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SECTION L--RECENT CHANGE OF VIEW AS TO THE PROPERTIES TO BE 

ASSIGNED TO AN ELASTIC LUMINIFEROUS ETHER. 

Deduetlon of the form of th~ wave-s~,~Jace /or biasal eryatals. 

~ IRESNEL'S  representation of the laws of transmission of rays of light 
in biaxal crystals, by reference to the surface distinguished by his 

nsane, has long been regarded as one of the greatest achievements in the 
domain of Physical Science. In  his memoir ~ on Double Refraction, Fresnel 
proceeded as follows : - -  

1. He assumed that the transmission of a ray of light is effected by 
means of an elastic ether vibrating transversely to its ~lirection. 

To the ether is thus assigned a property not belonging to a p~rfectly 
fluid body in a state of rest : perfect fluidity of a body at rest involves 
incapacity of resistance to mere change of shape, and it is to such dis. 
tortional resistance that transverse vibrations must be due. 

2. He assumed that the ether of a crystal, when undisturbed, is a system 
of equal particles, in stable equilibrium under their mutUal attractions ; 
and that, for each pair of particles, the latter depend solely on some func- 
tion of the distance between them and act in the line joining the centres. 

He showed that in a medium so constituted there are at least three 
directions, at right angles to each other, such that the force necessary to 
the maintenance of a small displacement of a single particle of the ether 
along any one of them will act in the line of the displacement, 
and be proportional to it in magnitude: that the elastic force 
evoked by the displacement of a single particle of the ether through 
unit distance along each of these directions may be different, say 
a s, b 2, ~, respectively : that in this case, which is assumed to be that of the 

I M~moires de l'Aead, de l'In~,itut de Franee~ 1827~ vol. 7, pP. 4.5-176, 
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ether in a biaxal crystal, the elastic tbrce due to the displacement of a 
single particle of ether in any direction distinct from the three- already 
mentioned will act in a direction different from that of the displaeemen~ ; 
that if the direction of a radius vector of the surface a~'x 2 -t- b~y~ -t- c gz2 = 
(.~.~ ~ !/3 _~ z~)2 represent that of the" displacement of an ethereal particle, 
and the corresponding elastic force for a displacement through unit dis- 
tance be resolved along and perpendicular to the line of displacement, 
the former component is proportional to the square of the radius vector 
in magnitude: tbat for displacements of a single:particle in directions 
lying in a given plane passing through the centre of the above surface, 
the elastic force is generally obliquely inclined to the plane, but that 
there are always two directions, namely those of the longest and shortest 
diameters of the section of the above surface by the given plane, for which 
the resolved component of the elastic force in the given plane acts in the 
line of displacement. 

8. He assumed that the ether is virtually incompressible for the forces 
concerned in the transmission of light. 

Neglecting, therefore, the component of the elastic force normal to a 
plane containing a set of similarly displaced particles (wave-front) as being 
without effect by reason of the incompressibility of the ether, Fresnel in- 
ferred that, for particles in the given plane, vibrations parallel to either 
the longest or shortest diameter of the corresponding section of the above 
sm'face must be persistent, since the only effective component of the elastic 
force for each particle then acts in the direction of the displacement. 

4. From a suggested but forced analogy of a line of vibrating ether- 
particles to a vibrating string, Fresnel assumed that the velocity of trans- 
ference of a wave-front along its normal is directly proportional to the 
length of that principal diameter of the section of the above surface by 
the wave-front which is parallel to the direction of vibration. 

Hence finding, by the usual mathematical process, the envelope of planes 
representing the positions to which wave-fronts, with every possible direc- 
tion, would arrive after the lapse of the same interval of time, Fresnel 
concluded that the wave-surface for a biaxal crystal is represented by the 
equation 

a'~x" b~Y'~ c'~z~ = 0 : 

further, as the fi'ont corresponding to any ray is parallel to the tangent 
plane to the wave-surface at the point where the ray meets it, the vibra- 
tion is, in general, obliquely not perpendicularly transverse to the direc- 
tion of the ray. 
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5. Hence Fresnel also inferred that the velocities of the two rays which 
can be transmitted along a given direction arc directly proportional to the 

3!'2 ?12 ~2 
axes  of  the  ellipse in which the ellipsoid a ~ + ~  + ~ = 1 is intersected by 

a plane normal to the common direction of the rays. 

Its sb~gldarities of form. 

The closed surface represented by the above equation is of very peculiar 
form, and consists of two concentric ellipsoid-like sheet's, which are symme- 
trical with respect to three rectangular planes. There are four points com- 
mon to botlf sheets ; they are situated at the extremities of  two diameters 
lying in one of the planes of symmetry : in the neighbourhood of each 
of these points the sheets are drawn towards each other, and the surface 
has there the shape of % double cone; an infinite number of tangent 
planes to the- surface can thus be drawn at each of them. Further, 
two planes and their parallels respectively touch the surface, not at one 
point nor at two points, but at an infinite nmnber of points which lie on 
the circumference of a circle. 

These geometrical singularities of the wave-surface, first noticed by Sir 
William Hamilton five years after the death of Fresnet, point to the 
existence in'biaxal crystals of certain optical characters which had up 
to that time remained undiscovered, and seemed too strange to be real : 
the establishment of their actuality by Lloyd has been regarded as the 
crowning triumph of Fresnel's theory of double refraction ; for not only 
are the phenomena strange, but their observation demands a combination 
of circumstances which places them beyond the range of accidental dis. 
covery. 

Dys~amical di~iculties of Fresnel's theory of double refraction. 

As continued experiment and precise observation have served only to 
establish the high degree of accuracy of the form assigned to the wave- 
surface by Fresnel, 1 it might naturally be inferred that the assmnptions 
which lead, after so elaborate a course of reasoning, to a surface presenting 
these singularities must be themselves beyond cavil. Yet, strange to say, 
the mathematical process, by which the surface is thus arrived at, is one 
of which the weakness was reeognised by the author himself, and the 

1 Kohlrausch : Wied. Ann. ; 1879, vol. 6, p. 86 ; vol. 7, p. 427. 
Glazebrook: Phil. Trana.; 1879, vol. 170, part 1, p. 287. Proc. Roy. 8oc,; 

1883s vol. 34, p. 393. 
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theory has long been regarded as dynamically unsound; further, the 
characters assumed for the ether, though they lead to the true wave- 
surface," have since been found to have for necessary consequences other 
optical laws which are inconsistent with the results of experiment. On 
the other hand, the same form of wave-surface can be arrived at from other 
sets of assumptions, which have thus the same claim to recognition; 1 yet 
they are inconsistent with those of Fresnel, and with each other. As the 
later hypotheses which lead to Fresnel's wave-surface have been found to 
have other consequences which are contradicted by experimental results, 
the comparative simplicity and the historical interest of the method 
of Fresnel have sufficed to secure the adoption of his assumptions and 
corresponding terminology in the general literature relating to the optical 
characters of crystals. 

The  fact that Fresnel's wave-stab'ace has been deduced from several 
inconsistent sets of assumptions as to the characters of the ethereal 
motion suggests that the form may really depend on the feature common 
to all, namely, the transmission of a periodic change of state differently 
related to different sides of the ray, and is otherwise independent of the 
physical character of the transmitted change: the suggestion is discussed 
in Section V. 

Results of the rigorous calculation of tT~ vibratory ~wtion 
of an elastic solid. 

The rigorous calculation ~ of the vibratory motion of the parts of an iso- 
tropic elastic solid is found to involve two quantities, which are generally 
denoted by A and B : the latter, B, measures the rigidity, or the resistance 
of the body to simple change of shape, or the elasticity of figure; the 
former, .4, is connected with B, and with k (which measures the resistance 
to simple change of volume, or the elasticity of volume), by the relation 
k = A - ~ B .  Further, it can be shown tha~ a vibratory motion of the 
parts of an elastic medium generally gives rise to two kinds of waves, 
due respectively to distortional and eondensational-rarefactional vibra- 

tions ; the former travelling with velocity ~ / B ,  the latter (which correspond 
P 

A 
to those of sound) with velocity ~/~-, where # is the density of the medium. 

Now, if the transmission of light through a singly refractive medium be 

1 e.g. Challis in the Trans. Camb. _Phil. Soc.; 18t7, vol. 8, p. 524. 
A most Valuable Report by Glazebrook on Optical Theories iB publishGd in the 

l~ep. Brit. Assoc. for 1885, pp. 157-261, 
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due to the vibratory motion of an isotropic elastic solid, all the energy 
persists in the form of dls~rtional vibrations perpendicular to the ray ; 
hence the characters of the ether must be so assumed as to secure the 
absence of the eondensational-rarefactional vibrations. For this purpose 
we may make either of two assumptions, namely, that A is virtually zero 
or that A is virtually infinite as compared with !1: in the former case 
the condensational-rarcfactional wave is go t  rid of by making its 
velocity zero ; in the latter case by making the velocity infinite. But it 
was long believed t!m,t the former assumption was otherwise inadmissible : 
for it was supposed by Green and later mathematicians that the quantity 
A ' - -~B is necessarily positive, if the equilibrium of the parts of an 
~lastic body is stable; and this is impossible if A is zero, for B is 
essentially a positive quantity : hence it only remained to assume A and 
therefore also k infinite, and thus the ether to be virtually incompressible. 

Double refraction could then be consistently explained by a variation of 
the rigidity of the ether of a hi-refractive crystal with the direction ; but 
it was necessary, for dynamical reasons, to assume the vibrations to be in, 
not perpendicular to, the plane of polarisation. 

On the other hand, Lord Rayleigh ~ has proved that the phenomena due 
to the scattering of light by small particles require the vibrations of the 
ether to be perpendicular to the plane of polarisation; he has further 
shown that no theory based on varying rigidity can possibly be s~tisfactory, 
and that the variation of density in different directions in a biaxal crys- 
tal would lead dynamicaUy to a form of wave-surface different from that 
of Fresnel, if the ether be incompressible for the forces involved in the 
propagation of the vibrations. 

8i t  William Thomson's version of the elastic theory. 

From this position of dead-lock, according to which the ether must be 
both compressible and incompressible, the theory that the transmission of 
light is effected by the vibrations of an elastic medium has only recently 
been extricated. At the end of 1888 Sir William Thomson, g re-examining 
the problem of the stability of the equilibrium, feund that the condition 
that A - - ~ B  is a positive quantity becomes unnecessary, "provided we 
either suppose the medium to extend all through boundless space, 9r give 
it a fixed containing vessel as its boundary :" with either of these provi- 
sions, the stability only rer that A should not be negative, and it is 
therefore possible to get rid of the condensational-rarefaetional wave by 

x Lend. Edin. and Dub. Philos. Magaz., ] 871, ser. 4, voh 41, p. 451. 
1bid., 1888, ser. 5, vol. 26, p. 414. 
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the assumption hitherto deemed inadmissible, namely, that A is zero ; this 
involves the compressibility of the ether for the forces concerned in the 
propagation of light. As a mechanical illustration, Sir William points 
out t h a t "  homogeneous air-less foam held from collapse by adhesion to a 
containing vessel, which may be infinitely distant all round, exactly ful- 
fils the condition of zero-velocity tbr the condensational-rarefactional 
wave; while it has a definite rigidity and elasticity of form, and a de- 
finite velocity of distortional wave, which can easily be calculated with a 
fair approximation to absolute accuracy." 

Starting with the new assmnption, Sir William Thomson was able to 
deduce correct expressions for the intensities of ordinarily reflected or re- 
fracted light: and Glazebrook ~ has since shown that the elastic theory 
in its new form fully accounts for dispersion, including anomalous dis- 
persion (like that of eyanin), double refraction, and metallic reflection, and 
further that it leads to a correct expression for the velocity of light in a 
moving medium. According to the new version, the vibrations of the ether 
are porpend!cular to the plane of polarisation, even in biaxal crystals, and 
thus always perpendicularly transverse to the racy: further, the matter- 
particles and ether-particles are supposed to react on each other : and if 
their vibrations are synchronous, the former may even be set in appreciable 
motion by the latter. As the reaction of the matter and ether may produce 
the same effect on the motion of the ether-particles as would result from 
a simple variation of the rigidity or density of the ethereal medium, it be- 
comes convenient to distinguish between the ~ct~lal and effective values 
of the rigidity and density. 

I t  is clear that the new version of the properties of the elastic ether, 
whether really true or not, ~ is far more satisfactory than any hitherto sug- 
gested, and must replace the older versions until a better one is proposed. 
Hence it becomes necessary, for those who adopt an elastic ether as the 
basis of the undulatory theory, to regard (1) the ether as compressible, 
even for the forces concerned in the propagation of light ; (2) the actual 
density and rigidity of the ether as identical for all bodies ; (3) the effective 
rigidity as invariable; (4) the effective density as different in different 
bodies, and, in the case of doubly refractive crystals, in different directions 
within the same body. 

Frevzel' e lilze of ,'easoni~g, and tl~e terms baseg ul~o~ it, mttst be abandoned. 

