angles : it is easily seen that the cosine of the angle between the
planes’ is equal to sin fOr sin fO¢, Hence only ihe transverse planes, not
the planes of polarisation of the two rays, are perpendicular to each other.

27. The two front-normals corresponding toa given
direction of ray.

Similarly, if only the direction of @ ray be given, there are in general
two corresponding positions and dirsctions of the ray-front, and two
corresponding rays (Fig. 14). The rays lie each of them in a plane

~~~~~~
.
~-.
-,
~—.
-

ngrmdl 7

» il nmlllmulllﬂl illﬂllﬂ

////////

Frg, 14,

containing the ray-direction and one of the lines OR, OR,: they are thus
in two perpendicular planes which intersect in the line Or: the corres-

1 1 .
ponding velocities are measured by BN, By respectively : the normal
¥y

of the plane of polarisation. is parallel to R,N, for the ray Ory, and to
R,N, for the ray Or,. The directions of vibration at points of the re-
spective rays, according to the latest version of the elastic theory, are
thus indieated by the shading in Figure 14.

Q8. Given the co-ordinates +'y'2' of R, to find 0, the angle between
the corresponding ray Or and ils front-normal Of.

Or Of being perpendicular to B N RO respectively (Fig. 12),

BEN _ 1
003 0= cos 1 Of = cos NRO-—E—@_ et
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hence tan®g=,%"2—1
=(a4‘v'2+b4yl2+cdz'2) (w!‘l_i_?/m_l_zlﬁ) _("2w12+biylﬁ+oﬂzlﬂ)i
= (a2__ b‘z)a‘vmylz_*_(bz__oz)zyrazm_i_(02 — aﬁ 2z'2w12.

29. Given the divection-cosines A p v of & line of transmission, to find
8, the angle between the corresponding ray Or and its front-normal Of.

Find % .2 (Art. 8), and then y'y,"%" ay'y,'%, the co-ordinates of the
points B\ R, (Art. Q); also 7, =22+, +%" and n, =2, + y,*+2,";
finally we have sec 8, =y’ ; sec 0,=ry,'.

380. If aray lies in & given axial plane of the indicatriz, to find the
direction for which the inclination 0 to the front-normal is ¢ maximum,

First proof.

Let the given axial plane be 40C. Each direction of transmission
lying in thig plane corresponds to two points B, I, on the indicatrix : one
of these R, always coincides with B, and the corresponding ray coincides
with its front-normal ; the other I, is in the plane 40C, and the corres-
ponding ray coincides with its front-normal only when R, isat 44 Cor C.

If 2’ 02 be the co-ordinates of R;, tan 6=(¢*—a?) 2’2’ (Art, 28).

Hence, writing ¢*:"® == 1~ a%'%, we have

¢ a\? e a\’ ,
fant = (: - ;) (1 —ats) ata= (T?) f1—@r-iy).
For a mazimum value of 8, a%v'®== } ==¢%',
Or being parallel to the tangent of the indicatrix at R,

ad' _ @

tan 704 = —;5'—, =4 -
4 [

or Or is parallel to 4C or A C, when the inelination to the
front-normal ig & maximum.
Second progf.

From Article 21, Corollary 8, if P is a point on the indicatrix lying
in the symmetral plane 40C, and PA represents the direction of a ray
belonging to the elliptic section, the corresponding fay-front is perpen-

dicular to the plane A0C and interseets it in a line parallel to P4 ; hence
the angle 4PA4 is the angle of inclination of the ray to its front: the
interior angle is 3 minimum when P coincides with C or C,
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31. If a raylies in a given axial plane of the indicatrix, to find the
mavimum inclination of the ray to dts front-normal.

First proaf.

Taking AOC for the given axial plane, as in the preceding Article, we
have, when 4% =1,

tan 0=i%(f-_3)'“
a

¢ H

and cot 0 = tan 2 400, or 6=%—- 2400,

Hence the maximum or minimum angle which a ray lying in the axial
plane AOC can make with its front is given by the angle ACA.

Seeond proof.

This result is also manifest from the fact that when the ray Or is paral-

lel to AC, the conjugate diameter OR,, and therefore also the ray-front, is
parallel to C4 ; as in the second proof given in Art. 30.

82. Giventhe co-ordinates x'y'z' of R, to find the direction-cosines lmn
y
of the normal Of to the corresponding ray-front.

For any line Imn in the plane RNOr, as already proved in Article 6,

we have the equation
ly' 2 (B — &) +mz' (¢ — a®) - ne'y' (@ — 1%)=0.

If the line Imn is likewise perpendicular to OR, of which the direc-
. . " yr 2
tion-cosines are . -5~ 5 We have also

o' +1my’ 4 n2'=0.
From these equations the ratios Z: m: » are found to be:—

l_=m_n
D E F

where
D=a'2"2 (P —a?) —a'y'? (&~ b*) =o' (1 — a?"?),
4=y'.'v'2 (aﬂ — bﬂ) _y'zlﬂ (bi_ 2) =y'(1 — b2r12),
F=yy* (=) — 2" (F—a?)=2"(1 —¥'?);
whence
l m n *
o (1—a¥"?) y (1=04"7) ' (1—¢") ,
where rr=0R=a"y"? 42"
These oquations determine the direction-cosines Im n of the normal
Of of the ray-front corresponding to the point 4"y or R,
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88. Given the direction-cosines lmn of the front-normal Of, to find
fi [ the respective velocities of the two corresponding ray-fronts resolved
normally to them. ‘

In Article 23 it was shown that the velocity of the ray-front of the ray

Or resolved normally to the front is —,: denoting theresolved velocity by

()1 o
Jf and substituting” /= 0—1, 1 —in the equations of the last Article, we
have
l mn %
Loa fo8 -
2 y' 2
Each of these fractions is equal to
) m n
lfT;_"aa R oy

Ia' 4-my' +n2'

But the denominator of the last expression has been proved to be
zero (Art. 82); hence the numerator is also zero, for the fractions
equivalent to the expression are never all of them indetcrminate and are
never infinite; we thus have

# n? nt
fl"ﬂ2+f2—b2+f2-'0!

This is a quadratic equation in f%, and its two roots f,? f;? are the resolved
velocities required.

Multiplied out it takes the form

L= PP+ AP+ a)mi+ (a®+ )2} + Bl +Pa’m* - a*bni=

=0,

84. Given f; f. the velocities of normal-transmission of two ray-
[ronts having a common dircction of normal Of, fo to find I m n the direc-
tion-cosines of the lalter.

From Art. 33,
2 m? n?
Fr=at = ="
2 s
,/.22—‘“2 /'22_b2+f22_02
Determining the ratios 12 : m®: #* from these equations, we find that
P m? n?

(=) (=) (f'—d) (e (1) (=) (@) (=) (),

=0.
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The sum of the numerators of the fractions is unity: the sum of tho
denominators is
FRL =)+ (@ = @)+ (=)
— (D) [ (1P — ) + B (—a’) + & (a>—1%)]
+ a‘ (b?__ 2) + b4 (6'2 — a‘A) + 0‘ (a'..’___ b'.’.).
The coefficients of ff and f;*+ £ vanish, and the remaining term
may be transformed into
= (a®—1?) (B*—¢*) (F—a’).
42 2___ 58
Hence &= gz_ a‘i ((,; _: z
o =) (2 =)
(03 bd) (aa__bA) ]

s 2= (22
(a3 02) (bl —_ 62)

35. Given the direction-cosines I m n of the normals Of, Of, of two
ray-fronts having the same divection, to find the co-ordinates 'y,
2,ys' %' of the corresponding points R T on the indicatrir,

The values f;® f;* having been found by the equation of "Article 38,

the co-ordinates = y," 2, «)' ¥, %' of the points R and T respectively
are determined by the following equations, also from Art. 38 :—

et [ o !
L W2 W Y
{ m n
JE—=a fi=b fi=d
' ot
@y A"
[} m "

fzz—‘i4 S =0 fif—=¢*
remembering, also, that the co-ordinates of each point must satisfy the
equation of the indicatrix.

It will be observed that the above cquations are identical in form with
those given in Art. 9: in the one case the direction-cosines and velocitics
are those belonging to the rays, and in the other case are those belonging
to the front-normals,

36. (xiwnfl S the velocities of normal-transmission of two ray-fronts
Immng a common directton of normal Ofy f,, to find the co-ordinates &'y x
£'y,'%" of the corresponding points B 1 on the tndicatrix,

From Art. 35

5"1' _ ?/1' = 31' — 1 ]
I " " m n Y (sa_y),

=e = f,”-f’
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The square of each of these fractions is equal to
3"1,2 + ?/lm + zlm
lz m2 nﬂ *

( flﬁ_az)z +( /12_52)2 +—(f;2-—02)2

Hence, remembering that 2" 44/ + 2= OR*= flg,, we find on
1
substituting the values of > m® »? given in Art, 34
2 .f2 R_a2
REAEEH @)
S =) (=) (1= ¢) (f2 = o)
T @=F) =) & =) (B @) i ) (=)
On expangion of the numerator it will be seen that the terms involving
S SRR At a%% all vanish, and that the coefficients of £, and f;¥are
equal but of opposite sign : the numerator then takes the form

(fl‘z "'ff) (a?.__ bz) (62 — 02) (02 _az)

SRS
Hence 4 Fr=a) (=) (Fr=o)’
and e L (=) (B =) (f= )

A”(f“-—-a2 LR (=) (=)
Corresponding symmetrical expressions give the values of 1'% /%%
The above relation, with many others of this Section, was first given
by Sylvester,' starting from the vibrational inferences of Fresnel.

8%7. (deen the direction-cosines lmn of a front-normal Of, to find
those of the corresponding rays Or Ot.

Find the co-ordinates of B and 7" by the method of Art. 35, and then the
direction-cosines of the rays ()r Ot by means of the equations in Article 8.

38. Given the direction-cosines of a ray Or, to find those of the cor-
responding front-normals.

Find the co-ordinates of K, and R, (Art. 9), and then the direction-
cosines of the corresponding front-normals by Article 32.

89. The front-normal surface, or podal of the vay-surface.
1t was shown in Art. 83 that if f be the velocity of transmission of
a ray-front resolved along its normal Of, of which the direction-cosines
are L n,
r m? n?

Fi—a +f2_bz +fz_02 =0.

2 }’I:;«:los, Magazine, ser. 3: 1837, vol. 11, pp, 461, 537; 1838, vol. 12, pp. 73, 341,
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Hence, if vy 2 be the co-ordinates of £, and the length of Of be de-
noted by », we have
r=f: z=lr, y=mr, z=nr,
Substituting in the above equation we get
wl ‘3
2 + 3 bl + 0'

r—c*

This is the equatxon of the locus of the points f, or of the pedul o
the ray-surface: the velocity of normal propagation of a ray-front along
any radins vector of the surface is measured by the length of the radius
vector.

40. The polar reciprocal of the ray-surface belongs lo the same family
surface of wave-slowness or tnde.-surface.

The radius of a concentric reciprocating sphere being taken as unity, the
pole £ ¢ which corresponds to the ray-front will lie in the front-normal Qf
. 1 . .
at a distance oF from the origin.

Hence if zy2r refer to the point £, and £ n £ p to the pole of the ray-
front, we have

r_p T pr p P
Substituting these values in the equation of the locus of the points Jf,
we find for the equation of the polar reciprocal of the ray-surface

S
1, T3 . *t 1 .
S—a' 5= =—¢
p 14 p
1 1, 1
552 5_2"2 _EC‘A
o Tttt
i P & P ¢
This is a surface of the same family as the ray-surface, being derived

2 2 ~2

from the ellipsoid qa-z 4 %—I + %5 = 1 in the Bame way that the ray-surface

itself is derived from the indicatrix @’ 4 b%?2+¢%" =1,
The surface has been distinguished by Hamilton as the surfacs of
wave-slowness, and by Mac Cullagh as the index-surface.!

! Trans. Roy. Irish Acad.: 1837, vol. 17, p. 142; 1839, vol. 18; p. 38,
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41. The optic bi-normals (primary optic axes).

From Article 25 it follows that if the section of the indicatrix by a
plane having the direction of the ray-front is a circle, every point R on
this section corresponds to a ray having the same direction of front and
the same resolved velocity normal to the front, and therefore the same
position of front. The normals of the indicatrix at the points R, and thus
the planes of polarisation of the corresponding rays, may have any
azimuth whatever.

That there are at least two directions of central section of the indicatrix
for which the curve of section is a circle is seen as follows :—the section
of the indicatrix by any plane OBP (Fig. 15), passing through the mean

axis OB, is symmetrical both to the line BOB and the plane 40C, and

therefore to POP, P being a point of intersection of the eurve with the
plane 40C': hence the section is in general an ellipse of which OB.OP

¢
B\\ I/B
N /
. 7’
S, 7
B, \\ % //’ 2
AN /
™ A
PN T
y : A
& @
B B
C
Fre. 15.

are the axes. 1If the direction OP be so taken in the plane 40C that
the radius vector OP is equal to OB, which is always possible gince OB
is intermediate in length between OA and OC, the axes of the ellipse
become equal and the ellipse becomes a circle.