For the great majority of mineralogical students, the chief value of the 

1 Ibid., 1888, set. 6, vol. 26, p. 521. 
1bid., p. 638; 1889, vol. 27, pp, 240, 253: Natare, 1889, vol. 40, p, 32, 
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hypothesis of an elastic ether is in tho correlation of the phenomena 
observed when light is transmitted through crystals ; for which purpose it 
is very desirable that the student should be able to reach the wave-surface, 
if practicable, by means of elementary reasoning based on observed facts 
of a simple character. The rigorous calculation of the motions of a 
vibrating elastic medium is not a simple process: it involves, indeed, 
mathematics of so high an order that the derivation of the wave-surface in 
this way wiU always be unintelligible to the ordinary student of crystals. 
On the other hand, the only comparatively simple mode of .derivation of 
the wave-surface, as yet invented, that of Fresnel, depends upon assump- 
tions of incompressibility and varying elasticity which are now deemed 
untrue;  and further, involves for biaxal crystals a general obliquity of 
transverse vibration, not in accordance with the latest version of the 
elastic theory. Under present circmnstances, the process of Fresnel, even 
if adopted on account of its great historical interest, must be puzzling 
to the student, and inevitably lead to the acquisition of wrong views as to 
the properties to be assigned to the luminiferous ether ; hence it becomes 
necessary to abandon the whole process, and all those terms now in com- 
mon use (ellipsoid of optic elasticity, axes of optic elasticity, coefficients of 
optic elasticity) which are based upon it. 

The form of the wave-surface for biaxal cryst~ds was really discovered i~ 
another way. 

The great difficulty in the correlation of the phenomena of the transmission 
of light through biaxal crystals, as already stated, lies in the derivation of 
the wave-surface. The form of the surface is too extraordinary to be 
directly assumed either as a probable one a priori, or as suggested by ex- 
perimental results. I f  it can be shown that the form of the wave-surface for 
biaxal crystals is suggested by a simple generalisation, independently of any 
particular version of the undulatory theory, and might have been brought 
in this way within the province of experimental investigation, the greater 
part of the present educational difficulty will be removed from the path of the 
student. In fact, we shall find that it was really by a process of generali- 
sation, though not indicated in the composite memoir of 1827, that Fresnel 
himselfwasfirst led to the true form of the wave-surface for biaxal c~-stals. 
The properties of an incompressible elastic ether were mathematically 
developed by him after the discovery of the true form of the wave-surface 
]aad been made. 
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~ECTION II.--EVOLUT~ON OF THE OPTICAL INDICATI~IX. 

In the present Section it is sought to show that a certain surface, here 
termed the Optical Indieatrix, naturally suggests itself as a means of 
correlation of the laws of transmission of light in uniaxal crystals ; a 
simple generalisation then suggests the possible existence of biaxal crystals, 
and the general nature of their optical properties. The reasoning may be 
arranged as ibllows : -  

General nature qf light. 

Light travels with finite velocity. 
A flash of light transmitted from one body to another may thus for a 

time be wholly in the intervening space ; hence the transmission of light 
must be one either of matter or of change of state of matter. 

Lig!~t is due to the change of state of matter. 

Two rays of light of the same colour, travelling in the same direction 
along the same line, may annihilate each other. 

Hence the transmission of light cannot be one of matter ; it must be a 
transmission of change of state of matter, and the change must be capable 
of representation by positive and negative quantities. 

An ether is necessary. 

Light travels across interplanetary space. 
Hence interplanetary space must be filled with one or more kinds of 

matter, capable of transmitting a particular kind of change of state with an 
enormous but finite velocity (186,000 miles a second), and for distances 
amounting to miUions of millions of miles. We may conveniently assume 
that the extraordinary matter is wholly of one kind, and designate it by a 
special name, ether ; it must be extremely subtle, for itoffers no appreciable 
resistance to the motion of the planets. 

.Permeation of ordinary matter by the ether. 

Light is transmitted, but with different velocities, through ordinary 

matter. 
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Hence either ordinary matter is itself capable of transmitting this 
particular kind of change of state, or it is permeated by an ether capabl0 
of so doing. Having regard to the enormous velocity with which light is 
propagated through interplanetary ether a n d  different kinds of ordinary 
matter, we may assume that the same kind of other is concerned in the 
transmission, and that the variation of velocity and other characters is due 
to the influence of the ordinary matter on the properties of the permeating 
ether. 

The change ~ state is periodic. 
I f  two rays, continually transmitted along the same line, annihilate each 

other, annihilation again takes place if either ray is transferred through 
any multiple of a certain measurable distance along the direction of trans- 
mission. 

Hence, so long as a single ray of light is being transmitted along a line, 
the state of the ether at a given instant is the same at all points distant 
from each other by a certain measurable quantity, which we may denote 
by k. But the continual uniform transmission of the change of state 
along the line involves a continual and periodic change of state at each 
point of the llne ; the duration of the period being the same at all points, 
and always equal to the time necessary for the transmission of the change 
through the distance ;k along the line : if v be the distance of transmission 

during the unit of time, the period will thus be ~ .  During a single period, 
V 

the ether at any point in the line of transmission experiences all those 
changes which belong at a given instant to all points in a length k of the 
line of transmission. 

The characters of an undulation. 

Whatever be its physical nature, a periodic change of character at any 
point is termed a vibration of the character: its maximum value; the 
amplitude of the vibration : the interval of time required for a eolnplete 
vibration, its period: the state at a given instant, the phase of the vibration : 
the relation between the phase and the time, the law of the vibration. 
If, further, the change is being transmitted along a line or ray, the con- 
figuration of the states at all points of the ray at a given instant is termed 
an undulation : the least part of an undulation which includes all varieties 
of phase is termed a wave, and the distance occupied by a wave, a ware. 
length. 

Light is an nnd~datory phenomenon. 
I t  follows from the above that, in this general sense, light is undoubtedly 

an undulatory phenomenon of some kind or other. 
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Sound is also ai~ undulator~j phenomenon. 
By similar reasoning, it follows that sound is an undulatory phenomenon. 

Experiment shows that the transmission of sound is effeeted by ordinary 
matter, and that the change of. character is one of oscillation of the material 
particles, the oscillation being generally soldy in the direction of the 
transmission. The properties at any point of a line of transmission of 
a continued uniform sound, namely intensity, note and timbre, must de- 
pend on the characters of the vibration at the lYoint, and thus on the 
amplitude, period and law: experiment proves that the intensity of a 
simple sound depends solely on the amplitude, and the note solely on the 
period. 

Intensity of light depeJtds on the amplitude, eolour o~ the period of the 
vibration. 

Similarly, the eorrespending properties at any point of a ray of ordinary 
light, intensity and eolour, may be assumed to depend on the characters 
of the vibration at the point, and thus on the amplitude, period and law: 
we may tentatively assume, from analogy with sound, that the intensity 
of a simple ray depends solely on the amplitude, the colour eolely on the 
period. 

Polarlsation of lipht : plane of polarisation : transversa plane. 
But ordinary light is capable of a change to which there is no parallel 

in the ease of sound. A ray of ordinar F light transmitted through air 
acquires distinctive characters by reflection at a eer~in angle of incidence 
from a sheet of glass : as tested by reflection at the same angle of inci- 
dence from a second plate of glass, it has different properties on different 
sides ; its properties being symmetrical, however, at every point of the 
path to the same two perpendicular planes intersecting in the ray: one 
of the planes of symmetry is the plane of incidence and reflection from 
the first plate. As the planes of symmeta T of the ray are dissimilar and 
can be experimentaUy distinguished from each other, that which coincides 
with the plane of incidence and reflection may conveniently be termed 
the plane o/l~olarisation: the second plane of symmetry may be dis- 
tinguished as the transrerse plane. A ray having the same characters, 
however induced, is said to be plane-polarised. 

Hence the periodic change of the ether at any point of an aerially 
transmitted p lane-polarised ray of light is not solely related to the 
direction of transmission, and thus differs in kind from that ~vhich charac- 
terises sound. For the suggestion of the laws of double refraction, 
preeiser knowledge of the character of the change is unnecessary 
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Transmission of Tlane.polarised rays in glass and analogous media. 

I f  a plate of ordinary glass or any analogous medium be placed with its 
faces perpendicular to an aerially transmitted plane-polarised ray, the light 
which emerges from the glass is found to be still ptane-polarised, and the 
position of the plane of polarisation is found to be unaltered whatever the 
thickness of the plate : this is still true, if the plato be turned through 
any angle round its own normal. 

As the direction of the ray within the plate is coincident with the direc- 
tion of the ray before incidence and after emergence, we may thus reason- 
ably assume that, at all points of the line of transmission within'the plate 
itself, the periodic change of the ether is symmetrical to the same two 
planes ; in which case the position of the symmetral planes of the periodic 
change is wholly independent of the glass and depends only on the direc- 
tion of the plane of polarisation of the incident ray. A plane-polarised 
ray transmissible in any direction within such a medium may have any 
azimuth of plane of polarisation whatever. 

Geometrical representation of the characters of a ray of plane-polarised light. 

In representing the transmission of a ray of plane-polarised light, of a 

- ~ ~_/ . ' ~  //- 

Fro. I. 

"7 

single given eolour and given intensity, within a given medium, we have 
thus three characters to consider +-- 

1. The line of transmission of the ray, 
2. The direction of the plane of polarisation, 
8. The velocity of transmission. 

The direction of a plane being most conveniently defined by the direction 
of its no rma l ,  the above three characters may be geometrically repre- 
sented by means of two intersecting perpendicular lines, one of them 
definite in position, the other only in direction : and any definite function 
of the length of either may represent the velocity. 

The direction of transmission O r~ and the plane of polarisation O p q v 
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of a given ray (Fig. I), may thus be represented by two lines Or R.V, 
where R N is any line perpendicular to the plane 0 p q r, and therefore 
also to the ray 0 r : the velocity of transmission may be represented by 
any function of either of the lines Or RN. 

If 0, a point on the ray, be given, and the normal of the plane of 
polarisation be t/tken to intersect the ray, all the characters may be 
represented by means of a single line R N, nol passb~g through tile gice~ 
point:" for the line Or  is then known, since it passes through 0 aud 
intersects R N perpendicularly, 

The laws of ordinary reflection and refraction accounted for by an 
undulatory theory. 

Two hundred years ago (1678-90), Huygens showed, by reasoning which 
is really independent of the physical nature of the periodic change, though 
he imagined it to be identical in character with that involved in the trans. 
mission of sound, that the laws of ordinary reflection and refraction of 
light are compatible with an undulatory theory. He assumed that a 
general disturbance of the ether at any given point must eventually produce 
disturbances at all other points of .the medium, and that in a transparent 
body showing ordinary refraction the velocity of transmission of the dis. 
turbanee is independent of the direction ; all points on a spherical surface 
having the given point for centre are thus ~,~t any moment in a similar 
state of disturbance. I f  we have regard to the arrival of the disturbance 
from its origin, we may say that in this case the front of the disturbance 
a t  any epoch is a sphere. The fl'ont of the disturhance due to a single 
centre may, for the sake of brevity and generality, be called the ware- 
surface. If  the disturbance at the centre be persistent and periodic, the 
sm'face which defines the front of the disturbance at a given epoch passes 
through points of the medimn at which, notwithstanding the continual 
change at each point, there is persistent identity of phase of vibration. 

Huygens gave a geometrical construction for the determination of the 
direction of the refracted ray by means of the spherical wave-surface, the 
direction being that of a line joining the point of incidence of the ray to 
the point of contact of a tangent plane of the wave-surface, drawn through 
a corresponding line which lies in the refracting surface and is normal to 
the plane of incidence: if v be the velocity in the first medium, i the 
angle of incidence of the ray, and the size of the sphere correspond to 
the lapse of a unit of.time, the distance of the corresponding line from 

the point of incidence is v 
sin ~ ' 
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The laws of refraotion o.I light lnd a crystal of ealdte accounted for by an 
undulato~ theoly. 

In the case of calcite, the refraction is in general not single but double. 
One  of the rays, and only one, follows the laws of ordinary refraction for 
all directions: hence Huygens inferred that the surface of disturbance 
corresponding to this ray is the same as for ordinary media, namely a 
sphere. I t  was necessary to assume a different form of surface of dis- 
turbance to account for the extraordinary refraction of the other ray, and 
the surface which first suggests itself, after a sphere, is an ellipsoid: 
further, since the refraction of the second ray is the same for all dir~ctlons 
equally inclined to a special direction in the calcite-crystal, or since rays 
lying in a plane perpendicular to this line obey the laws of ordinary 
refraction, i t  is necessary for the surface of disturbance to be one of 
revolution about that  direction as axis. Testing this hypothesis and finding 
it  satisfactory, Huygens inferred from his observations that the surface of 
disturbance corresponding to the second ray is really a spheroid, touching 
at the extremities of its axis the spherical surface of disturbance cortes- 
pending to the first ray. This relation between the surfaces has been 
confirmed by later experimenters and found to hold for other crystals 
analogous to those of calcite: it is undoubtedly a Law of l~ature. 1 

The direction of the extraordinarily refracted ray is given by the same 
geometrical construction as before, the surface of disturbance being taken 
as a spheroid instead of a sphere. 

The wave-sulface is identical with the ray-surface. 

Let rs RS  (Fig. 2) be two wave-surfaces due to an origin O, and with 
the line OrR as axis describe a cone of smaU angle, determining areas a b 
A B  upon them. There is greatdifliculty in imagining the exact nature of 
the physical process by which an isolated ray could be propagated through 
the ether by means of undulations : still the conception of a ray of light 
comes so naturally, and has been found so serviceable from the very 
earliest times, that rays, rather than waves, will be used throughout the 
present paper. 

Having regard to the apparent rectilinearity of propagation within a 
homogeneous medium, we may reasonably assume that, if light is propa- 
gated by the disturbances of a medimn and the disturbances at all parts of 

a Stokes : Prec. Roy. 8oc., 1872, vol. 20, p. 443 ; Comp. 1~end., 1873, vol. 77, p. 1150. 
Abria: Ibid., p. 8L4. Glazebrook: JPhil. Trans., 1880, vol, 171, part 2, p. 42L 
~ a s t i n ~ :  Amer. J'. 8r 1888, ser. 8, vol. 36, p. 60, 
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the first surface are allowed to produce their effects at the second surface, 
the resultant disturbance of the area A B is identical with that which would 
directly follow from a rectilinear transference of the disturbances at points 
on the area a b to corresponding points on the area .4 B;  and thus that the 
length Or, which represents the distance to which the front of disturb- 
an~e has travelled in the direction Or in a given interval of time, also 
represents the velocity of transmission of a ray of light in the same 
direction. Regarded from this point of view, the surface of disturbance 
or wave-surface may be termed the rag-surface. 

Ray~ro~a. 

Further, if a pencil of rays having OrI~ for axis starts simultaneously 
from 0, the front of the pencil at. a certain epoch is a portion of the ray- 
surface containing v, and at a subsequent epoch is a portion of the ray- 

FIo.  2, 

surface containing l~: in the limiting case, where the pencil is of extremely 
small angle, its front is in the tangent planes at r and R at successive 
epochs. The plane front, which thus belongs to an extremely small pencil 
including a given ray, may be briefly denoted as the tug-/rent for that 
ray. 

Since the ray-surface retains a constant similarity of fol-~n and position, 
for the ratio OR : 0,' depends solely on the time, the tangent planes at 
11 and r axe parallel. 

When the ray-surface is not a sphere, the tangent plane at any point is 
in general inclined obliquely to the radius vector drawn to the point from 
the origin, and a ray-front is then oblique to its corresponding ray. 

_rn the ca.~e of calcite, tlw ray-surface has two ,~heets and consists of a sl,here 
a~td a spheroid. 

Huygcns was thus led to the dlscover~ that the laws of refraction in 
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the ease of calcite are consistent with an undulatory theory, if the velocities 
of transmission of rays of light within this mineral are determined by a 
sphere and a spheroid, touching each other in the axis of revolution of the 
latter. 

I f  a line Or~r I (Fig. 8), drawn from the common centre O, intersects the 
sphere and spheroid in r~ and ra respectively, according to Huygens the 
velocity of transmission of one ray in the direction Or~ri is measured by 
Or.~, and of the other by Or1. 

For a single direction of Or.~r I, namely that of the axis of revolution CO'C, 
the two points r~ and r~ coincide, and the rays travel with equal velocity ; 
this direction is called the optic axis of the crystal. 

Plane.laolarisation of each of the r~racted rays. 

So far we have had regard merely to the relation of the two velocitie~ 
to the direction of ray-transmlsslon within the calcite-crystal. I t  did not 
escape the notice of Huygens, however, that each of the rays emergent 
from a crystal of calcite differs from ordinary light : the difference is one 
which he was unable to account for by his version of the undulatory 
theory. I t  was not till more than a century afterwards (1808) that Malus 
made the accidental discovery that the same change in the character of the 
light may be induced by reflection from a plate of glass : to this altera- 
tion, termed by Malus polarisation, the attention of physicists was largely 
directed during the immediately succeeding years. 

I f  a plate of calcite be placed with its faces perpendicular to an aerially 
transmitted plane-polarised ray, the latter is iu general divided at the first 
surface into two : the two rays travel through the plate in directions mutually 
inclined to each other, and, emerging from it, are transmitted through the 
air with the same direction as that of the original ray : each of the emer- 
gent rays is plane-polarized, but the planes of polarisation of the rays have 
not the s a m e  direction ; they are, in fact, perpendicular !to each other. 
Further, when the plate is turned round its normal through any angle, the 
plane of polarisation of each emergent ray is also displaced through 
exactly the same angle : the direction of the plane of polarisation is thus 
dependent on characters belonging to the plate itself: it is found to he in- 
dependent of the direction of the plane of polarisation of the ray incident 
on the plate. 

For one of the emergent rays, the line of transmission within the plate 
is continuous with the path of the ray before incidence and after emer- 
gence : as the position of the plane of polarisation of the emergent ray is 
independent of the thickness of the plate, we may reasonably assume, as 
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before in the case of glass, that the ray transmitted ~eithin theplate is like- 
wise plane-polarised, and that the plane of polarisation during such trans- 
mission is identical in direction with that of the emergent ray, thus rotating 
with the plate as the plate is turned round its normal. 

As tile emergent rays are indistinguishable fi'om each other in charac. 
tor and only differ in the positions in space of their planes ofpolarisation, 
we may likewise assume that the second emergent ray is also transmitted 
within the plate as a plane-polarised ray, but with a direction of plane of 
polarisation perpendicular to that of the first. 

I t  will be found that the characters of rays which have been transmitted 
through a plate of calcite can be accounted for, if we imagine that in such 
a medium a plane-polarised ray transmissible in any given direction has 
its plane of polarisation in one or other of two rectangular positions, which 
depend on the crystal itself. 

As in the case of air, glass, and analogous media, the periodic change of 
the ether at every point of a plane.polarised ray transmitted within any 
bi-refractive medium may be assumed to be dissimilarly symmetrical to 
two perpendicular planes; but it may be remarked that it is only the 
disturl, ed ether which is assumed to be dissimilarly "symmetrical in the 
distribution of its characters. ~ 

The plane of polarisatiou is related to the radius vectar of the ray-surface. 

Malus ~ discovered that the direction of the plane of polarisation of any 
ray trm~smitted within a crystal of calcite is determined by the direction 
of the corresponding radius vector of the ruy-surfitce: he showed that 
the plane of polarisation fi)r the ray Or I (Fig. 8) corresponding to the 
spheroid is always perpendicular to the plane Or~C, which contains the 
.ray-direction and the optic axis, and for the ray Or., corresponding to the 
sphere is the plane Or~G, which also contains the ray-direction and the 
optic axis: in other words, the plane containing the ray-direction and the 
optic axis is the plane of polarisation of the ray belonging to the sphere 
and the transverse plane of the ray belonging to the spheroid. 

The above mi~dht have led to the recognition of the possible existence and 
the optical characters of biaxal crystals. 

The above facts and reasoning were known to physicists before the exis- 
tence of biaxal crystals had been discovered; further, the reasoning .is 
really independent of the physical nature of the vibratory change which 
constitutes light. We proceed to prove that though the geometrical 

a See also pages 283, 355. 
"~ M~m. p r ~ ,  ~ rln~titut : Paris, 1811, eel, 2, p. 418 
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representation of the laws of transmission of light in biaxal crystals was 
suggested to Fresnel by ideas in which elasticity had a great part, 
the possible existence of such crystals, and the corresponding laws of 
transmission of light, might have been deduced from the above by a simple 
generalisation, involving no reference either to the constitution of the 
luminiferous ether or to the nature of the physical change involved in the 
transmission of light ; and further, that the step was so natural a one to 
take that the discovery of the true form of the wave-surface for biaxal 
crystals could scarcely have been long avoided. 

Another mode of geometrically repre~ttin 9 the characters of the extra. 
ordinarily ~efracted ray, by reference to the same spheroid, naturally 

presents itse~. 

Draw OBj parallel to rtV (Fig, 8), the tangent at r~ to the ellipse in 

v 

Fro. 3. 

which the spheroid is cut by the plane r~OG; O/~ and Orl are said to be 
conjugate to each other, and the tangent at B~ is parallel to Or1. By a 
well-known property of the ellipse, the area of the parallelogram of which 
OR~ Off are adjacent sides is constant, whatever the direction of Orz : hence 
the area is 0.4.0(7 ; 0.4 and OC being the principal axes of the ellipse, and 
therefore conjugate to each other. But if RIN1 is perpendicular to Or, 
meeting it in N~, and is thus normal to the ellipse and therefore also 
to the spheroid at P,~, the area of the parallelogram is also Orl'Rlh ~. 

OA.OC 
Hence OrA = R - ~ '  whatever the direction of Or1. 

In other words, the velecit 9 of a ray transmitted inthe direction Or~ may 
be represented, not only by Or~, but b y  the inverse of P~N~. But the 
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same line R~N~ determines the plane of polarisation of the ray Or~, for as 
already stated, the line R~N~ is normal to that plane. Further, the same 
line RtN l determines the direction of the ray, for the ray passes through 0 
and is perpendicular to R~N~. 

Hence the direction, velocity and plane of polarisation of the ray Orl can 
all be represented by means of a single corresponding line //iNa, which is 
at once normal to the spheroid and the ray. 

This mode of representation naturally presents itself as soon a8 the 
plane of polarisatlon ,is ir, di~ated by its no~nal; in fact, any attempt to 
represent geometrically the observed facts of the double rcfractioa of r 
cite almost inevitably leads to it. 

The same mode also sul~ca to reloresent the characters of the ordlna~ily 
refracted ray without nece~itati'ng the use of a second surface, 

But for any radius vector Or~ of a spheroid there are always two normals 
of the spheroid which intersect it perpendicularly : one of them has just been 
indicated, namely lixA]; the other is normal to the plane raOC, at the 
centre of the spheroid, and therefore always lies in the equatorial plane, 
As already stated, the plane oflmlari~atio~ of the ray Or2 i~ r2OGor flOG : 
and the normal of its plane of polarisation thus lies in the eciuatorial plane, 
and is normal both to the spheroid and the ray. Further, the intercept 
made by the ray Or s upon this normal of the spheroid is OA, whatever the 
direction of Or~r~: hence, if the same law as before holds for the relation of 
the velocity to the intercept upon the normal of the spheroid, the velocity of 

OA'O0 
the ray ors is ~ ,  or OO; and this is exactly the velocity required. 

Hence the velocity and plane of polarisation ofthe ray Or~ can likewise 
be represented by means of a corresponding line which is at once normal to 
the spheroid and the ray': and this line indicates the plane in which the 
ray having these characters will lie. 

The characters of Ow refracted rays can be simply expressed by reference to 
the spheroid alone, 

All the characters of rays transmitted in various directions through a 
crystal of calcite may thus be simply expressed by means of a s/ng/e sur- 
face, the spheroid. The relation of the optical characters of the crystal 
to the geometrical characters of the spheroid is as follows : -  

To every given point on a single surface, a spheroid, there in general 
corresponds one ray: the directio~ of the ray is that of a d i~o tc r  
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intersecting perpendicularly the normal drawn at the point to the 
spheroid ; the velocity of the ray is inversely proportional to the length of 
the normal intercepted between the surface and the ray ; the plane oj" 
polarisation of the ray is perpendicular to the same normal. 

For points of the spheroid lying on the equatorial circle or at the ends 
of the axis o f  revolution, the normal passes through the centre, and the 
direction of the ray becomes indeterminate: such a point may be re- 
garded as the limiting case of a small circle ; and thus corresponds, not to 
a single ray, but to an infinity of rays lying in a plane perpendicular 
to the normal, all transmitted with the same velocity, and all having the 
same plane of polarisation. 

In the case of singly refractive substances there is a spherical surface of 
reference for which the same general relations are true. 

Generalisatiou, 

But it immediately suggests itself that in the case of a crystal like 
barytes, of which the morphological development and the physical charac- 
ters are dissimilarly symmetrical to three rectangular planes, the surface 
of reference, if such a surface exists, is more likely to be an ellipsoid with 
three unequal axes than an ellipsoid of which two axes are equal. In fact, 
the correspondence of the optical and the morphological symmetry of 
crystals was announced by Brewster in 1819. 

In the fourth Section are deduced the laws of transmission of light in 
a crystal for which the surface of reference is an ellipsoid having three 
unequal axes ; starting with the hypothesis that the relations between the 
geometrical characters of the surface of reference and the opti~al characters 
of the medimn are identical with those which have just been found to 
obtain when the surikee of reference is either a spheroid or a sphere. 

The Optical Indicatrix. 

To the surface of reference the term Optical Indicatrix may be assigned : 
this suggestive term has tile advantage of being equally applicable whefl~er 
the surface of reference is an ellipsoid, ,u spheroid, or a sphere, and it iu 
independent of all versions of the undulatory theory ; the adjectival prefix 
may be omitted when the term Indieatrix involves no ambiguity. The 
Indicatrix is identical in form with the ellil~soid of elasticity of various 
authors, the ellipsoid ofpolarisation of Cauchy, the ellipsoid of 5~dices of 
Mac Cullagh, and the index-ellipsoid of Liebisch, 
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Relation of the oj~tieal (ndicatrix to the general 8Rmraer of the c1~r 

In regard to the arrangement of its faces, every crystal is found to 
belong to one or other of six types of symmetry, distinguished as cubic, 
tetragonal, hexagonal, ortho-rho~nbie, roche-symmetric, and anorthic : 
further, it has been demonstrated by the mathematician that the types of 
crystalline symmetry thus met with are precisely those which are pre- 
sented by systems of planes of which the relative positions can be ex- 
pressed by means of whole numbers, a law to which the faces of crystals 
are found to conform. Further, we are led by experiment to the induction 
that a type of symmetry is such, not only for the arrangement of the faces 
of a crystal, but for all the physical characters : the planes of symmetry 
characteristic of the types are thus planes of .qeneral s~metr  9. 

On the other hand, a plane may be one of symmetry for a particular 
character without being a plane of general symmetry of the crystal : the 
type is thus not necessarily determinable from the symmetry of the crystal 
with respect to a single character. For example, a crystal may have the 
six faces of a cube and really belong, not to the cubic, but to the tetra~ 
gonal, or even the ortho-rhombic type; observation of some character 
other than the geometrical being thus necessary to the distinction : again, 
a plane inclined at any angles to the planes of general symmetry of a 
cubic crystal, and any plane containing the morphological axis of a tetra- 
gonal or hexagonal crystal, is a plane of symmetry for the changes pro- 
duced by dilatation on change of temperature, and is generally not a plane 
of symmetry for the facial arrangement. 