There are only two directions for which a radius vector OP of the ellipse

AOC has the value OB or % If « 02 are the co-ordinates of P,

2 _ %
P A=

1
a*x*+c%*=1, and "’2+22=ﬁ : hence
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If 20 n be the direction-cosines of Op, the perpendicular to the line OP,
l z I3 n?
an

a—p - IR

n &

The angle pOC is given by the relation tan pOC =% J

=5
B

The two directions Op, Op, thus possess certain optieal characters which
in calcite and analogous crystals only belong to that single direction which
is termed the optic axis: for ray-fronts normal to either Op, or Op, may
have any azimuth of plane of polarisation whatever, and their velocities
resolved normally to the direction of front are equal. By reason of this
analogy, the directions Op, Op, have likewise been termed optic axes.

But the front-normals Op, Op, not being coincident with the corres-
ponding rays, for they are not axes of the indicatrix, the divections Op, Op,
do not possess all the characters which belong to the optic axis of a
uniaxal crystal; to distinguish them from the directions Os, Os,, which
have been termed secondary optic axes, they have received the name
Primary Optic Awves: they have also been termed by Sir William
Hamilton Lines of Single Normal-Velocity.

Where precision of thought and langnage is necessary, the lines may
.conveniently be termed the Optie Bi-normals, for they are directions
in which a line is doubly the central normal of & ray-front: the term
is correlative to bi-radial, and such a bi-normal cannot be confused with
that of a three-dimensional curve.

48. There cannot be more than one pair of optic bi-normals.

It has already been proved that the only bi-normals in the plane 40C
are Op, Op,: it vemains to prove that there are no other bi-normals in
any direction whatever.

From Article 33 we have for the relation between L m n f the equation

B m? n?
fima +j"-—b2 +j2—62 =0,

or P(f'=8)(f' =) +m’ (f'~&) (f*—a®)f-n? (f2- o) (1~ 8%)=0.

Since 4 b ¢ are in descending order of magnitude, the expression on the
left-hand side of the last equation is positive, and therefore cannot be
zero, if / has any value greater than 4 or less than ¢; as is otherwise

1
evident from the fact that /= OR' where R is a point on the indicatrix:

hence no value of f greater than 4 or less then ¢ can make the expression
Zero,
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Further, if m is distinet from zero, the above expression is necessatily
negative when f=5: hence it changes sign and passes through a zero
value as f decreases from 4 to 3, and again as f decreases from & to e.
If m is distinet from zero, the two values of f* which satisfy the above
equation are thus unequal,

Hence the bi-normals can only lie in the plane AOC.

Sinee OB is normal fo the plane of polarisation for any ray-front of which
the normal lies in the plane AOC, one root of the equation corresponding
to such a ray-front is always f=5, and this must be the value of the equal
roots : the directions of the bi-normals may therefore be found directly
from the general equation (Art. 33) as follows :—

For any front-normal in the plane 40C, m=0, and the values of f* are

2 2
given by the equation j—g—é? + j—“’j—l—_oz = 0: hence, the directions of the
front-normals in the plane 40C for which f =25 are given by the equation
2 2
;A—i?} = b—gj-_z_——cg ; which ig identical with the equation of last Article.

48. The direction of a line Of being defined by its inclinations m\ m, to
the bi-normals Op, Op,, to find the transverse planes of the two rays
of which the corresponding fronts are perpendicular to the given line.

Let [p,] [ps] be the circular sections of the indicatrix perpendicular
to the bi-normals Op, Op, respectively, and let [f] be the central section
of the indicatrix parallel to the given direction of ray-front (Fig. 16).

Let [f] intersect [p,] [p,] in E; E, respectively.

All radii vectores in the two circular sections being equal, OE,=0F,:
and the axes OR OT of the elliptical section [f] are therefore the in-
ternal and external bisectors of the angle E,0FE.,.

By Art. 28 the two rays Or Ot corresponding to the front-normal (f are
in the planes fOR fOT respectively.

Again, Of is perpendicular to both OF; and OFE,;

Op, Op, arc perpendicular to OF, and OF, respectively.
Hence OF, is perpendicular to both (f and Opy, and thercfore to their

plane f0p,;

OE, is perpendicular to both Qf and Op,, and therefore to their plane
JOp,.

The planes fOE, fOp, are thus at right angles : likewise the planes fOE,
JOp..

Hence the planes fOR fOT which bisect the angles between fOE), and
fOE,, also bisect the angles between fOp, fOp:, the planes which pass
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through Of and the bi-normals Op, Op;. In other words each of the
perpendicular plancs, which bisect the angles between the two planes
passing through Of and one or other of the bi-normals, contains one
of the rays of which the front is normal to Of, and is the fransverse plane
of the contained ray. As already pointed out in Art. 26, it is the trans-
verse planes, not the planes of polarisation, of the two rays correspond-
ing to a single direction of front-normal which are perpendicular to each
other

F1a. 16.

44, The direction of a line Of being defined by its inclinations =, =, to
the bi-normals Op, Op,, to find f, f, the velocities of normal-transmission
of the swo ray-fronts which are perpendicular to the given line.

From the equation of Art. 83, it follows that

f‘lﬁ+ﬁ2=lﬁ (b2+02)+m2 (cz_l_az)_*_n‘z (a2+b2)
SE=00 e - mica® -0t

Hence, proceeding by the method of Art.20, it may be shown, having

due regard to the relative magnitudes of f; and f,, that
JE—f=(a*—c") sin m, sin m,, and that

22 = a*+c*+(a®—¢?) cos (m—m,)
A i=a'+tc* 4 (6" —c") cos (m; 4-my):

whence
Ty =~ T . Ty~ T,
Ji=a® co8® o2 4.c? gin? 12,
2 2
m - I o B
Jid=a? cos* 2»-’-]—-0’ sin? ————l-; 2,
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45. The bi-radial cone (the cone of front-normals which cor-
respond to the rays transmissible along o bi-radial).

We have seen (Article 11) that in general for any given direction of
ray Or there are four corresponding points of the indicatrix on two
diameters OR; OR, of the conjugate plane. Also (Article 277), there are
two corresponding front-normals Of; Of;, lying in the planes OrR, OrR,
and perpendicular to OR; OR, respectively. But we have seen that
in the case of a bi-radial Os], every point 8 on the conjugate section
corresponds to a ray transmissible along that direction with the velocity
5. Further, s, is not an axis of the indicatrix, and thus is only
coincident with the corresponding central normal On for the twd rays
transmissible in the direction Os, which correspond to the two points B B
in which the axis BOB meets the conjugate section.

.
|
|
]
— i
————2
.

..

If M"M' (Fig. 17) be the right circular cylinder touching the indicatrix
in the curve MSM, in which the plane conjugate to the bi-radial Os, meets
the indicatrix, and M'S’M’ be a basal section perpendicular to the axis,
th front-normal On, corresponding to any point § on the curve, isin
the plane 8S's, passing through the asis of the cylinder, and is at right
angles to OS. Hence, as the point S moves round the curve MBI, the
corresponding normal On deseribes a cone of which the bi-radial Os,
is an edge, for it corresponds to the points B B on the carve: the
cone may be conveniently designated a bi-radial come. In the next
Article it will be shown that the bi-radial cone intersects the base of its
corresponding cylinder in a circle.

Oorollary. Since the front correrponding to a ray touches the ray
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surface at the point where the ray meets it, a cone of tangent planes can
be drawn at each of the points in which a bi-radial meets the ray-snrface.

46. A plane perpendicular to a bi-radial intersects the cone of cor-
responding front-normals in a circle.

First proof.

Taking the base of the cylinder at such a distance from O that Os, = 5,

we have ns; = Os; tan n0s, (Fig. 17), for the angle ns,0 is. by construe-
tion & right angle.

. 1 1
Also, by construetion, SN = b;:—b'
ON
Hence tan n0s, = tan OSN = — = - ON,
NS

and ns; = b*ON.

Let B;uE be a section of the cylinder parallel to the base, and let the line
S8’ intersect the curve uB in the point o : further let MOs, be the sym-
metral plane of the indicatrix which contains the axes 04 OC, and Om be
the direction of the front-normal corresponding fo the point M on the
indicatrix.

SN and 6O are equal and parallel, since they are both normal to the
axis of the cylinder and in a planc containing it : hence ON = So.

Draw Se o¢ perpendicular to the axis OB ; and let the angle between
the conjugate section and the base of the cylinder be ¢ : then

‘ Sea = MOu = mOsy = ¢.

Let the angle ns;m be denoted by 8 : to determine the relation between.
ns; and the angle 8, we thus require to express OV or S¢ in terms of the
angle ns;m or ¢Opu.

We have 8o =getan¢ = Occosftan¢ = blcos 6{an ¢.

Hence ns; = 5 ON = b*So = b cos 6 tan ¢ = a,m cos 0.

The angle mns; is thus a right angle; and the locus of » is a circle
passing through the point s,, and having ms, for diameter.

Second proof.

Let 2'y'z' be the co-ordinates of any point 8 on the section conjugate
fo the bi.radial Os, : by Article 18

w'ﬂ z'ﬂ
0‘9”(?2? %) = t;z_(}i‘" - "b—z).

Now g, being the perpendicular from S or o to the plane Mudl's,, is equal

sin 9

to rr() Sin ’1()(7' = '—b—‘
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Finding ' 2’ also in terms of 9 by means of the above equation, we have

B —¢* eos’™ .. &—b cos’0
x = e . B e e
a—c & & — 2

Also 5,n* = On®— Os2,

Draw s, f parallel to O and therefore perpendicular to On :
_ Os? 1

then On = oF #-08, for Of =08 (Art. 23).
Hence s;n? = $0S* - 32,
= Pt (x’2+y:2+z'3)—b“

Substituting the above values of &’y 2' in terms of 8, we get

sn= ’lf;fci" V(@ ZF) (F =), or

sn =k cos 9, where & is constant for all values of 6.
For ¢ = 0, n takes the position m; hence s;n = sym cos @, as before.

Algo st — k = % V(Y B =),

47. Aperture of the bi-radial cone.

If the angle mOs, bo termed the aperture of the cone, the aperture is
given by the relation
smo__
P

The angle mOs, is the angle between Os,, a bi-radial, and Om, a line
perpendicular to the plane which is conjugate to that bi-radial; a rela-
tion by means of which the above value may likewise be obtained.

tan mOs; —

L VTR RS
;E\/(a—bz)(b ).

. 48. Polarisation of the ray corresponding to a given front-normal of
the bi-radial cone.

For the ray transmissible along Os, which has On for its front-normal,
the normal of the plane of polarisation is SNV or ns; : hence the plane of
polarisation of that ray (Js; which has On for its front-normal, meets the
base of the cone in a line parallel to the line nm, or in other words in the
line which joins s, to the other extremity of that diameter of the ecircle
which passes through =.

49. The bi-normal cone (the cone of rays corresponding to a
front which is perpendicular to a bi-normal).

In general (Article 26), if OR OT (Figs. 18, 18) be the axes of a central
section of the indieatrix, the points B T correspond to rays Or Ot having
fronts in the same direction, namely parallel to the plane ORT: also,
if Of be the normal to the fronts, the rays Or O! lie in the planes fOR
fOT and-are perpendicular to the lines which are normal to the indicatrix
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at B and T respectively. But we have seen that all points on the
cireular section perpendicular to a bi-normal Op, correspond to rays
having the same position and direction of front, the latter being parallel
to the circular section: further Up, is not an axis of the indicatrix, and
thus is ouly coincident with the corresponding ray for the two points
B B on the circular section.

Hence, as the point It moves round the cireular section of the indica-
trix, the ray Or, which is always in the plane ROpi, describes a cone of
which the bi-normal Op, is an edge, for it corresponds to the points B B
on the curve. The cone may be convenienily designated a bi-normal
Cone.

Corollary. Since every front touches the ray-surface where the cor-
responding ray.meets it, a bi-normal i8 perpendicular to a plane which
tonches the ray-surface in a closed curve. In tho next Article it will be
shown that this eurve is a circle.

W,

Fre. 18.

50. A plane perpendicular to a bi-normal intersects the cone of cor-
responding rays in ¢ cirele.

Let WI¥ (Fig. 18) be the points where the circular section inter-
sects the plane 40C: let Op,=b, and I be any point on the circular
section: the plane ROp,, containing the ray Or corresponding to the
point I}, will intersect a plane, drawn through p, parallel to the circular
gection, in a line p,r parallel to OR; similarly, if Ow be the ray corres-
ponding to the point I, p,w is parallel to OW : hence the angle rp,w =angle
ROW. Denote it by 6.

Also

pir*=0r=Op?
= gfa'2 - byt -2 — 1%, if 2'y'z’ be the co-ordinates of the
point I (Article 4).
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But 3’ being the perpendicular from R on the plane WOp, or 40C,

we have y'=ORsin WOR= sn; 6 .
Also, since R is on a circular section,
'3 2% .
[y abomy (Article 41)

Finding " and »' in terms of 6 by means of this equation and the
relation a%"4-By'"2 4% =1, we get

1y 82— 0056 o @b cos’8
VT AT Tod-f P

Substituting these values of 22, y'2, 2" in the equation for p,7,

we have pr= 'ﬁ’z,ﬂ V@< =), or

pr=1cos 8, where [ is a constant for all values of 0.
For =0, r takes the position w :

) D
hence g, == pw 005 85 and paw= V(@ =) (B*—).

The angle p,rw is thus a right angle; hence the locus of r is a circle
passing through the point p, and having pw for diameter.

The section of the cone of rays by a plane perpendicular to that bi-
normal which is the front-normal for the rays is therefore a circle,

B1. Aperture of the bi-normal cone.

If the angle wOp, be termed the aperture of the cone, the aperture is
given by the relation

1,
ta wOp = f_:g =5 ‘\/z(az—bg) (b*—c?).

The angle wOp, is equal to the angle between the radius-vector OW

and the normal of the indicatrix at W, for Op, and Ow are respectively

perpendicular to OW and the normal at W ; a relation by means of which

the above value may likewise be obtained,

B2. Polarisstion of the rays of the bi-normal cone.

The plane of polarisation of the ray Or is a plane perpendicular to the
transverse plane Op;r. The line Op,, being perpendicular to the plane
pyrw, is perpendicular to the line joining p, to 7, the other extremity of-
that diameter of the circle p,rw which passes through r; the line r,, being
perpendicular to both p,0 and py, is perpendicular to the plane Opys
containing them: as any plane passing through p,r, or its parallel 7w, is
likewise perpendicular to the plane Op,r, the plane Orw is the plane of
polarisation of the ray Or.
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53. Representative surfaces derived from the Indi-
catrix.

(2) The characters of a ray of light transmitted in a crystal may also
be expressed by reference to corresponding points on the polar reciprocal
of the indieatrix relative to a conceniric sphere: this surface is an

2 23 2
ellipsoid represented by the equationaa—g-+ g—ﬁ + -:;=1 (p. 881 and Fig. 19).

If OR, a radius vector of the indieatrizx, be npormal to a tangent
plane of the polar reciprocal of the indicatrix, meeting the plane in a point
M, OR-OM=1, if the radius of the reciprocating sphere be unity. If P
be the point in which the tangent plane perpendicular to OR touches the
polar reciprocal, and PG be the normal of the latter surface at the point
P, the lines P PO lie in the plane RNOr: let P( intersect the ray
Or in the point G. If m be the point in which OP intersects the plane
which touches the indicatrix at R, OPOm =1, and OP is thus the
inverse of N, Hence, to every point P on the polar reciprocal of the
indieatrix corresponds a ray Or: it lies in the plane PGOr, and is per-
pendicular to OP : its velocity of transmission is measured by OP :. its
transverse plane is PGOr : the ray-front intersects the transverse plane
PGOr perpendicularly in a line parallel to P’(#, and its velocity of normal-
transmission is measured by P4G.

(5) Von Lang' has pointed out that if a surface be derived from the
ellipsoid a%® 0% 4c*-*=1 by elongating each radius vector until the new
length is measured by the nth power of its original value, the derivative
surface may likewise be used for the geometrical representation of the
characters of transmitted rays. This result can be generalised still farther,
as follows :—

Let ¢~'(») be any function of », which always increases and decreases
with r, or vice versii: it will have an apsidal (i.e. maximum or minimum)
value at the same time as 7. 1If then a new surface be derived by
elongating each radius vector r of the indicatrix to a length p, determined
by the relation p==¢~(r) or » =¢(p), a central section of the new surface
will have its apsidal diameters in exactly the same directions as those of
the section of the indicatrix by the same plane. If p, p, be the half-
lengths of the new diameters, the corresponding ray-fronts are respectively

1 1
at distances — and — or —— ——— from the central section; the ray-
7l = ¢(p.) ¢(p ) v
surface itself is the envelope of these planes.

1 Sitz. 4k, Wien, 1861, vol. 43, pee. 2, p, 645,



848 L. FLETCHER ON

The general equation of the new surface is easily found : —
If » be the length of a radius vector of the indicatrix and I m n be its

1 . .
direction-cosines, %4 2m?® 4-¢?n? =r—;; £ n { being the co-ordinates of
the corresponding point on the new sarface, £ = lp, n=mp, {=np:

whence a*8* + ¥+ 202 =
2
or a’&+ b2+ 02F=W:
which is the required equation.
Fresnel’s ‘ surface of elasticity” is the particular case in which

¢ (p) =l, for the equation then becomes a2+ by? + 202=(&2 4+ )2,

For the “ surface of elasticity,” the transverse planes of the rays eorres-
ponding to a given direction of ray-front pass through the apsidal dia-
meters of a central section, as in the case of the indicatrix, but the distance
of the ray-front corresponding to n semi-diameter of length p, is not

l as in the indicatrix, but L
P2 o{p1)

The corresponding ray is only perpendicular to the corresponding
normal of the representative surface in the case of the indicatrix ; in every
case, however, the normal of the representative surface lies in the plane
pessing through the corresponding diameter and the front-normal: for the
curves of intersection of the two surfaces by the given plane have parallel
tangents at the extremities of their maximum and minimum diameters.
Hence, as in the case of the indicatrix, the plane passing through a
diameter and a normal of the surface at the extremity of the diameter is
the transverse plane of the corresponding ray.

(¢) In exactly the same way & series of surfaces can be derived from
the polar reciprocal of the indicatrix.

The above generalisation serves as a reminder that there is not neces-
sarily a simple relation between a surface of goometrical representation
and the characters of the ether.

or P1.
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SecTioN V.—VaRtous OPTicAL RELATIONS WHICH ARE INDEPENDENT OF THE
Prysical. CHARACTER oF THE Periopic CHANGE.

1. In Section II we have shown that after the discovery of the
polarisation of light by reflection by Malus in 1808, and of the corres-
pondence of optical and morphological symmetry by Brewster in 1819,
the true laws of transmission of light in biaxal erystals must soon have
been suggested, independently of any hypothesis as to the physical character
of the periodic change: in fact, their enunciation by Fresnel in 1821 was
only two years later than Biot’s discovery of iwo empirical laws by which
the accuracy of a geometrical representation could be tested. If the
truth of the construction given by Huygens for the case of calcite is
acknowledged, the suggestion presents itself as soon as the planes of
polarisation of the two rays transmissible in any direction in a crystal of
calcite are represented by their normals.

In the present Section we proceed to indicate very briefly, for the
convenience of the student, various other important relations, which,
though really independent of any hypothesis as to the nature of the
periodic change, are usually imagined and expressed as belonging to an
elastic ether, It will at the same time be shown that the form of the ray-
surface for biaxal crystals is not merely suggested by a geometrical
generalisation as a tentative one, but is a necessary consequepce of the
difference of symmetrical development of the same physical characters,
whatever they may be, which originate the sphere and spheroid of a
uniaxal erystal : it will further be shown that the same form of the ray-
surface would result from the general features of perpendicularly transverse
undulations, and be independent of the real nature of the periodic change.

Preliminary algebraical expression for the transmission of a ray of
ordinary light,

2, It will be convenient, in the first place, to find a mathematical
expression connecting the magnitude of the disturbance or change of state
at any point in & ray of ordinary light of simple colour with the position of
the point, the time, and the period of the vibration. For- this purpose
it is necessary to make an assumption as to the law of the change: the
pimplest which can be made is that at any point of a ray of ordinary light
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of simple colour the variation of the state with the time follows the same
law as the variation of position of an isochronous pendulum.
It will be found that, for a ray of simple colour, the expression

y=asin {g;{(rt—a:) +a }

is one which satisfies this condition and is consistent with all experi-
ments as yet veferred fo ;

@ denoting the distanee of any point in the ray from a fixed point in it,

y the magnitude of the disturbance or change of state at the point « at
the time 7

v the velocity of transmission,

A the wave-length,

a and « two constants for all values of « and # :—

1. At a given point, indicated by its distance & from the origin, the
change of state varies periodically with the time ¢: the same value of y,
and therefore the same change of state, recurs whenever the expression

% (vt —a)+a increases by 2w, that is when ¢ increases by the constant

A
interval —. The same change of state recurs, but with opposite sign,

2 .
whenever the expression ; (vt—=)+a increases by w, that is when ¢

increases by half the above interval.

2. At a given instant, indicated by the time ¢, the change of state is
the same in magnitude and sign for all points separated from each other
by the distance X : it is the same in magnitude and opposite in sign for all
points separated from each other by half that distance.

8. The relation belween y and ¢ is identical with the relation between
the position of an isochronous pendulum and the time.

a, being the maximum value of y, is the amplitude of the vibration.

?g(vt—w)+a being the phase of the vibration at the point » at the

time ¢, « is the phase of the vibration at the origin (#=10) at the epoch
from which the time is.measured (z=0).
The period of the vibration being independent of the amplitude, the
law is consistent with the independence of colour and intensity.
Conversely, if the magnitude of the change of state at each point of a

line is given by the expression y=asin{2~:(vt—-w)+a} , and the change

is of the physical charaeter which belongs to light, a ray of light of simple
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colour is passing along the line with a velocity v: the intensity corres-
ponds to the amplitude @, the colour to the period -3-, while the phase of

the vibration at the origin at the initial epoch ig a.

From analogy with sound, we may tentatively assume that the intensity
of the light corresponding to this simple change of state is measured by
the square of the amplitude.

Resultant effect of the simultaneous transmission of two or more such rays
along the same line.

3. The fact of the periodicity of the change was deduced: from
experiments relative to the mutual interference of rays of light : it is easily
seen that the above expression for the change, combined with the principle
of superposition, is consistent with the observed phenomena from which it
was deduced.

" (&) Ifthe compsment rays have the same wave-length and velocity.

1. For let two rays of the same simple colour, transmissible along a
given line with the same velocity v, be.represented respectively by the
expressions

y=a s’in{z% (vt—:v)+a}

y==b sin{%’r (et—2)+0 }:
if both are transmitted simultaneously, the principle of superpositivn
requires the resuliant change to be determined by the expression

y=asin { 2—;5 (vt—2)-;a} +bsin {2—;'(vt——m)+8} .

If the terms can be added together in the same way as numerical
quantities of a single kind,

y=(acos a-}+bcos 8) sin 2—; (vt—2)+(a sin a+ b sin ) cos ?{f (vt —2)

= ¢ sin ’gf (vt—-a;)—i—y“ ,
if =a?+1?+42ab cos (a—3)
a sin a4b sin 3
and tan v = G oos atbeos B
Hence the resultant effect of the two rays is identieal with that of a
single ray transmitted along the same line with the same velocity and the
same wave-length (and thus of the same colour), but having an intensity

¢® and an original phase y. And the intensity of the resultant ray depends
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not only on the intensities of the component rays but on their difference
of phase at the same point at the same instant: if « and b are equal and
a differs from (3 by any odd multiple of =, the intensity of the single
resultant ray is constantly zero.

2. It may in this way be shown that the resultant effect of the simul-
taneous transmission of any number of suech rays of the same simple
colour along the same line with the same velocity is identical with that
of a single ray of the same colour and velocity, and having a determinable
phase and intensity.

(8) If the component rays differ in wave-length or velocity.

On the other hand, if the component rays differ either in veloeity or
wave-length, the resultant effect is not that of a single ray of simple colour:
the resultant effect is still expressed by

a sin{z% (vt——x)+a} +b sin{g; (v't—:c)-}—ﬂ} ;

, . . |2
but the expression cannot take the simpler form csm{ )\—7',' (v”t—-m).].-y} ,

in which ¢ and vy are both constants: indeed, the resultant effect is not

.Y ov,
periodic at 2ll unless the ratio N commensurable.

Kinematical vepresentation of the periodic change at any point of such a ray,

4, Whatever be the physical character of the periodic change at any
point of a ray of light, the state at any point P at a given instant
may thus (consistently with any facts as yet indicated) be represented by
the above expression

(2

Y
this algebraical expression may in turn be represented geometrieally ; the
magnitude y being represented by the distance of a point p from the point
P, and the distance being considered positive or negative aceording to the
direction in which it is measured. The phenomena of interference, from
which the above expression has been deduced, merely require the direction
in which the line Pp is measured to be necessarily the same for all points
of the same ray, and for all interfering rays transmitted along the same line,

This mode of representation in no way assumes that the actual change
of state at the point P is & to-and-fro motion of a particle of ether in the
arbitrary line I'p ; the direction of the line Pp is required to be constant
merely to secure that the changes, if they have any directional character

Yy =asin

('L't — .lf) +a;:
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at all, may be added together like simple numerical quantitics of the
same kind: that the change is really directional in character may be in-
ferred from the fact that it is being transmitted in a definife dircetion
through the medium. In exactly the same way, the transmission of a ray
of light along a line is sometimes conveniently represented (in the discus-
sion of aberration, for instance) by the transmission of a point along the
line with constant velocity, although light is certainly not due to the
transmission of a particle along the direction of the ray.

Prelinmvinary alyebraical expression for the transmission of & ray of
plane-polarised light.

b. It was found by Fresnel, in conjunction with Arago, that two rays of
plane-polarised light, if their planes of polarisation are parallel, may
mutually interfere in exactly the same way as ordinary light: hence, as
far as this experiment goes, the periodic change at any point of a plane-
polariged ray can be represented in exactly the same way as for ordinary
light; the only difference being that while an ordinary ray is so far analo-
gous to a cireular cylinder that its characters are identical on all its sides,
a plane-polarised ray is analogous to an elliptical cylinder to the extent
that the properties of the ray are dissimilarly symmetrical relative to two
perpendicular planes (pages 288 and 298)..

If all the characters of a plane-polarised ray can be accounted for by
such a kinematical representation as is mentioned above, the line Pp must
lie either in the plane of polarisation or the transverse plane ; but it may
have any inclination whatsoever to the ray, so long as for two interfering
rays the direction is identical.

More general representation of the periodie chamge at any point of an
ordinary or plane-polarised ray.

6. Since, ags far as the above experiments are concerned, the inelina-
tion of the direction Pp to the line of transmission of either a plane-
polarised or an ordinary ray, may be any whatsoever, it follows that the
change may really not be simple, but multiple in direction ; assuming
that each fransmitted periodic change will interfere for itself, as if those
having other directions did not exist.