The above induction requires a plane of general symmetry to be a plane 
of symmetry of every indieatrix : on the other hand, a plane of symmetry 
of an indicatrix is not necessarily a plane of general symmetry of the 
crystal. 

]:Ience, if the most general form of the indicatrix be an ellipsoid, it will 
follow that in the ease of an ortho-rhombic crystal the axes of any indiea- 
trix must coincide with the three axes of general symmetry. For a tetra- 
gonal or hexagonal crystal, the symmetry of the indicatrix with respect to 
the general planes of symmetry requires two of the axes of the ellipsoid to 
be equal, and the ellipsoid to be one of revolution about the morpholo- 
gical axis. For a cubic crystal, the symmetry of the indicatrix with respect 
to the general planes of symmetry necessitates the equality of all the axes 
of the ellipsoid, and the surface becomes a sphere. 

The above is true for all colours of the light, though the relative mag- 
nitudes of the axes, both for the general ellipsoid and th~ ellipsoid of revo. 
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lution, may vary with the colour : further, it is true for all temperatures 
of the crystal consistent with the stability of the structure, for a plane of 
general symmetry must retain that character between the assumed limits 
of temperature. 

In the case of a mono.symmetrle crystal, the induction still requires the 
plane of general symmetry to be a plane of symmetry of the indieatrix for 
all eolours of light and for all temperatures consistent with crystalline 
stability; but the positions and dimensions of the two axes of the ellipsoid 
lying in the plane O f general symmetry are otherwise independent of the 
latter, and will in general vary both with the eolour of the light and the 
temperature of the crystal. 

And in the case of an anorthie crystal, in which there is a centre, but no 
plane, of general symmetry, the positions and dimensions of all three rec- 
tangular axes of the indicatrix corresponding to a given colour or tempera- 
ture are free from limitations by a plane of general symmetry, and will 
likewise vary both with the colour of the light and the temperature at 
which the determinations are made. 

SECTION ~IL~ATURALNESB OF THE METHOD. 

Ol6ections. 

To the above reasoning, by which it is sought to prove that in the case 
of calcite the reference of the two sheets to the spheroid alone is one 
which it is natural to make, and not a mere geometrical artifice only to 
be discovered after the truth of the generalisation has been established, 
it may be objected that the reference wouhl in such case-have been made 
long before the present century. It must be remembered, however, that 
the consequent generalisation would have been a barren speculation at a 
time when the polarisation of light by reflection was still undiscovered 
(1808), and the optical characters of most doubly refractive crystals were 
still beyond the powers of observation ; indeed, it was not till the decade 
1810-20 that any series of numerical data were available for the testing of 



THE TRANSI~ffSSlON OF LIGHT IN CR~STALSo ~99 

a theory: even the accuracy of the construction given by Huygens for 
the determination of the directions of the refracted rays in calcite was 
discredited by most physicists at the beginning of this century. 

But it may be fairly objected that if the above reference and generalisa, 
tlon be natural, the discovery of the process would have preceded the 
development of any elastic theory of double refraction. And, in fact, it 
was really by a process of generalisation that Fresnel's discovery of the 
true form of the ray-surface for biaxal crystals was made. When the 
above argument was written, the detailed history of Fresnel's theory had 
not come to the notice of the author: as  the facts are not generally 
known, and have an important bearing on the true significance of the 
elastic theory of double refraction, it becomes desirable to explain the 
position. 

The development of Fresnd's $he~y. 

Fresnel's celebrated memoir on Double Refraction was not printed till 
1827 : in that year, and before the issue of the memoir, Fresnel died at 
the early age of 89, after years of illness, In the memoir are incorporated 
papers submitted to the Academy at different dates in the years 1821 
and 1822, and it occupies no less than 182 pages of large size. For the 
sake of brevity, Fresnel made many omissions from the papers as origirJo 
ally submitted to the Academy, and for the sake of clearness adopted a 
synthetic mode of treatment: the result is that the memoir as printed 
gives no clue to the real order of discovery, and the reader is apt to infer 
that Fresnel discovered the true form of the ray:surface a priori by means 
of equations relative to the elastic forces evoked by the disturbance of 
an incompressible elastic ether. The following statement by Aldis ~ exem- 
plifies this, which is still a very general impression : - -  

"Fresnel's theory is undoubtedly not a sound dynamical theory. It 
has, however, the great merit of representing accurately the facts of 
double refraction as far as experiment at present has tested them, and in 
one instance has led to the discovery of facts (the conical refractions) pre- 
viously unobserved. Probably, when the Newton of Physical Optics has 
succeeded in linking together all the phenomena of Light into one 
continuous chain, the name of Fresnel will yet be remembered with a 
reverence akin to that which astronomers feel for Copernicus and Kepler." 

The real order oF development was of course known to some of Fresnel's 

I W. S. Aldis. A Chapter on Fresnel's Tlvcory of Double ~efractiom Cambridge, 
1870, p. 26, 
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contemporaries, but to the next generation it was a mystery ; it was not 
till forty years after Fresnel's death that the mystery was dispelled by the 
publication of the original memoirs, which had been carefully preserved 
in the family. Verdet, ~ one of the editors of Fresnel's collected papers, 
makes the foUowing remarks : -  

" I t  may seem odd that reasoning which is incomplete and inexact in 
two points should have for result one of the best confirmed of the Laws of 
Nature. But we have seen that this law became manifest to Fresnel as the 
result of a generalisation quite similar to the generalisations which have led 
to most great discoveries. When he wished afterwards to account for the 
law by a mechanical theory, it is not astonishing that he should have 
led the theory, perhaps unwittingly, towards the end which he already 
knew of, and that, in his choice of hypotheses, he should have been dc- 
~rmined, less by their intrinsic probability, than by their agreement with 
what he was justified in believing to be true. We have seen ~ome traces 
of the progress of his ideas in the marginal notes which he had added to 
the manuscript of memoir No. 38, a memoir here printed for the first 
time. In the later memoirs we find nothing but the explanation, in 
different forms, of the mechanical theory by which he tried to' demon- 
strate a l~osteriori the laws which direct intuition had revealed to him." 

After this clear statement on the part of his editor, it is obvious that 
Fresnel's theory of double refraction, however ingenious, has no claim 
to credit for its predictions: the latter are really a direct consequence 
of the gcneralisation which had preceded the theoretical development of 
the vibratory properties of an elastic but incompressible ether. 

Prelirnineo T attempts at generalisation. 

The first attempt at the generalisation of Huygens' construction had sag. 
gested a sphere combined with a concentric ellipsoid having three unequal 
axes as the most general form of ray-surface : this assumed that in the 
most general case one of the rays obeys the ordinary laws of refraction. 

It  wss found, however, that the refraction of the second ray as experl, 
mentally determined is inconsistent with an ellipsoidal form of ray- 
surface. Nor would such a combination of ray-surfaces account for the 
optical characters of a biaxal crystal: for if a concentric sphere and 
ellipsoid meet each other, they must either touch at the extremities of a 
principal diameter, or intersect in two curves;  in the former ease there 
would be only one direction of equal ray-velocity; in the latter case this 

i (Ettvres Completes d'A. Fresnel: Paris, 1868, vol. 2, p. 327. 
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character would belong to every diameter which passes through the curves 
of intersection, and thus to an infinity of lines lying on the surface of a 
cone .  

In 1819 Blot made the important discovery that the results of optical 
measurement are consistent with two empirical laws, both of them 
reached by processes of generalisation : in combination with the assump- 
tion that one of the rays obeys the laws of ordinary refraction, they 
completely express the polarisation and velocity of the second ray in terms 
of its direction in the crystal. I 

1st law. We have seen that in 4he case of a uniaxal crystal, two rays 
transmitted along any given direction had been shown by Malus to have 
their planes of polarisation respectively coincident and at right angles with 
the plane containing the ray-direction and the optic axis : from this Diet 
was led by generalisation to the discovery that in the case of a biaxal crystal 
the planes of polarisation are the internal and external bisectors of lhe 
angle between the two planes which contain the ray-direction and pass 
each through one of the optic axes. 

2rid law. Iv the case of a uniaxal crystal, if vl and v2 be the velocities 
of transmission of the two rays transmissible in a direction inclined at an 
angle cr to the optic axis, it follows from Huygens' construction that the 

ratio v[.,-~s.~ :sin~c~ is constant for all directions : noticing this, Blot 

was led by generalisation to the discovery that in the ease of a biaxal 
( 1  1 )  

crystal the ratio ~ 2 -  ~ : sin cr~ sin ~,~ is constant, ~1 c~,~ being the incli- 

nations of the ray to the optic axes. 
The second law, combined with the assumption that the velocity of one 

of the rays is independent of its direction, leads to a surface of the fourth 
degree, tangent to a con0entric sphere at the ends of two diameters, as the 
ray-surface corresponding to the second ray. 

For, let 1 0 n l 0 n ~, H v be direction-cosines of the optic axes and of the 
second ray respectively (Fig. 9) : 

then cos 0"1 ~ l )t -~ n v, and cos cr~ = - l k + n v. 
I f  r be the variable velocity of the second ray, and a be the constant 

velocity of the first ray, it follows from the above law that 
1 1 
- - -  -~ k sin ~1 sin ~ ,  r~ aS 

where k is a constant. 

1 .lldr~olr~s de l'A�9 & ~'Institut de Fra~we, 1820, vol. 3, pp. 228, 2~3. 
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1 1 " --(1 + cos ~-~) (1 - cos ~ )  (1 + cos . - , )  (1 - ~os ~,). Hence ~2 ~--a~ 

Substituting the values of cos o- 1 and cos o-2, and writing 
Z 

k = -  x,/~=-Y, v-----, we have for the equation of the 
T r T 

second ray-surface, 
r 2 2 

kl~ (1-- a:i) =(/.c + nz +r) (l.," +nz--r)  (lx--nz +r) (lx--,,z--r), 

an equation of the fourth degree. The second ray-surface meets the 
first ray-surhce (r = a) at the intersection of the latter with the four 
planes, l.*" 4- nz 4- a = O, and these planes are tangent to the sphere at the 
extremities of the optic axes : hence the two surfaces are, tangent to each 
other at the same points, 

The history of the r~y.surface. 
At the advent of Fresnel, the emissive theory of light still held almost 

undisputed sway in the scientific World, notwithstanding the interference 
discoveries which had been made by Dr. Thomas Young, many years 
before. Convinced that the true explanation of interference was furnished 
by the undulatory theory, Fresnel devoted himself with ardour to its 
theoretical and experimental development, in which he had to sustain 
the attacks of Laplace, Poisson and Blot, who were firm believers in the 
truth of the older theory. After successful explanation of diffraction and 
of the polarisation-eolours of thin plates onth  e undulatory hypothesis, 
FreSnel in 1821 attempted to solve the problem of double refraction. 

Young had already suggested (12 Jan. 1817) that the vibrations of the 
luminiferous ether are motions transverse to the ray, and had compared 
the transmission of a ray of light to the transmission of a transverse 
vibration along a stretched cord :1 Fresnel himself, in conjunction with 
Arag0, had shown experimentally that two rays polarised in perpendicular 
planes are incapab]e of mutual interference, thus confirming the idea that 
the motion of the ether of a plane-polarised ray is wholly perpendicular to 
the direction of transmission, so long, at least, as the medium is singly 
refractive. 

Fresnel therefore suggested that the difference of velocities of the two 
rays transmissible in the same direction in a doubly refractive medium may 
be due to differences of elastic force evoked by equal displacements of 
ethereal particles in different directions: the same suggestion had been 

O~uw'es Com2)Z~tes d'A, Fresnel : vol. 1, p. 684 ; vol. 2, p. 742. 
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published by Young I in 1809, before ~he idea of transverse vibrations 
had preseated itself. Assuming that the ethereal elasticity, in the 
ease of a uniaxal crystal, is the same for all directions Of displace- 
meat perpendicular to the optic axis, and different from that evoked by 
displacements parallel to- it, and that the vibrations arc always ],el~endi- 
c~darl 9 transverse to the ray ~ (an assumption he departed from later), 
Fresnel showed that the vibration of the ordinary ray must be perpendicular 
to its plane of polarisation ; for in this case the vibration, being always 
perpendicular to the optic axis, evokes an elastic force of which the 
magnitude is the same whatever the direction of the ray. The vibration 
of the extraordinary ray being likewise assumed to be perpendicular both 
to the ray and its plane of polarisation, the elastic force evoked by it will 
vary with the direction of the vibration, and thus the velocity will depend 
on the inclination of the ray to the optic axis. 

But FresneP soon saw that, if such an explanation is true, neither of the 
rays transmitted in a biaxal crystal can have a velocity independent of 
the direction, for in such a crystal there is no direction such that the 
optical characters are the same in all directions equally inclined to it. 
Having submitted this inference to the test of experimeht, Fresncl 
announced its confirmation in September 1821, thus completely upsetting 
the ideas which then prevailed as to the forms and relations of the two 
ray-surfaces of a biaxal crystal. 

Further developing the theory, FresneP showed (November 19, 1821) 
that if the ethereal elasticity be proportional to the square of the velocity, 
as in the case of the longitudinal vibrations of an elastic medium, a 
surface such that any radius vector represents the square of the elastic 
force evoked by a unit displacement in its direction is, in the case of a 
uniaxal crystal, a spheroid (distinct from the spheroidal ray-surface itself), 
i f  tlw double refraction i8 smal l  Conversely, lines measured in a direction 
perpendicular to a diametral plane of the auxiliary spheroid, and having 
lengths equal to the maximum and minimum radii vectores of the section, 
would approxim~tel 9 represent the velocities with which vibrations, parallel 
to those radii vectores; would be transmitted along the normal of the p]a~e. 

It then suggested itself to Fresnal that  an ellipsoid with three unequal 
axes might be a more general" form of this surface of elasticity, and that 
thesame construction might hold for the determination of the ap]~roxi. 
~statr velocities of the rays having a given direction. The two circular 

I Flistory of tI~e Inductive 8clenees ; by Whewell : London, 1857, eel, 2, p. 329. 
(Euvres Compl~tea d'A. Fresnel : eel 2t p. 28]. 

8 ibid., p. 257. 
Ibid., pp, 285, 80~, 806, 
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sections of the ellipsoid immediately account for the existence of two 
optic axes, for there will be only one velocity of transmission along their 
normals : again, the planes of polarisation for a given ray-direction are at 
right angles, for the corresponding vibrations are parallel to the axes of the 
diametral section perpendicular to the common direction. I t  remained to 
discover whether the two empirical laws established by Blot were geome- 
trically consistent with the form of ray-surface suggested by the above con- 
struction: and this being found by Fresnel to be very approximately the 
ease, the true form of ray-surface was at last determined. 

In this way, however, it presented itself as an approximation, true only 
when the double refraction is small : it was not till later (26 Nov. 1821) 
that  the hypothetical form of the surface of elasticity ~ was changed from an 
ellipsoid to a surface of the fourth degree : with this hypothesis the ray- 
surface already obtained as an approximation appeared as the true ray- 
surface, independently of the amount of 4he double refraction of the 
medium. 

It  follows from the above that Fresnel's discovery of the form of the 
ray-surface for biaxal crystals was really arrived at by a geometrical 
generalisation of Huygens' ray.surface for uniaxal crystals, and that the 
geometrical relation used in the generalisation was suggested by the con- 
ception of a plane-polarised ray as due to vibratory motion perpendicular 
to its direction. 

The true nature of  the luminiferous ether. 

Notwithstanding the success with which so many optical properties have 
been explained on the hypothesis that light is a vibratory motion of an 
elastic ether of which the effective density depends on the permeated 
matter, it would be wrong to infer that light is actually due to such a 
vibratory motion. It  is conceivable that other hypotheses may likewise 
lead to similar results : and, indeed, any other quantities about which the 
same general assertions may be made and which obey the same mathe- 
matical laws will satisfy the equations and furnish other analogies. In 
fact, Gibbs '~ has lately shown that the equations which result from the last 
version of the elastic theory have a corresponding electrical interpretation. 

Again, according to Clerk Maxwell, light is not a vibratory motion due 
to elasticity, but an electro-magnetic vibration (whatever that may he) ; and 
he showed that the velocity of transmission of electro-magnetic action in 

1 61~Juvres &Oml~l~tes d'A. Freshet : voL 2, p. fl38. 
Phil. Ma~. 1889, ser. 5, vol. 27, p. 238. 
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free ether is identical with that of fight. The recent experiments of Hertz 
have placed the undulatory character of electro-magnetic radiation beyond 
the region of hypothesis, and it is now experimentally established that 
electro-magnetic waves and light-waves differ only in length; while the 
wave.length for sodium-light is "000589 millimetres, the short electro- 
magnetic waves produced by Hertz had still a length of 2 metres. On 
the other hand, it seems that electro-magnetic actions are inexplicable as 
mere vibratory motion of an elastic ether : Professor Fitzgerald, 1 who has 
given much thought to the mechanical representation of the ether, points 
out that " i f  magnetic forces are analogolls to the rotation of the elements 
of a wave, an ordinary solid cannot be analogous to the ether, because 
the latter may have a constant magnetic force existing in it for any length 
of time, while an elastic solid cannot have continuous rotation of its 
elements in one direction existing within it." 

The educational diffculty. 

Taking everything into consideration, it seems undesirable, from the 
purely educational point of view, to continue such a synthetic mode of 
treatment as was adopted by Fresnel in the memoir of 1827. The 
subject of the optical properties of crystals is so extensive that it is un- 
satisfactory to make all the laws appear to depend upon an hypothesis o f  
the truth of which we are not convinced : otherwise it becomes necessary 
either to keep the student in ignorance of the doubts as to the truth of 
the hypothesis, or to raise a feeling of distrust as to the accuracy of every 
deduction therefrom. I t  would seem better to develop the subject by 
means of analogy and experiment, and to assign a subordinate importance 
to the mechanism of the ether. 

Three other modes of  generalisation. 

In addition to the method explained in the last Section there are at least 
three others by which a generalisation of Huygens' construction may 
be arrived at. One of them depends on the fact that the wave-surface is 
an envelope. 

I f  O/ j1  (Fig. 4) be any line intersecting the sphere and spberoid, 
and we consider a section of the surface by a plane containing the optic 

OA'OC 
axis and the given line, it follows that OfL _ OR1 ' where ORl is per- 

a Nature, 1890, vel. 42, p. 173. 
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OA. OC 
pendicular to Of 1, and that OJ2 is equal to OC or ~ .  Hence the 

lines Of] Of,~, which represent the velocities of the wave-fronts .fd'l f.,..q, are 
inversely proportional to the lines OR~ and OA, or to the axes of the 
ellipse in which the spheroid is intersected by a plane parallel to the 
wave-fronts fl  r~ f._, g,. 

Huygen's wave-surface is thus the envelope of planes which are 
parallel to  the same central section of the spheroid, and pass through 
those two points on" the common central normal which ard distant from 
the centre by lengths inversely proportional to the axes of the ~eetion. 
On generalising this result, by the substitution of an ellipsoid with three 
unequal axes for the spheroid, Fresnel's wave-surface is obtained: 

R c 

FI~. 4. 

this generalised construction is virtually identical with the one employed 
by Fresnel in the memoir of 1827 ; the only difference being that he 
used the inverse of the ellipsoid instead of the ellipsoid itself. 

The two other geometrical constructions, which present themselves for 
the generalisation of Huygens' construction, only appear indirectly : they 
depend on corresponding relations between the rays or ray-fronts and the 
polar reciprocal of the indicatri, t. 

Advantarjes of the method here suggested. 

There are thus two purely geometrical processes, which directly pre- 
sent themselves for trial as being possible modes of representing the 
optical characters of those crystals which belong to a lower type of general 
~ymmetry than the uniaxal; both lead to identical results. If we are 
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compelled to select one or other of these processes for use as an educa- 
tional instrument, there can be no doubt on which the choice must fall. 

The method based on an envelope is "so far wanting in simplicity that 
Fresnel himself gave no rigorous solution of the equations : this was sup- 
plied by Amp6re, and it was not till even a decade later that the less 
complicated mode of elimination, now generally given, was invented by 
Archibald Smith. Further, the construction yields the wave-surface in 
such a way that its singularities are not obvious, and were only remarked 
by Sir William Hamilton several years after Fresnel's death. 

On the other hand, as was shown in Section II,  the geometrical basis 
here advocated naturally suggests itseff as soon as any attempt, is made 
to represent geometrically the observed optical properties of uniaxal 
crystals : we shall further show that it readily furnishes the equation of 
the ray-surface without demanding any knowledge of the differential 
calculus or any determination of maxima and minima ; that it im- 
mediately suggests all the singularities of the ray-surface; and that, 
in fact, mostoptical problems are reduced to a form in whichtheir solu. 
tlon can be affected by the elementary geometry of the ellipsoid. We may 
add that the employment of an additional ellipsoid, the polar reciprocal of 
the first, is rendered unnecessary, and a continual source of confusion to 
the student is thereby removed. 

SECTION IV~ OF THE OPTICAL CHARACTERS CORRESPONDING 

TO AN ELLIPSOIDAL INDICATRIX. 

Genera l  R e l a l i o n .  

The characters of a ray of  plane.polarised homogeneous light transmitted 
withia a medium are indicated b 9 geometrical characters at a corresponding 
point on an ellipsoid ; the direction of the ray is that of a diameter in. 
terseeting perpendicularly the normal drawn to the ellipsoid at the cot. 
responding point : the vdooit9 is inversel 9 proportional to the leT~gth of the 
normal intercepted ~ the ray ; the plane of polarisation is perpendieulxr to 
ihe normal 

I t  is required to deduce the relations of the optical characters for 
different directions in the medium, 
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The order of deduction is as follows : -  
Arts. 1-15 relate to rays in general; Arts. 16-20, to the particular ray- 

directions here termed hi-radials; Arts. 21-40, to ray-fro~ts in general ; 
Arts. 41-44, to the particular front-normals here termed bi-~wr~als ; 
Arts. 45-52, to the hi-radial and hi-normal cones. 

1. The cons t ruc t ion  of t h e  ray-surface .  
Let a2x ')- -~ b"-y"- ~ c'-'z" = 1 be the equation of the indicatrix ; a, b, c 

being in descending order of magnitude : 0 the centreof  the indicatrix : 
x' y '  z' the co-ordinates of R, a point on the indieatrix: NOr a line 
intersecting the normal R N  perpendicularly (Fig. 5). 

:According to the above relation, the direction of the ray corresponding to 
the point R oi the indieah'ix is given by the line NOr,  the velocity of the 

ray is measured b y / / ~  : the plm~e ofloolarisation is perpendicular to Rh r. 

FIa. 5, 

1 
Take the length Or equal to ~--~: the locus of the point~ r, cor- 

responding to all positions of R on the indicatrix, will be the ray-s~lrface 
of the medium for the given simple colour: since the velocity of trans- 
mission of a ray of light of that colour along any radius vector of the 
surface is measured by the length of the radius vector. 

The propositions of the present Section are stated in a form which is 
independent of any particular version of the undulatory theory : it may 
be remarked, however, that according to the latest version of the elastic 
theory, R N  is the direction of vibration for the ray (~r; according to 
Fresncl's version of the elastic theory and the present statement of the 
electro-magnetic theory, the direction of vibration is R().  ~ 

1 Philos. Magazine, 1888, ser. 5, vol. 26, p. b28: Electricity and Magnetism, ~. 
J Clerk Maxwell; Oxford, 1881, vol. 2, p. 404; Nat~tre, 1890, vol. 42, p. 174. 
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2. The symmetry of the ra!4-surface. 
From the mode of construction, it is evident that the planes of symmetry 

of the indicatrix are also planes of symmetry of the ray-surface. 
3. The sections of the ray-surface @ the planes of symmetry. 
The section of the ray-surface by each plane of symmetry consists 

of a circle and an ellipse ; the radius of the circle is the inverse of that 
axis of the indieatrix which is perpendicular to the plane of the section ; 
the ellipse is similar and similarly situated to the section of the indicatrix 
by the same plane. This may be proved as follows : -  

Let AOA, BOIl, CO(J, be the principal axes of the indicatrix, and 
1 1 1 

OA = - OB = OC= : it is required to determine the section of 
a' ~' 7 

the ray-surface by one of the planes of symmetry, say AOC (Fig. 6). 

R r / r  

X 

Fxo. 6. 

a. By considering a series of points in a small ring surrounding the 
point B on the indieatrix, it is seen that in the limit the point ~ itself 
corresponds, not to one ray, but to an infinity of rays, all lying in the 
plane AOC; for the axis OB is the normal of the indicatrix at B, and 
intersects perpendicularly all radii vectores of the indieatrix which lie in the 
plane A OC. Further, the length of the normal at B intercepted by each 
of the rays is OB : hence the velocity of each ray corresponding to the 

1 
point B is ~-~-or b, and a circle of radius b, situated in the'plane AOC, 

is on the ray-surface (Fig 7c). 
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b. For a point R on the indicatrix, lying in the plane A OC; the normal 
RNof  the indicatrix lies in the plane AOC, and is also normal at the point 

1~ to the elliptic section AG.4C : if ONr is perpendicular to RN and 

Or -= ~-~, Or is by construction a radius vector of the ray-surface (Fig. 6). 

If R' be a polnt in which Or intersects the indicatrix, OR and ODJ are 
conjugate to each other, for Or being perpendicular to R N  is paraUel to 
the tangent of the ellipse at R:  hence the product OR"RN, which 
measures the area of the parallelogram of which O/t OR' are adjacent 

1 
sides, is constant, and equals the product OA.OCor - .  ,o 

Hence, Or = ac OIt' 
The locus of r is thus an ellipse, similar and similarly situated to the 

ellipse A CA(), and having ac times its dimensions : its semi-axis in the 
line OA will thus be c, and its semi.axis in the line OC will be a (Fig. 7c). 

Fxo. 7A. FxG. 7B. Fxa. 7c. 

c. To any ray lying in the plane AOC no other normal of the indicatrix 
perpendicular : hence no radius vector of the ray-surface, other than 

the above, lies in the plane A O 0 ;  the circle ~2+z2=b~ and the ellipse 

~ + ~  =1 are thus the only curves of intersection of the ray-surface wlth 

the plane AOC (Fig. 7c). 
d. And the section of the ray.surface by the plane of symmetry 

X2 ~2 
]JOA is a circle ~y~f f io  ~ and an ellipse ~ + ~ = 1  (Fig. 7A). 

e. Similarly, the section of the ray-surface by the plane of symmetry 
y2 ~? 