In fact, it will be seen that the periodic change may likewise be repre-
gented by the composite expression

y=a,sin{g;£(vt—x)+al} F e, 8in g 2—):r(vt—x) +a,.}

consisting of any number of terms: for cach separate term, independently
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of its directional relations, resumes its original value at distances along the
ray separated from each other by the common length A, orat times sepa-

A
rated from each other by the common period-;: henee, if two rays an-

nihilate each other under given circumstances, annihilation will again take
place if one of the rays is moved garallel to itself through the distance A
along its line of transmission.

And it is important to remark that as each term recurs tndividually
after the same interval of time or distance, the whole expression likewise
recurs and has the same total value, even if the terms are mot subject to
the same law of addition as simple numerical quantities.

It will also be obvious on reflection that any ray which is within the
reach of experiment is necessarily composite as regards the origin of its
vibration, even if it be simple as regards its colour: the luminous source
is not a geometrical point, but a surface of considerable dimensions as com-
pared with the wave-length of a ray of light ; hence the periodic cbange,
of which the effects are observed at a given point of a line of transmission,
is really of composite origin and due to the superposition of the periodic
changes transmitted from the points of a luminous area of appreciable
magnitude.

As for the difference between an ordinary and a plane-polarised ray, the
first suggestion which presents itself is that the latter is due to the dis-
tortion of the ordinary ray from which it was derived ; just as an ellip-
tical cylinder may be derived from a cireular eylinder by compression in a
direction inclined to the axis.

E.perimental discovery made by Fresnel and Arago.

7. (a) ButFresneland Aragofound that, when one of two interfering
plane-polarised rays is turned through a right angle round its direction of
transmission, the interference-effects completely disappear, whatever the
difference of phase of the two rays. Hence, with this relative position
of the planes of polarisation, the periodic change produced at any point
by the transmission of one ray is in no direction coincident with a periodic
change produced by the transmission of the other ray; for as we have
seen (Art. 3), such coincidence would involve a variation of intensity of
the resultant effect : if this be granted, it follows that for a plane-polarised
ray the actual periodic change must be in only a single direction, and the
single dircetion must be perpendicular to the line of transmission; for
otherwise the two positions of the plane-polarised ray would give two
positions of the periodic change which would have a resolved part in
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common. Since tho direction is single, it must be in one of the sym-
metral planes of the ray : hence the direction of the actual periodic change
is perpendicular to the direction of transmission, and may be either in or
perpendicular to the plane of polarisation : in either case it may be repre-
sented by a line perpendicular to the plane of polarisation.

In the above éxperiments of Fresnel and Arago, the rays were allowed
to interfere during aerial transmission; ,it may reasonably be assumed,
however, that the same kind of symmetry with respect to two perpendi-
cular planes obtains for a plane-polarised ray as transmitted within any
crystalline medium : the assumption is not only reasonable on general
grounds, but is consistent at once with all known experimental results and
with the requirements of the most recent version of the elastic theory
(see also pages 298, 808). I is not.the only assumption which can be made :
Fresnel himself was led by the hypothesis of an incompressible elastic
other to infer that a plane-polarised ray transmitted within a bi-refractive
medium is in general symmetrical to only a single plane, perpendicular to
the plane of polarisation; he inferred, in fact, that the vibrations of the
ether lie in the {ransverse plane and are in general oblique, not perpendi-
cular, to the direction of the ray. That Fresnel felt the unsatisfactory
character of the inference, in the absence of any experimental proof of
the obliquity, will be seen on reference to the original memoir.!

(5) 1If the two polarised rays which have been obtained from a ray of
ordinary light by means of a crystal of caleite are transmitted along the
same line, it is found that the resuliant effect is again that of a single
ray of ordinary light: hence we may infer that in ordinary light, as in
plane-polarised light, the vibrations are perpendicular to the direction of
transmission of the ray.

Representation of the vesultant effect of the simultaneous transmission
along the same line of two or more planc-polarised rays having different
directions of planes of polarisation.

8. (a.) If the component rays have the same wave-length and velocity.
(1.) The periodic change at any point of a plane-polarised ray being kine-
matically represented by a vibration perpendicular to the plane of
polarisation, let two rays be transmitted with the same velocity along the
same line, having different directions of the plane of polarisation: and, in
the first place, let the algebraical expressions for the corresponding
changes be respectively

y=¢zsin{f2;(vt—-w) +a }and z=bsin{2—; (vi—a) + } .

% Loc. cit. ; 1827, p. 158,
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Assuming as before the principle of superposition, the effect of trans-
mitting both rays simultaneously will be represented by the motion of a
point of which the co-ordinates y and z, measured along the normals of
the planes of polarisation, are given by the expressions

y=asin {?)%T(vt—x)-i-a}
z=bgin {_25\7_"(“__”)_*_/;: .
TTTIE
Eliminating X (vt—=), we find

” +—— —cos(u—ﬁ)—sm“(a B).

Hence the pomt, of which the position at any instant represents the
resultant disturbance at that instant at a corresponding point on the line
of transmission, deseribes in general an ellipse, of which the magnitude
and position relative to the planes of polarisation of the original rays are
independent both of # and ¢ : all the ellipses are thus equal and parallel,
and form & eylinder of which the base is elliptical, and the axis is in the
direction of transmission. It will be found that the direction in which the
point moves round the ellipse is determined by the relative phases of the
two rays. The composite or resultant ray of light due to the co-existence
of the original rays is said to be elliptically polarised ; a ray of which the
characters are related to a cylinder with elliptical base must differ from a
ray of ordinary light, of which the characters are the same on all its sides.

(2.) If the rays have the same intensity, and their difference of phase is
measured by the angle between their planes of polarisation, ¢ =5, anda—3
is equal to the angle between the directions of y and z: in this case the
ellipse becomes a circle, and the cylinder becomes one with a cireular base.
The composite ray is then said to be circularly polarised. Such a ray is
gimilarly related to every plane passing through it, and yet differs from
one of ordinary light : for the motion of the representative point is not
symmetrical to a plane, and the characters of the ray may conceivably
differ with the direction in which the circle is described by the ideal point.
In fact, experimental methods enable us to distinguish, not only between
a ray of ordinary light and one which is eircularly polarised, but between
two circularly polarised rays of which the motion of the ideal point is in
opposite directions,

(8.) 1If sinf{a—p) =0, that is to say, if the difference of phase is zero
or a multiple of 7, the ellipse becomes one or other of the two straight lines
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~\2
(%_—t ’:-) =0: henece the resultant ray is itself plane-polarised, the direc-
/

tion of the plane of polarisation depending on the ratio «: , and thus
being determined by the relative intensities of the two component rays.
Conversely, such a single plane-polarised ray of simple colour is equivalent
in its effects to two such plane-polarised rays of the same simple colour,
transmitted along the same line with the same velocity, and with their
planes of polarisation in any assigned directions. If the two assigned
directions be perpendicular to each other, and 8 be the inclination of one
of them to the plane of polarisation of the original ray supposed to be
represented by the expression

y=asin {z%r(vt-—w)+a} )
the two equivalent rays are represented respectively by the expressions

y=asin 0sin{27? (ot — )+ a}

2=acos sin{%’r (st —a)+ a};
for the resultant effect of these two rays is such that

L{ = tan 6, a constant quantity,

~

whatever be the time or the position of the point in the line of trans-
mission.

(4.) Further, it will be seen that any number of such rays of the
same simple colour transmitted along the same line with the same velocity
but with different phases, amplitudes and planes of polarisation, will have a
resultant effect identical in general with that of a single elliptically polarised
ray of the same simple colour, transmitted along the same line with the
same velocity. For let the simple rays be severally represented by the

expressions

y)=a,lsin{-2—; (vt-—m)+al}

22 == a,8in {27{—7 (wt—a)+ a2}
. V2
Yn = a”sm{ -X(”t_w)-!-a” .},

and let the inelinations of the respeetive planes of polarisation to » fixed
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plane of reference through the line of transmission be 6, 6,... .. 6. Each
single ray being equivalent in effect to two rays with perpendicular planes
of polarisation, one of them coincident with the fixed plane of reference,
the whole system of rays is equivalent to the following two systems:—

all the members of each of these systems having a common direction of
plane of polarisation.

As each system is equivalent to a single plane-polarised ray (Arts. 8
and §), the two systems are together equivalent in general to a single
elliptically polarised ray.

(5.) Whether the resultant ray be elliptically, circularly, or plane-
polarised, the resultant change has the same period as the change for
each component ray, and is thus of unaltered colour.

(6.) At a given instant, the ideal points representing the state at all
points of the resultant ray lie on a spiral curve surrounding the elliptical or
circular cylinder, if the ray be elliptically or cireularly polarised, and on an
undulating curve (the curve of sines) in the transverse plane, if the ray be
plane-polarised.

(b.) If the component rays difier in wave-length or velocity.

If the two component rays differ in wave-length or velocity of trans-
mission, the resultant effect is still represented by the combined
expressions

y=asin {%"—r(@;t.—x).}.a}
z=}sin %,’f(v'g_a;)_;_'g } :

r
but it is not periodic at all unless the ratio;%:%is commensurable : and

even in that case the curve described by an ideal point is not a conic
section.

The resultant effect can only be that of a plane-polarised ray if the ratio
of y to 2, and therefore of sin {?(”tﬁ .’0’)+a} to sin {2—;(vt——;v)+[3}

is independent of the time : but if either v or A is different from »' or A’
respectively, this constancy is impossible, whether the planes of polarisation
of the original rays are real or imaginary.
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Discrepancy of observed and calculated results.

9. Butthe above ealculation of the resnltant effect of the simultaneous
transmission along the same line of two plane-polarised rays of the same
colour with planes of polarisation at right angles to each other is in direct
disagreement with the experimental result recorded in Art. '7), for the
result of superposition of the two plane-polarised rays obtained from an
ordinary ray by means of a bi-refractive crystal isnotan elliptically polarised
ray, but a ray of ordinary light baving identical characters on every side.
We are thus led to inquire how far the constaney of character of the periodie
changes at points in the same ray has really been established by experi-
ment.

In fact, the annihilation-effect (p. 286) of two rays of identical charae-
ter has only been established for a transference of one of the rays through a
distance of at most 50,000 wave-lengths : the wave-length in air for sodium-
light being nearly 35 millimetres, the above distance is nearly 80 mil-
limetres or about one inch: as light is transmitted through air at the rate
of 186,000 miles a second, a distance of one inch corresponds to the

1
lapse of only m’———ga)’oooth part of a second,

The discrepancy disappears if a ray ts assumed to consist of a series of
independent sets of waves of the same length.

10. For the sake of a numerical example, let us imagine that two given
rays are absolutely identical in character ; that each ray{consisis of a series
of sections ; that each section consists of at least a million similar waves,
but that the waves of one section are absolately independent of those of
every other, except that they have the same period and are transmitted with
the same velocity.

Let the constant sections of ome ray be 4,8, B,C, C,D......... Y, Z,
and the identical sections of the other ray be 4,B, B;C, C,D,......... Y.Z,:
consider the resaltant effect of transmitting both heterogeneous rays simul-
taneously along the same line.

(1.) If theinitial points 4, 4, coincide, the vibrations are in unison at
every point of every section, notwithstanding the heterogeneity of each ray.

(2.) If the ray 4,....... ««Z, be moved parallel to itself along its own

A .
direction through the distance ry the two rays will annihilate each other

at all points where identical sections are superposed, but will in general
fail to do so in the regions where different sections overlap ; that is, for a
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A
distance ) at the end of every section. Hence at any given point there

will be annihilation while at least 999,999% waves pass by, and more or
less unison while half a wave is passing the same point.

(8.) In the same way, if the ray 4,......... Z, be moved parallel to itself
along its own direction through the distance 50,0004 wave-lengths, the
two rays will still annihilate each other at all points where identieal
sections are superposed, but will in general fail to do so in the regions
where different sections overlap ; that is, for a distance 50,000} wave-
lengths at the end of each section. Henee, at any given point, there will
be complete annihilation while at least 949,999% waves pass by, and more
or less unison while 50,000} waves are passing the same point : in other
words, instead of complete annihilation, there is more or less light during
“at most Fsth part of the time: the light will be apparently continuous, but
its intensity will not exceed the g4;th part of the maximum joint effect of
the two rays. The variability of the periodic character will thus account
for the appreciable diminution of the interference-effect when one of the rays
is moved parallel to itself through a considerable number of wave-lengths.

In the following pages we shall only need to consider sets of waves be-
longing to a single scetion of constant periodic character, and may thus
proceed as if the constaney of character were really a property of the

whole ray.

The same assumption accounts for the remarkable fact that rays of the
same simple colour, but obtained from different sources, cannot be made fo
annthilate each other.

11. Hitherto, for simplicity, we have left unmentioned the remarkable
fact that rays of light of the same simple colour, whether ordinary or plane-
polarised, cannot be made to annihilate each other if they have been
derived from different sources. This is quite inexplicable if u ray is
assumed to have constaney of periodic character throughout its extent ;
but it is immediately accounted for by the assumption arrived at in the
preceding Article : if a ray consists of a series of independent sets of
waves, it is physically impossible for two rays from different sources to be
identical in their characters.

For a plane-polarised ray, only the amplitudes and phases will differ
in the different sets.