COB is a circle y~-l-z~=a ~, and an ellipse ~ + ~ ; = I  (Fig. 7n). 
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f. On consideration of the relative magnitudes of a, b, c, it will be seen 
that in one of the planes of symmetry the circle falls wholly within the 
ellipse ; in another, the ellipse falls wholly within the circle ; in the third, 
containing the longest and shortest axes of the indicatrix, the circle and 
ellipse intersect each other in four points lying at the extremities of two 
diameters sl sj, s~ s2. 

g. For any direction of ray lying in a plane of symmetry, there are 
thus two possible directions for the plane of polarisation, perpendicular to 
each other ; and in general each plane of polarisation corresponds to a 
different velocity of transmission in the given direction. For two directions 
of the ray, those of the diameters sj s~, s~s~, the two velocities are equal 
(Fig. 7c). 

I f  ~ 0 z be the co-ordinates of one of the points s, we have 
.~:~ z 9 
c- 5 ~--~ = 1 and x ~ -]- z" = b ~ : hence 

I f  h 0 v be the dire'orion-cosines of a diameter Os, the relation may also 
be written as 

The angle s~OC is given by the relation 

1 1 
..(o._.,_ 

t an  s, OC--'- a~/(b'  - -  "c ~') - -  I - V - - l  " J(. 
h. In  each of the planes OBC OOA OAB a plane.polarised ray is 

thus transmissible with the velocity a b or c respectively, whatever its 
direction in the plane: hence, by the general principle of undulations, 
the refraction of these rays by a surface perpendicular to the symmetral 

V v V 
- respec- plane will be ordinary, and the index of refraction will be a '  "b' c 

tively; v being the constant velocity of transmission in the other 
medium. I f  a fl ~, be the values of the index of refraction of the rays in 
each of the above planes, for which the index of refraction is independent 
of the direction, we must have 

1 1 1 a:~):r ~:--" 
o. ' y '  

(~ f3 7 are termed the prindpat i.diee~ o/refr~diom 
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4.  Giveu the co.ordinates x'y'z' of R, to find the veZoc~ty r of the 
correspondbtg ray Or, 

The velocity of the ray Or is measured by 1 (Fig, 5): but BN, 

being the normal of the indicatrix at the point R and perpendicular to O~V, 
by constructio~ is equal to the perpendicular drawn from the origin 0 to 
the plane a%'x -t-b~y'Y + c2z 'z = 1 which touches the indicatrix at R. If  
p be the length of this perpendicular 

1 
- = ~/(a~x'~ + t~4y,~ + c4z,~). 
p 

1 1 
Hence r 2 ---- ~ =p~ = a% '~ + b4y '2 + c4z '2 : 

r being the Iength of that radius vector t i the ray-surface which corresponds 
to the point I~ of the indicatrix. 

5. Given the co-ordinates x P y' z' of  1~, to f ind the direction.cosines of 
the normal o~ the plaue of pola~atiou of the corresponding ray Or. 

The plane of polarisation, being perpendicular to the normal R5 r (Fig. 
5), is parallel to the tangent plane of the indicatrix at the point R ; the 
equation of the tangent plane may be writf.en in the form 

pa~x' x + pb2y' y + pc%' z = p. 

Hence the direction.cosines of the normal of the piano of polarisation 
a r e  

pa%', pb~y ', po'~z' ; 
a%' b"y' c%' 

or --7, r '  r 

where r~ = a%'~ + b'ty'~ + e4z '~. 

6.  GiveJ~ the co.ordinates x'y'z' of R, to find the direction.cosbtes of 
the corresponding ray Or. 

a2~,: ' b~y t c%' 
~ and The direction-cosines of /~N (Fig. ~)being ~ - - ,  r '  r '  

x r y' z' 
those of 01~ being - - - where r r = OR, the direction-cosines h k l  

of a line perpendicular to both RN" and OR, and therefore to the plane 
R O X  and all lines therein, are given by the equations : - -  

hx' + @ ' +  lz' =O 
ha%' + kb~y ' + Ic2z ' = 0 : 

hence 
Is k l 

v,~ , (b~L ~2)=,,,~, (~-,_ ~ ) = ~  ~ _ ~ ) .  
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If  X # v be the direction-cosines of any line whatsoever in the same plane 
kh  + # k  + vl =O 

or xy'~' (b '~- ~) + ~ ' ~ '  ( ~ -  o.) + ~,y,  ( .~_ b~) = o. 
Let the line k/z v coincide with Or, in which case it is at right angles to 

a~x ' b~y ' e%' 
Rh r, of which the direction-cosines are ~-- ,  --7,  -~- ; we thus have 

ka~x ' + ~b~y ' -4- ~c~z ' = O. 

Determining the ratios h : ~ : ~ from the last two equations, we get 

A B C 
where 

A --- x'~'~ c~(c ~ -  a s) - ~'y'~ b~(a ~ - ~ )  = x ' ( r  ~ -  ag, 
B = y ' x  '~ a~(a ~ - b 2) - y ' z  ''~ c~(b '~ --  c '~) ---- y ' ( r  2 - -  ~), 

c = ~'~'~ b~ ( ~ - c  ~) - ~'x'~.~ ~) = ~'(r~'-~2) ; 
k /~ v 

or ,(,. .~_a~)-y,(,..~_l, 9 = ~ ' ( ~ - c 9  
in which r '~ - -  a% '2-1- b~y '2-1- c%'', as before. 

These equations determine the direction-cosines X/~ v of the ray Or cor- 
responding to the point x ' y ' z '  or R. 

7. T h e  e q u a t i o n  o f  t h e  r a y - s u r f a c e .  
The co-ordinates of r being x y z ,  we havex=Xr, y = ~ r ,  z---vr:  X ~  v 

being the direction-cosines of the ray Or. 
Hence, substituting these values in the last set of equations, 

x y 

Each of these fractions is equal to 
x y z 

a'%rTZ~_a:., "4- b~y ~..~b~ -t- d ~z ~c2 
a~xx ' -4- b2yy ' + c'-'zz' 

But the denominator of the last expression is zero ; for by construction 

X,y 
the line Or, of which the direction-cosines are - - - ,  is perpendicular 

$" 7" r 

d~x' b'~y' v'~' 
to  E N ,  of which the direction-cosines are r ' r ' r (Art. 5).  

Hence the numerator is also zero; for the fractions equivalent to the 
expression are never all of them indeterminate, and are never infinite. 

a2x2 , 2 2~2 b~y r 
Thus r,,--_ a~+ r ~  + r'-~-~- d' =0; 
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this is the equation of the ray-surface, for it expresses a relation 
between the co-ordinates x y z of any point r lying in it. 

The equation may also be written in the form 

'" + y  + 4.,~ -__c.~ + z  - -  r% r ' - - a  2 + '~ + ~ 0" ~ 2 -  

o r  
r  

8 .  Given k i~ v, the direction-cosines of a line of transmission, to 
.filtd rj r2 the velodties of the vorresponding rays Or10*h. 

Substituting the values x=kr ,  y=l~r, z=vr  in the equation of the ray- 
surface, we have 

a2k~ b~u~ c2v'~ 0 
r~ ,a2+r'5-~.-b_bl'~-r.7_-_c~-- : 

and, multiplying out, 
~1 (a2k~ + b~la~_ c2v2) _ r2 {a 2 ( b ~ .{_.c 2 ) X2 + b ~ (e~ + a 2) t~2 + c ~ (a 2 + b2) v2} + a2b~  = O. 

This being a quadratic equation in r ~, there are in general, for given 
values of X ~ v, two solutions, say r~ ~ ru ~, and thus two velocities of trans- 
mission in the given direction. 

A geometrical solution is given in Art, 15.  
The above equation may sometimes be conveniently written in the form 

1 1 + T-'~ + T"~ =0" 

r" a 2 r ~ b '~ r '~ c" 

9.  Given k t~ v, the direetion-cosb~es of a lb~e of transmis~n, to find 
the co-ordinates xx' y~' q' ,  x,~' y~' z:' o f  the points R1 R2 of the indicatrix which 
correspond to the rays Ora Or~ respectively. 

Having found ra ~ and rr as indicated in the last Article, the co- 
ordinates xx' Yx' z~', x,~' y~' z~' are given by the equations (Art. 6) : - -  

x /  = y l '  = ~" 
~L~ (say), 

rx '~- a '~ ra '~ -- b e r~'-' -- C ~ 

and 

remembering that 

x2' =..Y~' = ~~ =L2(say) :  
k ja v 

r a  '~ _ a 2 r a  2 - -  b 2 r,a 2 - -  c 2 

a~x  ' i  " b % ' i  " e~z ' ~ - 1  
~and I #2 2 ?~ ~ ' 2  - -  ax2 +by.~ +cz2  - 1 ,  

~inee the points RI B~ are on the indieatrix, 
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10. The points I~ 1 Ia'.2, eo~csponding to the rays Or~ Or~ transmissible 
along the line ~uv, are in a plane conjugate to that line. 

Since the normals of the indicatrix at R~ P~ are both perpendicular to 
the line 7~ # v w e  have 

~,a9~i ' + t~b2yl ' + ve~zl ' =0 
X a ~  ' +/~b~y~ ' + vc~z2 ' ; 0 .  

Hence the points R~ P,2 are in the plane 

This is the equation of a plane passing through the centre of the indieatrix 
and parallel to the planes which touch the indieatrix at either of the points 
where the line 7~/J v intersects it. 

It  is also obvious geometrically that the tangent planes at P,1 P*~ are 
both of them parallel to Or, and that Or is therefore parallel to their line 
of intersection ; Or is thus conjugate to the plane containing the points 

And it is geometrically evident that at all points of the section made by 
the conjugate plane the tangent planes to the indieatrix are parallel to, and 
therefore their normals perpendicular to, the conjugate llne )~/L v: the 
points P~ Bs are those of the section for which the normals of the indicatrix 
are not only perpendicular to the llne ), ~ v, but intersect it. 

11. Given the direction of transmisslon, to f ind the positions o.f the eor. 
responding points Pt 1 II.~ in the co~jugate plane. 

From the last Article, it follows that the tangent planes to the indiea- 
h.ix at its intersection with the conjugate plane form a tangent cylinder, 
having its axis parallel to the direction of transmission. Let UKV be the 
curve of contact of the cylinder and indicatrix (Fig. 8) : /~: I~ are some- 
where on the curve UKV. 

As a line is only perpendicular to its conjugate plane when it coincides 
with an axis of the indicatrix, 0r, the axis of the cylinder, is in general 
oblique to UKV, the conjugate plane. 

Let U'K'V', U"K"V"  be  sections of the cylinder by two planes per- 
pendicular to its axis ; they are in general ellipses : let K ' K K "  be any 
line on the cylinder parallel to the axis, and K" L", KL,  K'L ' ,  be the normals 
of the cylinder at the points K", iV, K ~, respectively; they are evidently 
parallel to each other. 

But K L  is also the normal of the indlcatrix at Is for the cylinder and 
indicatrix are tangent to each other at that point : also K'L '  lies i n  the 
plane U'K'W, since that plane is perpendicular to the axis of the cylinder : 
hence K'L '  is a normal of the ellipse U'K' V' at the point K'. 
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The line K L  will thus only intersect the axis of the cylinder when K'L'  
is an axis of the section U'K'V'. 

Hence the points R1 R, R1 tt~ are the four positions of K, on the curve 
UKV, for which the normal of the indicatrix intersects the axis of the 
cylinder: and these four positions are projections, by lines parallel to 
the axis of the cylinder, of the extremities of the axes of its "base ; " the 
base being taken as perpendicular to the axis of the cylinder. 

In other words, the points R 1/7~ and the normals I ~ N  1 D%N~ lle in the 
pla~es of sy~tmetry of that tange~t cylinder of the indicatrix ~vhieh has its 
axis in the common direction of transmission of the rays. 

U ~r , U ,,, U' 

I ' ! ~ : i  . . . .  k ~ \  . . . . . .  : '~__-2_ '~- , .  . . . .  ~ # _ . 1 ~  

g~ V V' 
FIa. 8. 

12. The planes of polarisation of the two rays Orl Or.2 transmissible 
along the same line are perpendicular to each other. 

By the last Article, the normals RIN, R.~A~ are in the planes of sym- 
metry Of the tangent cylinder and at right angles to its axis : hence the 
planes of polarisation, to which the two lines are perpendicular, are them- 
selves perpendicular to each other. 

The following analytical proof is interesting by reason of the elimina- 
tions : -  

The normals of the planes of polarisation being normals of the indicatrlx 
at 1~1 R,a, their directlon-cosines aro 

a 2 x l  w b2~l  ~ CSZl t 

7~ ' r l  ' r l  ' 
a~x2 ~ b2y~ t C'~z~ t 

. . . . .  , respectively (Art. 5)  ; r ~ '  r 2 '  r~ 
hence, if ~ be the angle between the planes of polarisation, 

1 " 4 t J' , ~' ? , cos § = ~ (a x~ ,,~ + b% y~ + e% z,, ) .  
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Substituting the values of x~'y~'zl', xe'y~'z~', from Article 9,  we have 
LIL~ t a4X e b'l~ c' ~ 

cos ~ = - ; ~  ~ ( ~ : : ~ ) ~ i + ( r  ~ _ ~ ) ~ + ( ~  ~_c~) (r:_o~)I. 
Now r~ ~ re ~ being the roots of the equation given in Article 8 ,  we have 

,.?+r~=ae(b%~ ~ ) X~+b ~ (~+a  ~) ~e+c~ ( .%b  ~ ) ~ 
a~X ~ + b~  e + cev 2 

~eb2G2 

and r~r~=  tt2~ %4_ b2~a.4_ c2~.e-" 

hence (rl~--ae)(r~Z--a ~) = rl~r22--a ~ (r12+re e) ~-a' 
= _ a~x~ ( ~ e _  b~) ( b e _  ee) (e~_  ~) 

b2_e~ a~k'Z + b~l~'Z ~_~v2 
b~, "~ ( ~  - ~ )  (b~ - e ~) (~  - ~) 

Similarly (r~2- b~)(r~- b~) - ~ - -  a" a~X ~ + be/~ ~-t- t ~  e ' 

and (r, ~ --  s  c ~) = c%~ (a~--~ - be) (b~ -- e~) (ce -- a'~) 
a e _ b ~ a~Xe + b~,u ~ + e e~'~- 

Hence (rle_a~*~re~_a~) + tr e_b;*~: ~_b~)-~ c'%e 

and ~ is a right angle. 

13. I f  p 5e the point in which Or intersects t],e indieat~ix, the lines 
Op (')R~ OB~ form a triad of conjugate diameter~ of the indiea~r~x. 

The axes of the basal section U'K'V' (Fig. 8) of the tangent cylinder 
of the indicatrix being conjugate to each other, it follows, from the pro- 
perties of parallel projection, that the projections of the axes on any 
section of the cylinder are conjugate diameters of the curve of section: 
hence the line Op and the lines 0t~  OP~ (which are the projections of 
the basal axes on the conjugate plane of Or), form a triad of conjugate 
diameters of the indieatrix, each being conjugate to the plane of the other 
two. 

This may also be proved analytically, as follows : ~  
Substituting the values of x~' y~' z~', xs' ye' ze', given in Art. 9,  we find 

that aexJ x~ ' + b~y~' y~ ' + cez~ % ' = 

( a~X ~ b~l~e c~v ~ ] 

The quantity within the brackets is zero, as may be seen from the last 
Article, or more directly by subtraction of the equations 

aeX e b~/~ ~ c~ 
~ . i ~  + @ + ,~ - :~  = o 

ae~? b~/~ ~ c% ~ 
r~ ~--,~-~ + r ~  + ~:~" ~' = o. 
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Hence a~,,,~'a'2 ' + ~V~'~/; + c~z~'z2 '--- 0; but this is the condition that 
the lines 0/?,1 OR2 may be parallel to the tangent planes at P~ and/~t 
respectively : as those tangent planes are likewise both parallel to the llne 
Or, the three lines form a triad of conjugate diameters. 

Corollar 9. The no',mal of the indicatrix at the point /~z, though it 
intersects the line Or, only intersects the line 0R2 when Nx coincides with 
0 (Fig. 14) ; hence it follows that if 0 /~  be a line of ray-transmission, 
Bt is not one of the eorrssponding points on the indicatrix : in general 
the lines of the conjugate triad Op Otl~ 0tl2 are thus not interchangeable 
in character. 

14. Given rl r2, t]~ ~dodt@s of two rat/s w)~ie)~ are tran~itted (n t~e 
same direetion, to find X I s, v t~e direction-eoeine, o] ~e l(ne of traneraiuion. 

From Article 8,  

~? /z ~ v ~ 
T - - T  + T---T + -F--T =o, 
~ - ~  ~ - ~  ~ - ~  

x2 ~ v2 
T---T + T--- f  + T----f = o. 
7~2-~ ~ - ~  @ - ~  

Determining the ratios X 2 :/z 2 : v 2 from these equations, we find that 
~2 

1 I 1 1 (1_1) 
is equal to the two corresponding symmetrical fractions. 

Each of the fractions is equaJ to the fraetion of which the numerator 
is the sum of the three numerators, and the denominator the sum of 
the three denominators. 

The sum of the numerators of the three fractions is unity: the sum of 
the denominators is 

E(~--~) § (1--1) § (~ ' - -~) '1  
r lgr2 2 

1 + + 

1 1 1 1(1 1(1 1) 
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l ~ a u  d 1 1 The coemcients of r / r~ r~ ~ "}" ~ vanish, and the remaining 

may be transformed into 

- 

1 1 1 1 

,oooo 
1 1 1 1 ' 

"1 i 1 1 

1" 1 " 

819 

~ c r m  

15. Given the direotio~ of a line of transmission, to find the velocities 
of the correspondi~zg rays, 

If/~/~' (Fig. 8 ) b e  parallel to the axis of the cylinder, and R' be 
the extremity of an axis of the base, it follows from Artic|e 11 that 
/~ is a point on the indicatrix corresponding to a ray transmissible along 

1 1 
the axis of the cylinder. The corresponding velocity being ~-~ = 1~,~, it 

is seen that the velocities of transmission are inversely proportional to the 
axes of the base of the cylinder. An analytical solution is given in Art. 8.  

16. The optic bi-radials (secondar~j optic axes). 
From Article 15 it foUows that if the two velocities of.transmissien in a 

given direction are equal, the corresponding tangent cylinder has a circular 
base. But at ever//point K' (Fig. 8) on the edge of the base of such 
a cylinder, the normal of the basal section and therefore of the cylinder, 
and consequently also the normal of the cylinder and therefore of the 
indicatrix at every corresponding point K of the section conjugate to the 
ray, intersect the axis of the cylinder perpendicularly, and have the same 
length intercepted between the surface and the axis: hence every point on 
the conjugate section corresponds to  a ray transmissible with the same 
velocity along the axis of the cylinder : the normals of the indlcatrix at 
these points, and therefore the planes.of polarisation, may have an~r 
azimuth whatever, 
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That in the plane .40C Mere are two directions, and only two, namely 
those of the lines Osl 082 (Fig. 7c), for which the two velocities of trans. 
mission are equal, has already been proved (Art. 3).  

Along each of these lines Osl Os2, rays can thus be transmitted having any 
azimuth of plane of polarisation whatever, and the velocity of transmission 
is b for all of them : in the case of calcite and analogous crystals, such pro- 
perties only belong to that single direction which is termed the optic axis. 
By reason of this analogy, the directions Osl Os~ have been likewise 
tlermed optic axes. 

But not being perpendicular to the corresponding ray-fronts, they do 
not possess all the characters which belong to the optic axis of a uniaxal 
crystal : from another pair of directions, of which the optical characters 
are also such as in the case of a uniaxal crystal only belong to the optic 
axis, they have been distinguished as ~econdary Optic Axes; and by Sir 
William Hamilton as Lines of Single Ray-Velocity? 

In the case of a biaxal crystal, it is experimentally determined that 
none of the so-called optic axes, primary or secondary, have directions 
which pass permanently through the same lines of crystalline particles ; 
the lines of particles through which they pass differ with the colour of the 
light and the temperature of the crystal : hence the so-called optic axes 
have no material existence, and are in no proper sense of the word axes of 
the crystal. 

Where precision of ~ought  and language is necessary, the lines may 
appropriately be termed the ()Ttic Bi-radials, for they are directions in 
which a line is doubly a radius vector of  the ray-surface : the term uni- 
radiag has already been assigned a distinct signification by )Sac Cullagh. '2 

When the indicatrix is a spheroid at all temperatures of the crystal and 
for aU colours of light, the bi-radial is found to be an axis of mor- 
phological and physical symmeiry, and an axis of revolution of the ray- 
surface ; it always passes through the same line of crystalline particles : 
such a line may be regarded as a true axis of the crystal. 

17. There connot be more theft one pair of olotic bi-radials. 

I t  has already been proved that Osx Os~ are the only directions for 
which the velocities of the rays transmissible along the same line, lying 
in a plane of symmetry of the indicatrix, are equal : it remains to prove 
that there are no other bi-radials in any direction whatever. 

1 ~rans. l~oy. Irish Aead. : 1837, vol. 17, p. 132. 
2 Ibid. : 1839, vol. 18, p. 40. 
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From Article 8 it is seen that the velocity of transmission r is connected 
with the values of k ~ v by the equation 

a2~2 72 2 -2 2 A o~Lt c;y 

whence 
a ~ k  ~ ( r  2 - -  b 2 ) ( r  ~ - -  r -~ b~u ~ ( r  ~ - -  o ~) ( r  ~ - -  a ~ ) ~ -  v~y 2 ( r  2 - -  a 2 ) ( r  ~ - -  b '~) = O. 

Since a b o arc in descending order of magnitude, the expression on the 
left-hand side of the last equation is positive, and therefore cannot be 
zero, if r has any value greater than a or less than c : hence no velocity 
of transmitted ray can be gre~ter than a or less than c. 

Further, if ~u is distinct from zero, the above expression is necessarily 
negative when r=b: hence it changes sign and passes through a zero 
value as r decreases from a to b, and again as r decreases from b to c. 
I f  ~ is distinct from zero, the two values of r ~ which satisfy the above 
equation are thus unequal. 

Hence the bi-radials can only lie in the plane A0C.  
That in the plane AOC there are only two such~lines may also be seen 

from the fact that for any direction lying in this plane one velocity of 
transmission is always b ; when the two velocities are equal the second 

velocity must also be b : hence if S is a point on the curve ACAC such 
that the perpendicular to the radius vector conjugate to OS is equal to 
0B ,  the points S correspond to directions Os of single ray-velocity: there 
are four such points lying at the extremities of two diameters. 

The directions Os may also be readily found from the above general 
equation : for all rays lying in the plane AOC, ~ is zero, and the general 
relation becomes 

r2_a  ~ t'W~_ c~ ~0  ; 

hence, the rays in this plane for which the two velocities of transmission 
are both equal to b are given by the equation 

a2~. u G~v 2 

b,~_---~ + b~ - c-~ =0, 

which is identical with the equation given in Article 3 .  
18. Equaffon of tt~e planes conjugate to the optic bi.radials. 
The equation of a plane conjugate to a line ~,p v is 

a~xk + b'Zylz + dzzv.-~ O. 
For the bi-radials~/,:,0 and 

a ' ~  d~V ~ 
b ~ _ ~ + ~  ~-0. 
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Hence their conjugate planes are given by the equation 

x ~ s' 

19. The directlon of a Zinc Or being defined by its inclination.8 ~ ~ 

to the bi-radial8 0s 10s~, to J~n~ the tolanes of polarisat~on of the two 
ra~s lchich ea~ be transmitted along it. 

Let [sa], [s~], It] (Fig. 9) be the sections of the indie~trix which are 
conjugate to the lines Osl, Os~, Or respectively, and let D, D~ he two 
adjacent points of intersection of [r] with Is1] and [s~!. 

D1 being common to the sections [~'] and [sa] , tho tangent plane of the 
indicatrix at D1 is parallel to both Or and Oal, and therefore to the plane 
Ors~ containing them. Similarly the tangent plane of the indica~ix at 
D~ is parallel to the plane Ors~. 

Fia. 9. 

Also all planes tangent to the indieatrix at points on the sections Is1] 
and [s~] are equidistant from the origin (Art. 16) : hence the tangent 
planes of the indicatrix at ~)~ and D2 are equidistant from the line Or, and 
are therefore equally inclined to the planes of polarisation, for t he  latter 
are the planes of symmetry of the elliptic cylinder which touches the 
ellipsoid in the section It] (Art. 12.). 

Hence the planes of polarlsation of the two rays transmissible in the 
aireetion Or are the internal and external bisectors of the angle between 
the planes Ors1 0r81. 

This is the first of the empirical laws of Blot (page 801). 
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20. T/~ dlreaio1~ of a line 0r bd.g d~md ~,j its ~.dina~ons ~i ~ 
to the bi.radials Osz 0%, to f ind the velocities of the two rags which can 
be trm~nitted aloltg it. 

I f  r~ r2 be the respective velocities, it  follows from the Clusdrstie equation 
of Art. 8 that 

1 1 

,:~;2 = ~+~a '+a=~b~  
where X/~ v are the direction-cosines of Or. 

I t  is necessary to  express X/~ v in terms of the angles r r and to sub- 
stitute their values in the above expressions. 

Let I 0 n, i 0 n be the direction-cosines of Osi Osz respectively, then 
cos.o" 1 = l)~-{-nv, coscr2= -- lX+nv ; 

and 2 l~, = cos o'l -- cos 0"2, o. uv =eos  o'l + cos r 

Also (from Art. 3 )  

1 1 1 1 

= T " i '  '~ - r - r '  

1 + 1 ,  we get Substituting 1 - M - v s f o r / i  ~ in the expression for r; 2 r~ 2 

1 .I I 1 2 1 1 1 1 
- ~+~-;~+~-x 
_ 1 + 1 _  1 1 

1 1 / 1  1% 
oos.,oos 2. 

Similarly, 
1 1 ks[1 l~+v s 1 1 

r?,.~.~ = ~.-~,~-~ t ~ , - ~ /  ~ (~-~1 
1 (~ ,_1 ) ( / l ) j  nil,s~ 

=d'c ---~- ~ \ d - a' / 

and 

1 1 _ ,r<~176 <.:!._!oo. 