We have seen that two plane-polarised rays of constant periodic cha-
racter throughout would give an elliptically polarised ray of which the
ellipses would have a definite magnitude and position dependent on the am-



THE TRANSMISSION OF LIGHT IN ORYSTALS, 861

plitudes and phases of the component rays: if each of the planc-polarised
rays, instead of being of eonstant periodic character throughout, consists
of independent sets of waves, the resultant effect will generally be a rapid
succession of elliptically polarised sets, the magnitudes and positions of the
ellipses changing as different sections of the plane-polarised rays become
superposed ; the resultant ray will thus generally be identical in character
on all its sides, as far as observation can detect.

Not only is the assumption of variability of periodic character necessary,
but g constancy of periodic character could not be physically maintained.

12. A simple pendulum, disturbed and then set free to oscillate under
the constant action of gravity, soon comes to rest if allowed to communicate
its motion to a surrounding medium : to maintain the oseillations, the
pendulum requires to be repeatedly disturbed, and each impulse may change
the phase and amplitude, and possibly also the direction of the vibration.
In the same way, the vibrations of character at the points of a luminous
body must be maintained by the repeated action of something analogous
to an impulsive force. It is impossible to imagine that the representative
impulse can always have the same magnitude and direction and occur at
the particular instant when the vibration is in a particular phase. IHence
the vibration must, of almost absolute necessity, be different in its ampli-
tude, phase, or direction, after every impulse.

Further, as already remarked in Art. 6, any luminous source available
for experiment is not a geometrical point, but an area of appreciable mag-
nitude, and the resultant effect at any point is due to the superposition of
the effects of rays transmitted from every point of the luminous area : even
if it were possible that the vibrations at a single point could be maintained
constant in periodic character, it is inconceivable that the constancy of
periodic character could be maintained at points belonging to an appreci-
able area.

A representative force.

13. Inthecase of a plane-polarised ray of constant character throughout
the part considered, the vibratory motion of the representative point p is thus
the same for all points P in the line of transmission, and only the phase of
the vibration differs at different points at a given instant : hence the expres-

2

sion y =a sin— vf, which ropresents the change of state at the time ¢ at

2w .
the point for which —:‘L—u= 0, also represents the vibration at any other.

point of the ray, if we have due regard in every case to the epoch from
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which the time is measured. The general expression for the law of the
change at any point of a plane-polarised ray has been deduced on the as-
sumption that the variation of the state with the time is exactly tho
same as the variation of position of an isochronous pendulum; or,
what is the same thing, of a particle of unit mass vibrating in a straight
line and attracted towards an origin in the line by a force of which
the magnitude is proportional to the distance therefrom. For the

velocity u of the attracted particle at the time ¢being g‘—;/, the accelerative

. . d al2
force at the same instant is l? or 3 : by hypothesis the force is attractive,

and is measured by f? times the dlsta.nce, or by —f%, where f is a constant
l
quantity : henoe = —f%.

It is easily seen that y = Bsin(ft + $3), in which B and 3 are both
independent of the time, is a solution of this differential equation : for

- d . .y
diﬂ'erentlatmg once we have di:—-chos( ft+73), and differentiating a
second tlme r —-—f"Bsm(ﬂ +3) =~/ %.

If the time be measured from an epoch of passage through the origin,
the constant 3 is zero and the expression becomes y=Bsinft.
Hence in the case of plane-polarised light, the vibratory motion of the

2 .
representative point p, being expressed by the relation y=a sin —;T vt, is
identical with that of a particle of unit mass attracted towards the origin by

2,2
a force which is measured by %’i times the distance.

Even if the actual change of state at the point I” were an oscillatory
rotation of an ethereal particle about a diameter, as suggested by Rankine,!
the above kinematical representation would still hold: in that case, the
diréction of the line Pp would represent that of the axis of rotation of the
ethereal particle at P, and the distance I’p would represent the angular
disturbance at the given instant,

Or again, the real change may be an clectro-magnetic disturbance, what-
ever that may be.

The representative force is dependent on the luntnous source,

14. But it will be obvious on reflection that the relation between the

1 Philos. Magazine; 1833, ser. 4, vol. 6, p. 403.
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distance of the ideal particle, and the ideal force which acting upon the ideal
particle would cause a vibration isochronous with that of the periodie
¢hange involved in the transmission of the given ray of light, is generally
independent of the specific properties of the transmitting medium. The
ratio being 47%?: \* depends only on the ratio X : v, that is to say on the
period of the vibration or the colour of the light. Now simple light
generally retains its colour after transmission through any number of
different media ; it is only in fluorescent bodies that the colour of the light
or the period of the change suffers alteration: whenee we must infer
that the period of vibration at any point of a ray, and thus the ratio
of the ideal force to the distance, depends in general, not on the specific
properties of the medium, but on the period of vibration of the change at
the luminous source. The change of colour frequently observed after the
passage of light through a medium is really due to the heterogeneity of
the colour of the original light, and to the change of relative intensity (not
period of vibration, or colour) of the component simple rays.

Further analogy with sound.

185. The same is true in the case of sound. Here again the frans-
mission of a simple note causes a periodic change which may be represented

algebraically by the same expression yl=asin % 2%(% —x)-+ta } , and

kinematically by the same to-and-fro motion of a particle attracted to an

4

T 4
origin with a force measured by -7—;7—- times the distance ; and the constant

ratio 47%?: \* depends only on the period of the vibration or the note of
the sound, and thus on the source of the sound, not on the properties of the
transmitting medium. But the actual charige of state at any point of a line
of transmission of sound being known to be generally a to-and-fro motion
of a particle of the medium, the ideal particle and its motion may generally
be taken to coincide with the real particle and its motion. Hence the
magnitude of the representative force which acts on the ideal particle must
not be confused with that of the elastic force which is evoked at the
same point by the disturbance of the sound-transmitting medium : the
representative force depends on the period of vibration at the source ; the
elastic force evoked by a given displacement depends on the specific
properties of the medium : the resultant force acting on the real particle
depends, not only on the specific properties of the medium,but ou the
continued action of the luminous source.
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The vepresentative force in the case of the vibration of an elustic ether of which
the effective density depends on the direction of the vibration.

16. To take another example: in the latest hypothesis as tothe properties
of an elastic luminiferous ether, it is assumed that the actnal and effective
elasticity of both volume and figure and the actual density of the ether are
the same for all directions in a biaxal crystal, but -that the effective
density varies with the direction of vibration and is related to three
mutually perpendicular lines. Hence, if the ether vibratesfreely after
disturbance parallel to one or other of these lines, the period of vibration
will depend on the direction of the disturbance; for, though the effective
elasticity is the same for each direction, the effective density, or effective
mass to be put in motion, is different: and the ideal force, which acting on
an ideal particle of unit mass gives a synchronous representative vibration,
will have a different relation fo the distance for the three divections of
disturbance, although the ethereal elasticity, both actual and effective, is
assumed to be really identical for all directions.

A fallacy.

17. We are now in a position to recognise the fallacy of a method
which has been used for the derivation of Fresnel's wave-surface from the
properties of an incompressible elastic ether. It is first proved that the
elastic force evoked by a unit displacement along a line OP, which is
the radius veetor of a cerfain ellipsoid, if resolved along the direction of

displacement OP, is Ulpa : that if OP is an axis of a section of the ellipsoid,

the other component is perpendicular not merely to (P but also to the
plane of the section : that if the section has the direction of the wave-
front, the second eomponent is without effect owing to the incompressi-
bility of the ether: that the effective elastic force for unit displacement
ig thus D}Pz— It is then tacitly assumed that the effective elastic force is
o s . . b 4z
identical with the above representative force (which is measured by %

4mh? 1

times the distance) : hence it is inferred that T =gp It is next
wrongly assumed that the wave-length \ isaliays the same for rays of the same
colowr transmitted in the same mediwm, and that \ in the above relation is
thus a constant : whence it is concluded that the velocity varies inversely as
OP. That the proof is fallacious is clear from the last Article, in which it has
been shown that in the representative vibration the relation of the ideal force
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to the ideal distance is independent of the specific properties of the medium
and depends on the luminous source. Indeed theassumption of the constaney
of \ isinconsistent with the conclusion, namely that » differs with the direction

of vibration ; it is obvious that the period % and the wave-length X cannot be

both constant if v be variable: the colour really depends on the period of
vibration, not solely on the wave-length,

Fresnel himself proceeded in a different way, and assumed a relation
founded on the analogy of a line of vibrating ethereal particles to a
vibrating string.

In yeneral, if a plane-polarised ray is transmissible in a given direction,
the plane of polarisation can have at most two diferent directions.

18. We have seen (Art. 8) that if two plane-polarised rays of the
same wave-length can be transmitted along the same line with the same
velocity but with different positions of the plane of polarisation, they may be
identical in effect with a single plane-polarised ray transmitted along the
line with the same velocity but with an intermediate position of the plane
of polarisation ; the direction of the latter being determined by the ratio
of the amplitudes of vibration of the component rays: conversely, the
effect of a single ray of given plane of polarisation and simple colour is
identical with that of two rays of the same simple colour transmitted along
the same line with the same velocity, and with their planes of polarisation
in any assigned positions.

Now a plane-polarised ray can be transmitted along the line of inter-
section of two planes of physical symmetry of the medium, for the planes
of symmetry of the plane-polarised ray and the planes of symmetry of
the medium may be taken to coincide: but the velocity of the ray will:
depend upon the position of the plane of polarisation, if the physical rela-
tions of the medium relative to the two planes of symmetry are different.
If the latter be the case, as for instance when the line is an axis of sym-
metry of an ortho-rhombi¢ crystal, no ray having a plane of polarisation
oblique to the symmetral planes of the crystal can be {ransmitted along
it: for such a ray, if transmissible, would be kinematically equivalent to
two rays transmitted along the line with the sume velocity, each having
its plane of polarisation coincident with a different plane of symmetry;
two fays can be actually transmitted with these positions of the plane of
polarisation, but that their velocity should be equal is in general phy-
sically impossible.

In exactly the same way it follows that if along any line, whether an-
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axis of symmetry or nof, a plane-polarised ray can be transmitted with its
plane of polarisation in two different directions but with different velocities
in the two cases, a third position of the plane of polarisation is physically
impossible.

The refraction of the medium cannet be higher than double;

19. Hence, for a given direction of transmission in such a medium, a
plane-polarised ray cannot have more than two different velocities: and
the medium cannot present more than double refraction ; for, according to
the undulatory theory, whatever the nature of the physical change, the
direction of the refracted ray is dependent upon its velocity.

Degree of the equation of the ray-surface.

20. A diameter of the ray-surface for such a medium will thus inter-
gect the surface in at most four real points, two on each side of the origin ;
and the equation of the ray-surface cannot be of a degree higher than the
fourth, if it be granted that the above method of proof excludes the exis-
tence of imaginary velocities and imaginary points of intersection of a real
line with the surface.

In fact, even if there be two imaginary positions of the plane of polari-
sation for a given real direction of ray-transmission, the imaginary velocities
must be in general unequal, since the two planes will be differently related
to the erystal and will thus correspond to different crystalline properties,
whether real or imaginary. But even if the planes of polarisation be
imaginary, the difference of the imaginary velocities of the two plane-
polarised rays prevents the resultant effect from being that of a single
plane-polarised ray with an imaginary plane of polarisation (Art. 85).

The transmissibility of even a single plane-polavised vay is not a physicel
necessity ; but if one position of a plane of polarisation be possible, there is
a second at right angles with the first.

21. We may remark that it is not a physical necessity that a plane-
polarised ray should be transmissible at all : a plane-polarised ray ecannot
be transmitted, for instanee, along the morphological axis of a erystal of
quartz.

As a plane-polarised ray is symmetrical to two planes, the plane of
polarisation and the transverse plane, it would seem that if the characters
of u crystal admit of one symmetral plane of the ray having a given
position, they must admit of the other symmetral plane having the same
position : in other words, for a given direction of transmission, if there is
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one possible position of the plane of polarisation, there is a second at right
angles fo the first. The same result is Iater arrived at in another way and
the positions of the perpendicular planes are determined (Art. 4Qc).

Transmission of a ray along an awis of tetragonal or hewagonal symmetry.

22. Onthe other hand, the morphological axis of a tetragonal or hexa-
gonal crystal is the intersection of two or more symmetral planes for
which the physical relations are identical : hence along such a line it is
physically possible to transmit two rays having the same velocity and
different planes of polarisation, and thus having a resultant effect identical
with that of a single plane-polarised ray, The amplitudes of the component
rays being arbitrary may be so adjusted that the equivalent single plane-
polarised ray has any plane of polarisation whatever : and it follows that
along the morphological axis of a given tetragonal or hexagonal crystal a ray
may be transmitied with any direction of the plane of polarisation, but in
each case with the same velocity.

The velocity-factor.

23. The velocity of transmission of a plane-polarised ray of given
colour is found to depend on the properties of the medium : since the
vibration is'in only a single direction, we may assume that the velocity of
transmission corresponding to a given direction of vibration depends
solely on the properties of the medium relative to the direction. of the
vibration. To avoid confusion of ideas, let the action of the medium in so
far as it affects the velocity of a ray of given direction of vibration be
said to be due to a velocity-factor ; the magnitude of the factor depending
on the properties of the medinm for the direction of the periodic change
or vibration,

The velocity-factor is necessarily the same for all directions perpendicular to
an awis of tetragonal er hexagonal symmetry.

24. We have shown, from prineiples of mere symmetry of the medium
and superposition of changes, without regard to their physical character,
that along the morphological axis of a tetragonal or hexagonal crystal a ray
is transmissible with the plane of polarisation in any azimuth whatever,
and that the velocity of transmission of the ray is always the same : hence,
for all directions of vibration perpendicular- to the morphological axis of &
uniaxal crystal, the velocity-factor has the same inagnitude. It follows
that the symmetry of the velocity-factor, at any rate for direstions of
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rectilinear vibration lying in a planc perpendicalar to the tetragonal or
hexagonal axis of symmetry, is of a higher orde than that of the mor-
phological development.

The corresponding geometrical character is worthy of remark, namely,
that in a parallelepipedal system of points every plane of the system
passing through an axis of tetragonal or hexagonal symmetry is a plane of
symmetry for the planes and lines, though not for the points, of the system:
the symmetry of the system relative to such a plane being in general
¢t symmetry of aspect,” and not absolute.!

Transmission of a ray in a direction lying in a plane of physical symmetry
but oblique to an axis of tetragonal or hevagonal symnetry.

25. Consider the case of a ray transmitted in one of the planes of sym-
metry S of a tetragonal erystal, but in a direction oblque to the morphological
axis. Either plane of symmetry of the plane-polarised ray may be taken
to coineide with the plane of symmetry S of the crystal: this is confirmed by
experiment, for these directions of the planes of polarisation of a ray are
found to be physically possible. But if the plane of polarisation. of the
ray is coincident with the plane of symmetry S of the crystal, and the
vibration is assumed to be perpendicular to the plane of polarisation, the
vibration is perpendicular to the morphological axis whatever the position
of the ray in the plane: hence, according to the preceding Article, the
velocity-factor, and therefore the velocity of the ray, will be the same for
all ray-directions in this plane, and one curve of intersection of the ray-
surface with the plane of symmetry S of the crystal will be a eircle. On
the other hand, if the plane of polarisation of the ray is normal to the planc
of symmetry S of the crystal, the vibration will be in the same plane of
symmetry S and in a direction oblique to the morphological axis: the
physieal characters belonging to the direction of the vibration, including
the velocity-factor, will thus vary with the direction of the ray, and the
velocity-curve corresponding to those rays of which the plane of polarisa-
tion is normal to the symmetral plane S of the erystal will not be eircular :
the curve will be symmetrical, however, both to the morphologieal axis
and a line perpendicular to it, for they are directions with respect to
which all the characters of the crystal are symmetrical. Further, the
second ourve will touch the first at its points of intersection with the
morphologieal axis : for the two dircctions perpendicular to that line, and
lying respectively in and perpendicular to the plane of symmetry S, are by

— e

1 H. J. 8. Smith ; Philosophical Magazine, 1877, ser. 4, vol. 4, p. 18,
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hypothesis similar in all their relations, and correspond therefore to the
same velocity-factor ; hence both curves meet on the morphological axis,
and therefore touch each other, for the morphologieal axis divides cach
curve symmetrically.

But since the equation of the ray-surface has been shown to be of &
degree not higher than the fourth, and the equation of one curve of
intersection, a circle, is of the second degree, that of the other curve
will likewise be of the second degree, and therefore represent an ellipse —
for the curve is closed and has' unequal diameters. This result agrees
with the experimental discovery made by Huygens.

Transmission of rays along the axes of symmetry of an ortho-rhombic
crystal.

26. Take next the case of an ortho-rhombic crystal. In the first
place, as shown in Art. 18, a ray can be transmitted along any of the axes
of symmetry, and have its plane of polarisation coincident with either of
the symmetral planes of the crystal which intersect therein. The three
axes of symmetry being independent of each other in all their physical
relations, the velocity-factors will be independent; and vibrations paral-
lel to the several axes will thus in general correspond to different veloei-
ties of transmission, Let the velocity corresponding to an axis OX, 07,
or 0Z, considered as a direction of vibration, be denoted by a, b, or ¢
respectively : then two rays are transmissible along OX with velo-
cities b and ¢, and planes of polarisation normal to OY and O0Z respec-
tively : two rays are transmissible along OY with velocities ¢ and «, and
planes of polarisation normal fo OZ and OX respectively : two rays are
transmissible along 0Z with velocities @ and b, and planes of polarisation
normal to OX and OY respectively.

Transmission of rays tn a symmetral plane of an ortho-rhombic crystal.

27. Again, as far as directions lying in the plane of symmetry OXZ
are concerned, there is no essenlial difference between an ortho-rhombic
and a tetragonal crystal, if OZ is the morphological axis of the lattor.
The essential difference between two such crystals is that in one of
them (the ortho-rhombic) the third axis of symmetry OY is independent
of OX in its physical relations, and in the other (the tetragonal) is iden-
tical therewith. Hence we may infer that in the symmetral plane 0.XZ of
an ortho-rhombic crystal, a ray is transmissible in any direction with its
plane of polarisation either coincident with or perpendicular to that plane.
Also, as in the case of a tetragonal crystal, the intersection of the vay-
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surface with the symmetral plane will be a circle and a eoncentric ellipse :
but, in the ortho-rhombie erystal, the circle and ellipse will be independent
of each other in magnitude, since the velocity-factor for the direction of
vibration OV is independent of that for the direction of vibration OX.

Intersections of the ray-surface with the symmetral planes of an
ortho-rhombic crystal.

28, The intersections of the ray-surface with the axial planes OYZ,
0ZX, OXY of an ortho-rhombic crystal will thus be given by the following
equations :—

(y2+za —a?) (DB — 13 =0,
(P42 —17) (24 a%P — ?a?) =0,
@+ y*— ) (a%P+ % — a??) =0,

General equation of the ray-surface for an ortho-rhombic crystal.

29, The equation of the ray-surface itself must be of the form
P+ —a?) (Vg P~ )+ g(ayz) =0,
gince it reduces to the first expression when » is made zero. But ac-
cording to Art. 20 the quantity » ¢(wyz) cannot eonsist of terms of degrees
higher than the fourth: further, the surface being symmetrical to the axial
planes, its equation can only involve -even powers of 2y 2: hence the only
terms which can enter the expression # ¢(xyz) are at, %%, o%® and o2,
The general equation is thus of the form
P+ —a?) (% + %2 — V') +: da* + B2+ 0Py  + D=0
or, multiplying out,
AR VY A (P4 ) 92+ B2+ Cay + Do — 1 (P - o) g
~ a4 1) 22 +-afbe* = 0.

Also, it is evident from the equations of.the curves of intersection with
the three axial planes that #yz and abe are simultaneously cyclically intor-
changeable (Art. 8); hence

A=d*; B=d+a*; C=a+b*; D=—a*(1*+cY).

Substituting these values, the equation becomes

(@2 y22%) (224D c%?)—a? (B34-%) 23b? (¢*4-a%) y2me? (a24-12) 224 a2 = 0
or, multiplying by +%,
(@22 022222 — 1202 (57 o?) 22 be2-a%)y 2 ¥ 82) 2B a2 234y ) = O
or @ (r—17) (P — ) £ I (P — ) (1% = a) 35 (1 — ) (P 1) =0
2 29,2 2
o G =
which is Fresnel's equation of the ray-surface,
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The vay-surface for a mono-symmetric or anorthic crystal.

30. (#) Next consider the case of a erystal which admits of the trans-
mission of a ray of plane-polarised light in any direction, but presents only
a single plane of geometrical and physieal symmetry, and thus belongs to
the mono-symmetric system : let the normal of the plane of symmetry
be OY,

Bince, from a purely geometrical point of view,a mono-symmetric
crystal may be regarded as a homographic transformation of an ortho-
rhombie crystal, it first suggests itself that the ray-surface for a mono-
symmetric crystal may be such as would result from a corresponding trans-
formation of the ray-surface for an ortho-rhombie crystal. That the analogy
is imperfect, however, is evident from the fact that there is no corresponding
distortion of the planes of polarisation; whatever the direction  of ray-
transmission within the mono-symmetric crystal, the planes of polarisa-
tion of the two transmissible rays are perpendicular to each other (Art.
21),

1. Asin Art. 27, any ray whatever lying in the plane of symmetry can
have that plane for either its plane of polarisation or its transverse plane :
hence, exactly in the same way asbefore, it follows that the plane of symmetry
intersects the ray-surface in two curves, the one a cirele, the other a con-
centric ellipse : the former corresponding to the rays which have the
symmetral plane for the plane of polarisation, thelatter to the rays for which
the plane of symmetry is the transverse plane. If OX OZ be the axes of
the ellipse, a ray transmitted along OX will thus have its representative
vibrations parallel to either OY or O.Z ; and a ray transmitted along 02
will have its vibrations parallel to either OY or OX.

2, A ray transmissible along the line OY can have its plane of polari-
sation in only one or other of two directions of which the normals are
perpendicular both to each other and to the line OY (Arl. 21).

8, Since the elliptic and ecireular sections of the ray-surface made by
the plane XOZ are both of them symmetrical to the lines OX OZ, while
the plane XOZ is a plane of general physical symmetry of the crystal, and
itsnormal OY is an axis of general symmetry of diagonal type, we may
reasonably assume that for this particular property (so long as there is no
variation of colour or temperature) the planes YOX YOZ are themselves
planes of symmetry of the crystal ; in which case, the lines OX 0.2 will be
the directions of vibration of the two rays transmissible along the axis OY.

4. For the given colour and temperature, the circumstances are
identical, for this particular property, with those of an ortho-rhombic
crystal having OX OY.OZ for axes of symmetry : and the ray-surface
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will thus for a mono-symmetric erystal have the same general form as for
an ortho-rhombie one.

() The general form of the ray-surface, being quite unaffected by the
degradation of the symmetry from the ortho-rhombie to the mono-sym-
metrie type, is clearly independent of the type of symmetry altogether :
the gencral form will therefore be the same even for an anorthie erystal.

The difference in the type of symmetry thus affects, not the general
form of the ray-surface, but only the eonstancy of the directions and rela-
tive lengths of the axes of the surface for different colours and tempera-
tures. An axis of general symmetry of the crystal is necessarily an
axis of symmetry of the ray-surface whatever the colour of the light or the
temperature of the crystal (p. 297).

The form of the ray-surface is independent of the physical character of the
periodic change.

81. The rigorous aceuracy of the form assigned to the ray-surface by
Fresnel is thus a necessary consequence of the general features of perpendi-
cularly transverse undulations, independently of the physical character of
the change.

And although, as in the case of an incompressible elastic ether with
effective rigidity dependent upon the direction of vibration, the same form
of ray-surface may result notwithstanding the obliquity of the transverse
vibration, this is not generally true. The form of the ray-surface which
follows, for example, from a version of the elastic theory of double
refraction suggested by Rankine and further developed by Lord Rayleigh
is different from that of Fresnc], and only gives the latter as a first approxi-
mation. That version, according to which the ether is incompressible and
has an effective density dependent on the direction of vibration, involves
the general obliquity of the latter to the direction of transmission.!

In fact, whatever the degree of symmetry of the characters of a plane-
polarised ray as transmitted within a medium, the above form of ray-
surface will result from any hypothesis which has for necessary conse-
quence that if one plane-polarised ray is transmissible in a given direction,
a second plane-polarised ray is transmissible in the same direction with
a different velocity and has its plane of polarisation perpendicular to that
of the first,

It may be remarked that in the above reasoning no assumption as to the
molecular constitution of the ether has been necessary.

! Philosophical Magazine; 1861, ser. 4, vol. 1, p. 441: 1888, ser. 5, vol. 26, pp. 525, 527,
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Resilience.

32. Itwas explained in Art.14 that the period of the change at any point
of & ray of light depends in general on the period of the change at the
luminous source, and not on the specific’ properties of the medium; but
the latter may conceivably affect some or all of the remaining eharacters of
the ray, namely, amplitude and direction of vibration, velocity and diree-
tion of transmission through the medium. The property by virtue of
which a periodic change of any kind is transmissible through ‘a medium
may be denoted by the general term resilience : we may imagine that a
dislurbance at any point of the medium evokes an opposing resilience of
which the magnitude inereases with the amount of the disturbance.
Optical resilience, in so far as it affects only the velocity of transmission
of a periodic change having a given direction, is identical with the
velocity-factor for that direction, mentioned in Art. 23. When the periodic
change is a vibratory motion such as follows the removal of a compressing
or distorting. force, resilience is identical with elasticity of volume or
figure.

From this point of view, the periodic change at any point of a
ray of plane-polarised light may be treated as a resultant éeffect of two
forces ; the one an inifigtory linear force periodic in its variations, and
having a period identical with that of the luminous source; the othera
seeondary force or a resilience, evoked by the disturbance produced by the
initiatory force.

Free and forced vibrations.

33. Theperiodic change at a point of a ray of light is a forced vibra-
tion, resulting from the continued action of the luminous source : it differs
from a free vibration, such as would be produced by resilience alone if
the luminous source were removed while the medinm is in a state of
disturbance.

A simple case of free vibration.

34. In the simplest possible case of free vibration of a character of &
medium, we may imagine that the disturbance at the point is of such a
kind that at any instant it can be represented by the length and direc-
tion of a straight line y drawn from an ideal particle of unit mass to the
point, and that the resilience of the medium can be represented by an
ideal force acting in the line of disturbance, tending to diminish the dis-
turbance, and proportional in magnitude to the disturbance itself, the
proportion being indcpendent of direction : such a medium may be said
to be isotropically resilient for the given character.
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As in Art. 13 we may write
d?
w=v
where f is independent of the time and depends on the properties- of the
medinm.
A solution of this equation is y = Bsin(ft+3), where B and 8 are
constants : the expression represents a vibration of which the period is

g}—.r, since any value of y recurs when ¢ is increased by an integral multiple

of that quantity.
As already pointed out, such a mode of representation.is still possible,

even when the actual change is an oscillatory rotation of an ethereal
particle (Art. 13).

A simple case of forced vibration.

35. Butsuppose that in the above medium the vibration at the point is
not free but forced, and that the initiatory force is a periodic one related to
the time in the same way as the disturbance af a point of a plane-polarised
ray of simple colour ; the initiatory force ¢an in such case be represented by
an expression of the form Ssinst, where Sand s are constants, and the latter
depends only on the period of vibration of the luminous source. As be-

fore, the ideal resultant force acting on the ideal particle of unit mass is
2,

(ﬁ?‘, and is due to the superposition of the initiatory force S sin st and the
d* .
rosilience —f% : hence th = Ssinst —fy.
Tt is casily seen that y==Isins¢ is a solation of this differential equation :
d a?
for differentiating, we got ﬁrstd-y = PBs cosst, and next ¢ — — Bssinst:

¢ ds
substituting in the above equation, and dividing by sinsf, we get

8 _ 8 s
B= Fog’ and thus y = Filp sinsf.  Hence the resilience affects
merely the amplitude, not the period or general character of the vibration
at the point.

The resilience being —f? has likewise the same period as the initiatory
force.

Transmission of a simple forced vibration in an isotropically resilient
medium.

36. If a luminous source is in a state of periodic vibration represented
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kinematieally by the linear motion of a particle attracted to an origin by a
force proportional to the distance, and is surrounded by a medium such
that the resilience is represented by a force acting in the line of disturb-
ance and proportional to it in magnitude, the changes transmitted through
the medium along a given direction perpendicular to that of the vibra-
tion may thus be expected to be always in the same plane and have
the same period; no resilient force oblique to the plane containing the
direction of ray-transmission and the direction of vibration of the luminous
source is evoked by the disturbance : in any direction of an isotropically
resilient medium, a plane-polarised fay, if transmissible at all, may thus
be transmitted with any azimuth of plane of polarisation whatever.

A more general case of free vibration of an ceolotropically resilient medium.

8'7. Asa more general case, we may imagine that in a crystalline
medium there are three directions, not co-planar, inclined obliguely or

perpendicularly to each other, for each of which a disturbance evokes a
resilience which in its effects is represented by an ideal force, contrary and
proportional to the disturbance, acting on an ideal particle of unit mass;
the relation of theideal representative force to fhe distance of .an ideal
attracted particle of unit mass being, however, like most other physical
characters, different for the three directions: the latter may be termed
axes of optical resilience.

That sach a representation is possible, even in an elastic ether of which
the elasticity is-the same in all directions, has already been pointed out in
Art, 18 for if the effective density depends on the direction of vibration,
the period of a free vibration will also vary with the direction, since
although the real accelerative force has the same constant relation to the
distance it will have a different effective mass to keep in motion.

When it is desirable to emphasise the fact that the resilient force under
consideration is the ideal force which would produce an analogous to-and-

fro motion of a particle of unit mags and not the statical force necessary to
the maintenance of a given state of disturbance, we may conveniently dis-
tinguish it as vibrational resilience. If the three constants of vibrational
resilience be respectively ¢’ f?¢% and z y 2 be the distances which re-
present the disturbances paralle] to the respective axes af any time ¢, we
have for a free vibration due to a disturbance along each of the axes

d?z d d*
=iy T =y T

whence, in the same way as before,
z=dsin(et + a); y= Bsin(ft+ 8); 2= Csin(yt+ y).
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According to the principle of snperposition of changes, if the direction
of the initial disturbance at the point is inclined to the three axzes of
resilience, the initial disturbance may be resolved along those directions,
and the resultant free vibration is such as would result from the com-
position of the free vibrations corresponding to the several axial direc-
tiong. Hence, if the vibration is free, the disturbance at a given instant
is determined by the above triad of equations.

Since the ratios x: y : » depend on the time, the motion of the repre-
sentative particle is not in a straight line passing through the origin,
The particle in fact describes a curre in three dimensions, and never
passes twice through the same position unless the ratios ¢: f': g are com-
mensurable.

The quantities ¢* f29* may be conveniently termed coefiicients of optical
vibrational resilience: and the medium may be said to be @olotropically
resilient. The coefficients of vibrational resilience are independent of
and ¢ for the same ray, bui_even with the same medium may conceivably
be different for different rays, and thus vary with the period of the change,
or in other words, with the colour of the light.

In Art. 42 it is pointed out that obliquity of mutual inclination of the
axes of optical resilierce is not met with even in mono-symmetric or
anorthic erystals.

A more general cass of forced vibration of an wolotropieally vesilient medivm.

388. Consider next a forced vibration of a ‘crystalline medium having
three dissimilar oblique or rectangular axes of vibrational resilience as
before : assume that the initiatory force at any point of a ray may again be
represented by an expression of the form Ssins¢, where s is a constant
depending on the period of the change at the luminous source.

If OP be any line passing through an origin O, and OL OM ON,
lengths measured along the axes of resilience, be edges of a parallelepiped
of which OPF is a diagonal, whatever the length OP we have

OL=\x0P OM=up'OP ON=v'OP,
where X p v are constants for a given direction of OP,

From the principle of superposition, it follows that the initiatory force
Ssinst acting in the line OP can be resolved into three initiatory forces
ASsinst pSsinst vSsinst, acting along the axes of z y = respectively.

In exactly the same way as before we have the following expressions
for the several vibrations parallel to the respective axes:—

J

AS . pmS . vS
xamsmst; y-—mgsmst; z= !??Sgsmst:
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where the quantities A\ p v €272 4® S and s are all independent of the time.

Hence the ratios »: y: » are also independent of the time, and the
representative particle vibrates in a straight line through the origin.

The period of the resultant vibration is identical with that of the
initiatory force, but the direction of the vibration is different., If \' p' »'
determine the direction of the resultant vibration,

A g v
A= fiig P :

Further, the axial components of the representative resilient foree being
-z, —f*y, —g%, or

A8 i

. uS . v8
— g ginst, — }f;:sz sinst, — {f,’,—:s—z sinst,

N sv=wiyiz=

the resultant resilient force will have a direction determined by the ratios
ex . fw g
P e :fa__sz : F—s

Hence the resultant resilient force always acts in the same.direction
throughout the vibration, but it is inclined to the direetion Ap v of the
initiatory force and also to the line of vibrationA'u'v', both of which pass
through the origin : further the resultant resilient force has the same
period as the initiatory force.

Transmission of a simple forced vilration in an eolotropically resilient
medium,

89. In such a medium, therefore, an initiatory linear periodic force
having a direction inclined to an axis of resilience and acting at a given
point gives rise at that point to a linear periodic vibration in a direction
inclined to the initiatory force, and to a resilience of which the resultant
effect is represented by a periodic foree acting on the ideal particle in a
third and constant direction not passing through the given point. Since
the periodic change is transmitted through the medium by virtue of the
resilience, and action is always equal and contrary to reaction, we should
thus expect that along any line of transmission the direction of the periodic
change will in general vary from point to point of the ray; and that the
transmitted periodic echange can only be in a direction lying always in the
same plane, if the plane eontaining the initiatory force and the direction of
transmigsion likewise contains tne direction of the resilient force, and
therefore also the direction of representative vibration.

Cousider, for example, the case of a ray transmissible along an axis X
of an ortho-rhombic erystal : from the symmetry it follows that a plane-
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polarised ray transmitted along OX must have ils vibrations parallel to
one or other of the dissimilar axes 0Y 0.2, and that for a ray of given
simple colour the velocity of transmission will depend on the direction of
vibration. If, however, the initiatory force at the initial point of the ray,
though perpendicular to OX, is oblique to the axes OY O0Z, it may bere-
solved into two forces, parallel to OY OZ respectively, and each may be
regarded as originating a simple plane-polarised ray: the motion of the
representative point will be the resultant of the motions belonging to each
ray, and will thus be continually changing its direction as the disturbance
is transmitted along OX,

Case of an ortho-rhombic crystal.

40. (a.) Direction of the resultant vibrational resilience for a given
disturbance. For simplicity, let the crystalline medium present- three
mutually perpendicular but dissimilar symmetral planes, and thus belong
to the ortho-rhombic system: the axes of resilience necessarily ecoincide
with the crystallographic axes, the lines of intersection of the symmetral
planes. Let X Y Z be the components, parallel to the axes of co-ordinates,
of the representative resilient foree corresponding to a disturbance.defined
by the co-ordinates &' y' 2' : then

X=—d'; Y=—f%; Z=—g%'".
The direction-cosines of the resultant resilience F are in the ratios
X: Y: Z:oréa: fo: g%

But if an ellipsoid &%+*+f%y®+g%%=1 be of such dimensions that it
passes through the point P (a'y'z’'), the direction-cosines of PG the
normal of the ellipsoid at the point 2'y'z’ are likewise in the ratios
' fuy . g% (Fig. 19).

Hence the resultant resilient force due to a disturbanece OP acts in
the direction P@ of the normal of the ellipsoid ¢*v*f%-+g2*=1 at
the point P (#'y'2') lying on its sarface.

(b.) Direction of transmission of a plane-polarised ray of which the direc-
tion of the plane of polarisation is given.

If Olbe the centre of the ellipsoid and OP the representative direction of
vibration, the initiatory force must also lie in the plane OPG which con-
taing the direction of vibration and the sccondary force: further, the
direction .of transmission must lie in the same plane (Art. 39 ). The
vibration being always perpendicularly transversal to the direction of
transmission, the ray Or corresponding to the vibration OP is thus in
the plane OPG and perpendicular to OP (Fig. 19).

(¢:) The planes of polarisation for a given direction of ray are perpen-
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dicular to each other, and have directions which can be defined by means of
an ellipsoid.

It has already been proved (Section IV, Art. 24) that if OP bea central
radius vector of an ellipsoid, and PG the normal of the ellipsoid at P, the
line OP is an axis of the section of the ellipsoid by a plane through OP
perpendicular to the plane OP& ; for a given direction of ray Or
there are thus two possible directions of vibration OP, OP;, which can
be transmitted without change of plane, and they are the axes of the
section of the ellipsoid by a plane to which the ray Or is normal. Hence
the planes of polarisation corresponding to a given direction of ray are
perpendicular to each other and are determined by the above geometrical
construction.

(d.) Magnitudes of the total and effective vibrational resilionce for a given
disturbanoe.

If I be the resultant resilience, F?= X2+ Y2 Z%=¢'s"?+fly'2 g2

But if OM (Fig. 19) be the central normal to the tangent plane at
P (m’y’ z'),

Ollkt“:e!xm-{' Sy g% (Sec. IV, Art. 4).

Hence the resultant resilience F is measured by 5%1

The resilience being in the direction P@, and the actual vibration in
the direction PO, the effective resilience is ' cos OPG
oM 1

=

=¥ o1 =0p
This corresponds to a disturbancc of magnitude OP : hence the effective
. .. .1
resilience for a unit disturbance in the direction OP is P

(¢.) Relation between the effective vibrationul vesilience and the velocity
of transmission.

In the development of his theory of Double Refraction, Fresnel was
compelled to make an assumption as to the relation between the effective
elastic force and the velocity of normal propagation of the eorresponding
wave, and supported his assumption by reference to the analogy of a
vibrating string.

In the preceding Articles, all the forces are purely representative, and
the assumptions and reasoning founded thereon are really independent. of
the physical character of the change. But it is clear that the velocity of
fransmission must depend on the physical character of the periodie change,
and that it is impossible to proceed farther and deduce the absolute velocity
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of transmission without some assumption involving the nature of the changs
and the constitution of the ether. All that we have been able to suggest
hitherto is that the velocity is in some way dependent on the characters
of the medium relative to the direction of the vibration, and these
characters have been collectively expressed by the term velocity-factor :
in other words, it was suggested that the veloeities of the two rays trans-
missible in the direction Or are determined by some function of the
directions of vibration OP; OP,, and thus by some function of the lengths
OP, OP,, for the length of a radius veetor of an ellipsoid *is determined
by the direction. But we have also shown (Art. 29) that, without any
assumption as to the real nature of the change, it is possible to determine
the velocities 7,7, of the two rays transmissible in a given direction, in
terms of a b¢, the velocities corresponding to vibrations in the directions
of the principal axes: hence the velocity » of transmission along Or is
necessarily so related to OP, an axis of the section of the ellipsoid
P+ +y%*=1 by the plane perpendicular to Or, that the equation
a?a? bzyz c2:?

ri—a®  P2—}? 72_02=0
represents the ray-surface. There is only one relation between » and OP
which leads to this form of ray-surface, namely r=0OP: we are thus
compelled to infer that the velocity of transmission of a ray is directly pro-
portional to that radius vector OP of the above ellipsoid e%? %%+ ¢%?=1,
which has the same direction as the vibrations of the ray : from Art, 40d
it follows that the same relation is expressed by the statement that the ray-
velocity is inversely proportional to the square root of the effective resilience
for unit disturbance in the direction of vibration.

1t follows from the above relation that :—

If a line Or is perpendicular to a central section of the ellipsoid
ElR i+ g%"=1, and OP,; OF, are the axes of the section, a plane-
polarised ray can he transmitted along Or, having OP, or OP, for the
normal of its plane of polarigation and a velocity of transmission measured
by OP, or OP, respectively.

That this relation is eonsistent with the form of the ray-surface arrived
at in Art. 29 may be proved as follows :—

(f.)  Zransformation of the above construction.

From O draw OM perpendicular to the plane which touches the
ellipsoid €2 +/%2+9%*=1 at the point P, and let M be the foot of
the perpendicular: produce VM to Ii, making OR-OM=1.

(1.) First—find the loeus of the points & when P takes all positions
on the ellipsoid 6% g% =1,
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Let a"y'2' be the co-ordinates of P (Fig. 19); the tangent plane at P is
x'w+fy'y+4°+'2=1: hence, as in Art. 40d,

6‘%1—2 = gtp'? + f“]j" + y4zm.

If £ y  be the co-ordinates of the point 1, we have ;,% =7,= g7 H

for, by construction, the line OME is perpendicular fo the tangent plane
&x'w-fy'y+gi =1,

Each of these fractions is equal to Ve ;‘/ ,(f_:_';:' 'jf;)‘z'?) ; that is OR-OM,
or unity.
‘We thus have

whenece, since 224 f2y' 4 %0 =1,

2
it follows that L3 +f2
This is the equation of the locus of the points B, and represenis an
ellipsoid with the same symmetral planes as ¢’*+ %+ g%* =1, but with

111,
gemi-axes ¢ f g instead of — = =
¢efy

+Z':=1,

(2.) The equation of the plane which touches the ellipsoid - ZLCZ-}— + é =

j2
at the point B (¢ 9 ) is

2
= +a+E=1
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If Om be the perpendicular on this plano from the origin, the direction-

3 4

cosines of Om have the ratios = j—“; :=,0ra' 1y 12 hence the line Om
passes through the point P.
RN, the normal of the ellipsoid §—2+ f2+Z:—1 at R, is parallel to

Om, and will thus intersect the line Or which lies in the plane ORP: if
N be the point of intersection, RN = Om.

(8.) In the same way as before, since Om is the perpendicular from

the origin to the plane £+y" + -

f2
1 Eﬂ ' ’ r
= 64+f4+§ Sy = 0P,

The plane ORN is thus identical with the plane OPG ; the normal
RN to the ellipsoid at the point R has the same direction as OP and

represents the direction of the vibration : Rlﬁ is equal to OP and there-

fore measures the veloeity of transmission.

Hence the relation given above in Art. 40¢ is equivalent to the
following :—If Or is the direction of transmission of a ray, the direction
of the vibration, or the normal of the plane of polarisation, is normal

2 2 2
to the line Or and also to the ellipsoid %+‘;/72+9%=1; its-velocity

is measured by the inverse of the length of this normal intercepted be-
tween the ray and the ellipsoid : further the normal of the ellipsoid is per-
pendicular to the plane of polarisation of the corresponding ray.

It has been proved in Section IV that the ray-surface which follows

from this relation is

1 1 1 2

= =
A % 7
i+ =0;
S

it has also been proved (Art. 29), without any assumption as to the real
nature of the periodic change, that the equation of the ray-surface is

a2 W2 62 (.3 ,22

,,.2_az+ _b2+ =0:

1 1

. . . 1
the results are consistent with each other if e=-;, f—-——z, y=-—; the
¢
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elhpsmd 7 +——1 is identical with the opiical indicatrix

AP+ AR =1,
Comparison wik Fresnel's elastic forces,

41. (a.) If abc are the velocities of transmission of those rays of
which the vibrations are parallel to the axes of « y = respectively, Fres-
nel’s method of derivation requires the elastic forces evoked by unit dis-
placements along the axes to be taken as a? b* ¢® respectively : according

to the above method, the ideal forces, which by their action on an ideal
particle of unit mass would produce vibrations synchronous with those of

fﬂ

the medium, will be measured by ¢*/%® or 1’ ; 12 for unit displacements of

the ideal particle along those directions.

(8.) In Fresnel’s method, the evoked elastic force normal to the direction
of vibration of a real particle of ether is regarded as of no effect owing to the
incompressibility of the medium : in the above method no assumption is
made as to the compressibility or incompressibility of the medium, but
that component of the representative resilient force which is normal to
the direction of vibration of an ideal particle is regarded as balanced by
an equal component of the representative initiatory force at the same
point of the ray,

Case of -a mone-symmetric or anorthic crystal.

42. If the medium could present three dissimilar axes of optical - resi-
lience obliquely inclined to each other, it would follow as before that the
axial components of the resilient force, corresponding to a disturbance
defined by the co-ordinates a'y'z’, would be

X=—e%'; Y= —f% ; Z= —g%':
but the resultant resilient force ¥ would no longer act along the normal
to the ellipsoid ¢**Tf%y*4-g%*=1, and the planes of polarisation of the rays
transmissible along & given direction would no longer be at right angles to
each other.

As such a character ‘is not presented by any crystal which bas been
examined, we may infer that in all crystalline media the axes of optical
- resilience for a given colour and temperature are always mutually perpen-
dicular, and that the symmetry of the crystal merely affects the directions

of the iriads of perpendicular lines and the ratios of the corresponding co-
efficients of optical resilience.

An unsatisfactory variation of Fresnel's method.
43. Atfirst sight it would seem that the following would be a satisfac-
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tory and more simple mode of altering Fresnel's agsumptions and reason-

ing o as to aceord with the recent conclusion that the vibration is paral-

lel not to the radiils vector RO, butto the normal RN of the ellipsoid
o2 + [) Yy + 02,2 .

Let —azg,—b%,, —¢%, be the resolved axial components of the elastic
force on a particle, due to a displacement from the eentre O to the point 3
(¢ n {) lying on the surface of the ellipsoid a%?+0%2+c%*=1. It may
be shown as above that the elastic force acting on the particle when at R

is directed along the normal RN and measured by fél_]\?’ N being as usual

the point of intersection of the normal with the ray: hence the elastic
force for unit displacement measuved perpendicularly to the ray, and

thus parallel fo the direction of vibration, is RV“

Hence if the partiole were set free after having been. displaced to the
point & and no other force than the evoked elasticity were acting upon it,
the ¢nitial motion would be along the normal ZN under the action of a

Bl,\,z times the distance from the ray. Assum-

ing that the vibration is actually and permanently perpendicular to the ray, a
periodic constraining force is requisite to maintain the isochronous character
of the motion: if it were possible that the constraining force and the evoked

force which is measured by

elasticity could together be always measured by ﬁlifz times the distance

of the particle from the direetion of the ray, we might infer by analogy
with the case of sound ' that the velocity of iransmission would be

measured by RV’ for 1 - i3 the square root of the effective elastic force

due.to a unit d1splacement in the direction of vibration.

It will be found, however, that such a motion cannot actually take place:
the particle will only vibrate rectilinearly if the path passes through the
origin. If the particle is not moving in a line through the origin, the
evoked elastic force will be constantly changing direction; for at any
instant it acts parallel to the normals of the ellipsoid as*+ 0%+ c*%*=1 at
the points where a line joining the particle to the centre O meets the surface.
Further the initiatory periodic constraining foree is zero, not when the
particle is at its position of maximum displacement, but when it is in its
position of no disturbance.
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The transmission of elliptically or circularly polarised rays.

44. We have seen above (Art. 8a) that the simultaneous transmission
of two plane-polarised rays of the same simple colour along the same line
with the same velocity, but with different directions of planes of polarisa-
tion, has for general result an elliptically polarised ray of the same
simple colour transmitted with the same velocity : further, the right-hand
or left-hand character of the motion of the representative point round the
cllipse depends only on the relation of the phases of the component rays,
Hence, in genersl, an elliptically polarised ray, or, its special case, a circu-
larly polarised ray, can be transmitted in any direction within a cubie
crystal, or along the morphological axis of a tetragonal or hexagonal erys-
tal; and its veloeity is independent of its right-hand or left-hand cha-
racter,

If the velocity of transmission of a plane-polarised ray along a given
direction within a crystal is dependent on the azimuth of the plane of
polarisation, we have seen (Art. 82) that an elliptically or circularly
polarised ray cannot result from the composition of two plane-polarised
rays transmitted along that direction.

The transmission of a circularly polarised ray, however, may be possible
even when that of a single plane-polarised ray is not so: for instance, a
right-hand or a left-hand circularly polarised ray, but not a plane-polarised
ray, can be transmitted along the morphological axis of a ecrystal of
quartz. ‘In such case, the velocities of transmission of a right-hand and
a left-hand eircularly polarised ray of the same simple eolour are neces-
sarily different : for it will be found on ealeulation that a right-hand and
o left-hand eircularly polarised ray fransmitted with the same velocity, if
superposed, are kinematically identical with a plane-polarised ray, the
azimuth of the plane of polarisation of which depends solely on the relative
phases of the component rays; but according to hypothesis a plane-
polarised ray is incapable of transmission. Such a line will be an axis of
optical symmetry, but cannot lie in a plane of general symmetry ; for
symmetry to the plane would require a right-hand and a left-hand ray to be
transmissible with the same velocity.

In fact, if a right and left circular motion of the same radius and
period are simultaneously impressed on the same particle, the resultant
motion ig a vibration along that diameter of the circle to which the two
circular motions are symmetrical, namely, the diameter passing through
the two positions of the particle which are identical for the component
motions. If the two circular motions are transmitted through the
medium with the same velocity, their relative phases, and thus the direc-
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tion of the line of resultant vibration, will be the same at all points of the
resultant ray: if they are transmitted with umequal velocities, the line
of resultant vibration will have different azimuths for different points of
the ray, and the change of azimuth will be proportional to the distance
between the given points. Hence it follows that if a plane-polarised ray
be incident normally on a plate cut perpendicularly to the morphological
axis of a crystal of quartz, the ray will not be in a state of plane-polarisa-
tion within the plate, though it will be so after emergence : the planes of
polarisation of the incident and emergent rays will be inclined to each other
at an angle which is proportional to the thickness of the plate.

SuMMmaRyY,

1. Fresnel’s hypothesis—that light consists in the vibratory motion of
an incompressible elastic ether—being untenable, should be abandoned ag
an educational instrument.

2, The later hypothesis—that light consists in the vibratory motion of
a compressible elastic ether, of which the elasticity (of volume and figure)
is the same for all bodies and for all directions in the same body, and of
which the effective density in bi-refractive media is dependent on the diree-
tion of the vibratory motion—satisfactorily accounts for most of the known
optical laws: hence such terms as ‘“axes of optical elasticity,” which
relate to variation of elasticity, must be discontinued.

8. Even this more satisfactory hypothesis may only be an approximate
mechanical analogy, and may eventually be found to be inconsistent with
experiment in some of its optical results ; hence it cannot be satisfactorily
used as the basis of a correlation of optical characters for the student of
erystals ; in fact, though it appears to be fully established "that electro-
magnetic waves and light-waves differ only in length, an electro-magnetic
disturbance seems to be inexplicable as mere vibratory motion of an
elastic body.

4. On the other hand, the accuracy of Huygens’ construction is now so
far confirmed by experiment that it doubtless expresses a Law of Nature.

6. This being the case, it ig easily seen that the velocity and polarisa-
tion of each of the two rays transmissible in a given direction in a uniaxal
crystal can be simply expressed by means of the spheroid alone :—

If R be a point on the spheroid, O the centre, RN the normal, NOr a
line intersecting the normal perpendicularly, the point R corresponds to a
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ray transmisgible in the direction NOr with velocity &and plane of

polarigsation perpendicular to 22& RN, .

6. Generalisation suggests that, in the case of erystals belonging to a
lower type of general symmetry, there is a similar correspondence between
each ray and a point on an ellipsoid.

7. Experiment confirms the rigorous accuracy of the generalisation.

8, The surface of reference, whether a sphere, spheroid or ellipsoid,
may be conveniently denoted by the term optical indicatriz.

9. All the optical characters can be directly deduced from the
indieatrix itself, and reference to its polar reeiprocal is for this purpose
unnecessary : further, it is possible to develop the characters from the
congideration of rays alone.

10. The front of a pencil of rays which have started simultaneously
from a point is part of the ray-surface; in the limit, if the pencil is of small
aperture and includes a given ray, the pencil-front is part of the plane
which touches the ray-surface where the ray meets it: hence the pencil-
front corresponding to the given ray may be briefly designated as the ray-
Sront.,

11. A plane passing through a ray and perpendicular to its plane of
polarisation may be conveniently termed its fransverse plane.

12. In such ease, it follows that the normal to the ray-front corres-
ponding to the ray Or les in the transverse plane RNOr and is perpen-
dicular to OR, while the velocity of normal propagation of the front is

1
T)’Ro

18. The normal RN is the direction of vitration of the ray corre-
sponding to the point R, if the most recent hypothesis as to the properties
of an elastic laminiferous ether is true,

14, The go-called primary and secondary optic axes are not axes of
symmetry, nor even constaht lines, of the erystal: they may with pre-
_cision be denoted respectively as the optic bi-normals and bi-radials ; for
they arée directions in which the two normals drawn from the centre fo
tangent planes of the ray-surface having the same direetion, or the two
radii vectores of the ray-surface having the same direction, are respes-
tively coincident with each other. A crystal may still be loosely termed
biaxal, when it is merely desired to suggest that the interference-rings
shown by a plate in convergent polarised light are rudely like those

measured by
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which might be expected to be seen if the crystal had two axes, each iden-
tical in character with the optic axis of & tetragonal or hexagonal crystal.

15. By help of simple assumptions, which naturally present them-
selves and are congistent with all known experimental results, Fresnel's
equation of the ray-surface- may be deduced from the general principles
of undulations, without regard to the physical character of the periodio
change,