4 4 . / I  I \  i I I 
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Hence 
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1 1 ~  ( 1 + 1 ' ~  2 4 

_ [ 1  l \  ~ �9 ~ . - t # -  p )  sm 

�9 

or ~ -- -- - 4- _ sin c q s l n  er s. 
~'12 r2 2 

I f  r~ be the larger velocity, we thus have 

1 ( 1  1 ) .  �9 
- -  - -  ~ ~ S i n  o"181][1 0`2. 
r l  2 r~ ~ ~ - - ~  

This is the second of the empirical laws of Bier (page 801). 
From the above we find that 

2 1 1 1 1 ~;~ = ~ +~ + (~-  ~) cos(o-~- o'~) 
2 1 1 +  1 1 

~ =  a~+c"; 

whence 

rll--la c~ 0`1- 0̀ ~ " 1 ~ ' t - ~  sin2 0`' 2 0̀ 2 

1 1 0`14-o"24_1 .:_2 0`i+0`2 ~'~ ~ C0S2 

21. Th~ ray-front corresponding to the ray Or is perlaendicular to the 
transverse Tlane R N  Or, and intersects that pla~e in a line parallel to OIL 

Geometrica~ Proof. 
(a.) As usual, let 1~ (Fig. 10) be the point of the indicatrix corres- 

ponding to the ray Or, and R N  be the normal of the indieatrix at B: and 
let R D E N  be a plane perpendicular fo the plane BNOr ; it will intersect 
the indieatrix in an ellipse. Let D be a point on this ellipse distant from 
/~ by an arc which is a small quantity of the first order: to this order of 
small quantities the normal of the ellipse at D is the normal of the 
indieatrix at that point: if OE be drawn to intersect D E  perpendicularly, 
the line I?:V is, to the first order of small quantities, perpendicular to the 
plane/Lu and parallel to DB, and DE is equal to RN. Hence, if Od 
be the ray corresponding to the point D of the indicatrix, the plane Ord 

1 b 1 is perpendicular to the plane I~NOr, and Od=~--E y construction - ILV 

~-Or. Hence the line rd is  also perpendicular to the plane ILYOr. 
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But R and D being adjacent points on the indicatrix, r and d are adjaeent 
points on the ray-surface, and the line rd is thus tangent to the ray- 
surface at r. 

The tangent plane to the ray-surface at r is the plane of the ray-front 
corresponding to the ray Or: it must pass through all lines tangent to 
the ray-surface at r, and thus through the line rd, and be perpendi. 
cular therefore to the plane RNOr: 

d 

D 

FIe. I0. 

(b.) The plane RNOf (Fig. 11)also will intersect the indlcatl'ix in 
an ellipse : let G be a point on this ellipse distant from R by an arc 
which is a small quantity of the first order : to this order of small quanti- 
ties GH, the normal of the ellipse at G, is also the normal of the indieatrix 

1 , 
at that point. Hence if gOH be perpendicular to GH and Og= GH 

Og is the direction of the ray corresponding to the point (7, and g is a 
point on the ray-surface : in the same way as before it follows that rg is 
a tangent line of the ray-surface, and is thus the intersection of the 
tangent plane at r with the plane RNOr. 

Let Or Og intersect the ellipse in the points R' G' respectively : then 
OR' and OG' are respectively conjugate to OR and OO, being perpen- 
dicular to RN and GH, and therefore parallel to the tangents at R and G : 
the area of a parallelogram of which the adjacent sides are conjugate 
radii veetores is constant ; hence 

tiN" OR'"  GH' 0 0 ' .  
Also, by construction, 

. 1 1 
RN=~r, Gn=O~; 

hence Or : OR' = Og ; OG', 
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and the line rg is therefore parallel to the tangent of the ellipse at R ~, 
and consequently tothe line OR which is conjugate to OR'. 

Hence the ray-front corresponding to the ray Or intersects the ~rans- 
verse plane RNOr  perpendicularly in a line parallel to OR. 

The diametral line Of, perpendicular to OR and lying in the plane RNOr,  
is therefore normal to the ray-front corresponding to the ray Or (Fig. 12). 

FxG, 11. 

Analytical Proof. 
The following is interesting to the mathematical student, by reason of 

the eliminations : -  

From Article 7 we have 
�9 ~ y z 

r~--  a2 r'~-- 1"~ r'J-- c "~ 1 

= . , ' 7 - = ~  = X (say) ;  

hence z ' - -  ~ x  A y  A z l ,  - - r ~ _ ~ ,  y'----~-=-~,~, z ' - - ~  (1). 

Remembering that 
Q~ y2 ~ 

r~:_a~ -]- ~ -b r~ c------~ = 1 (Art. 7), 

we have sx '  + y!/' + zz' ~ .4. (2), 

Also a'~a/ + b2yy ' + c~zz ' .-~ 0 (Art. 7). (8), 
It is thus required to determine the tangent plane at a point zy  z of the 

ray-surface in terms of the co-ordinates $'y'~', which are connected by the 
above equations and also by the relation 

a ' z ' ~ + b ~  ''~ + ~ z  '~ : 1. (4), 
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Forming the differential of each of the equations (1), we have 

(r2--a~)&c' + 2 r x ' b r  ~ A~.c+x~.4 
(r~--l?)by ' + 2 r y ' ~ r  -~. A ~ y + v ~ A  (5). 

J (r~--ci)~z ' + 2  rz'$r-~_ Abz+zf i .A  

Multiply these equations by a~d b~9 ' c%' re~eUvely mad add: the 
quantity $A is thus eliminated, for its eoeflleient #xx '+b~yy '+e2zz"  
vanishes by relation (8); we then have 

,'1 (a~x'&v + $*Y'~Y + ~z'8,~). 

Remembering that a~.d&d+b~y'~y'+e2z'~z' --~ O, owing to relation (4), 
we have 

- -  ( a ! , t / t ] x  ' -3 U b'ff'~y' .I. e4z,~z,) + 2r3r--" ,4 (agx'&v + b~y'3y + d%'3z). 

But by Article 4 

whence a4x'bx ' +b4y'by ' +~4z'bz' .7-= r f r .  

Substituting this value in the preceiting equation, we have 
q'~r = , t  ( a~d &~" + b~.!l"@ + ~z'  ~z) 

o r  

(~- a~,e)*,~  + ( v -  a~'v')~v + ( , _  ao,~')**= o. 

If I m n be the direction-cosines of Of, the perpendicular to the tangent 
plane of the ray-surface at x y z, we must have 

t&~ + m~!j + n~z ~-~ 0, whence 

�9 - 2 - ~ '  = v -  ab~a ' = "  A*~ ' : (6). 

(a.) Each of these quantities is equal to 
Ix' + my' + nz' 

~:x ' -  Aa~x'~ + yy ' - -  Ab~y'~ + zz ' - A ~ z  '~ 
lx' + m y '  + zz'  

or xx '  + yy' + zz' -- A" 

The denominator of this expressioL is zero, by relation (2); hence the 
numerator 1.d+my'  + n z '  is also zero, for the three equivalent fractions are 
never all of them indeterminate, and are none of them i,finite. 

From the relation la : + my ~ + nz' ~ 0, (7). 
it follows that O f  is perpendicular to OB. 

(b.) Also, multiplying both numerator and denominator of each of the 
fractions (6) by y'z'(b~-e~), z 'x ' (d--a~),  x'y~(a2--b ~) respectively, we find 
that each of them is equal to 

ly'z' ( ~ - # )  +mz'x' (#-a~)+n~'y' (#-b~) 
y' :*' (b~-~ ~) ( x -  .daW)-l..z" :e" (t~-a "~) ( y -  A~!/) + x'y' (a ~ .,-b "~) (~s- atetz'}" 
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On expanding the denominator, it will be found that the terms involving 
.4 mutually destroy each other, owing to the identity 

~(b~_ c2) +b~(~_ a2) +~.(~,~_ ~,2) =0: 
the denominator thus reduces to 

xy'g'(b2--e2)-kyz'x ' (c 2 -  a~)+ zx'y'(a 2 -  I, 2) ; or 

owing to the equations (1). 
When multiplied out, this term is likewise found to be zero. 
Hence the numerator of the above expression is also zero, and we have 

he relation 
ZU,z,(b~ _ ~)+,,,,z, ~,(c2 _ a~)+ nx'~'(~" - -  b ~) = 0. (8~. 

But this is the condition (Art. 6) that the line Of may lie in the plane 
RON: hence the front-normal Of lies in the plane RNOr and is perpen- 
dicular to OR. 

Corollary 1. The inclination of a ray Or to its front-normal Of is the 
same as the inclination of the normal RN to the radius vector RO at 
the corresponding point R of the indicatrix (Fig. 12). 

Corollary 2. I f  a ray coincides with the central normal to its ray- 
front, its direction is perpendicular to ,an axis of the indieatrix. 

Corollar~ 3. I f  the ray Or lies in one of the symmetral planes of 
the indicatrix, the intersection of the corresponding ray-front with the 
symmetral plane is parallel to the line OR, which is conjugate to the 
line Or. But if P is any point on an ellipse and Q Q'are the extremities 
of a diameter, the lines PQ PQ are parallel to a pair of conjugate dia- 
meters. Hence, if P Q Q lie in a symmetral plane of the indicatrix, 
and PQ represents the direction of a ray, the corresponding ray-front is 
a plane perpendicular to the symmetral plane, and intersects the latter 

in a line parallel to _P~. 

2 2 .  For the ray Or, the plane of polarisation is perpendicular to the 
plane containing Or and Of the normal of the corresponding ray-front. 

This follows at once from the last Article, for RN, the normal of 
the plane of polarisation of the ray, lies in the plane RNOr which has 
been shown to contain the line Ot. 

In other words, the plane Orris the tranverse plane for the ray Or, 

28.  For the ray Or, corresponding to the point R, the resoh'ed 
velooit~ along the normal to the ray-front is measured by the inverse of OR. 

I f  Of (Fig. 12) be perpendicular to OR and in the plane RNOr, and 
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the angle (fl) be a right angle, then, by Article. 21, J is the ibot of 
the perpendicular drawn from O to the tangent plane of the ray-surface 
at r, and Of is the resolved velocity of the ray Or along the normal to 
the corresponding front. 

But Or Qf are by construction perpendicular respectively to P,N and 

RO : hence the triangles rfO ONI? are similar a n u - - ~ = ~ r .  

�9 1 
Also, by construe[ion, RN =(-~r ; hence O f ~ - s  

2/ 

;g 
Fia. 12. 

24 .  The line OR is always a normal of the c~wve in which the imlica- 
trix is i'ntersected by a central plane l)arallel to float ray-front which eor. 
responds to the ray Or : i7~ the 9e~wral case, OR is an axis of the curve. 

R N  (Fig. 12) being the normal of the indieatrix at It, any line per- 
pendieular to B N  and to the plane RNOr is tangent both to the in- 
dice[fix, and to the section of the indicatrix made by any plane which is 
perpendicular to the plane l:lNOr at the point R ; it is thus tangent to the 
particular section made by that plane of the series which passes through O. 
Of this section OR is a central radius vector : hence the tangent at/~ to the 
section is at right angles to a central radius vector. 

The section being in general an ellipse, R is in such case the extremity 
of an axis of the section. 

Hence it is seen that the ray-surface is the envelope of planes 
which are distant from a parallel central section of the indicatrix by the 
inverse lengths of the semi-axes of the latter curve: which is Fresnel's 
geometrical construction of the surface. 

Convorsely, 
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25.  I f  OR is a eeutral normal (and therefore in general an axis) of 
the curve in which ~he indieatrix is i~terseeted by a plane parallel to a given 
direction of ~ ay=front, the 1Mane through OR normal to the direetiou of the 
ray-front contains the ray Or, which corresponds to the point R, and also 
the line BN, which is the normal of the plane of polarisation of the ray. 

The radius vector OIt (Fig. 12) being a central normal of the curve 
of intersection, a line perpendicular to OR and lying in the plane parallel 
to the ray-front, is a tangent to the curve of intersection at R : hence 
1iN the normal of the indicatrix a t / / m u s t  lie somewhere or other in the 
plane ROf perpendicular to this line. 

And the ray Or must lie in the same plane. 

ff 
Fro. 13. 

2 6 .  T h e  t w o  r a y s  c o r r e s p o n d i n g  t o  a g i v e n  d i r e c t i o n  
of  f r o n t - n o r m a l .  

Itenee if only the directiou of a ray-fi'ont be given, there are in general 
two corresponding positions of the ray-front, or, in other words, of tangent 
planes to theray-surfaee : and for each there is a correspondingray (Fig. 18). 
The rays lie each of them in a plane containing the central normal Of and 
one of the axes OR OT of the section of the indicatrix by a plane parallel 
to the ray-front ; they are thus in two perpendicular planes which inter. 
sect in the llne Of: the corresponding velocities resolved along the given 

1 1 
front-normal are measured by ~ and ~ respectively : the normal of the 

plane o.f polarisation is par~llal to RN for the ray O: and to T N  r for the 
ray Or. The directions of vibration at points of the respective rays, ar 
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cording to the latest version of the elastic theory, arc thus indicated by 
the shading in Figure 18. 

It may be remarked that the planes of polarisation of the rays Or Or, 
though perpendicular to the normals RN TAT', are not perpendicular to 
each other ; for it is the lines RO TO, not the lines RN TN t, which are 
at right angles : it is easily seen that the cosine of the angle between the 
planes I is equal to sin fOr  sin fOr. Hence only the transverse planes, not 
the planes of polarisation of the two rays, are perpendicular to each other. 

27. The t w o  f r o n t - n o r m a l s  c o r r e s p o n d i n g  to a g i v e n  
d i r ec t i on  of  ray .  

Similarly, if only the direction of a ray be given, there are in general 
two corresponding positions and directions of the ray-front, and two 
corresponding rays (Fig. 14). The rays lie each of them in a plane 

FXG~ 14, 

containing the ray.direction and one of the lines OR, OR~ : they are thus 
in two perpendicular planes which intersect in the line Or : the eorres- 

1 1 
pending velocities are measured by R--~N~ ~ '  respectively : the normal 

of the plane of polarisation is parallel to R~N~ for the ray Or1, and to 
R.~N~ for the ray Or,~. The directions of vibration at points of the re- 
spective rays, according to the latest version of the elastic theory, are 
thus indicated by the shading in Figure 14. 

28.  Given the to.ordinates .dV'z' of R, to .llnd O, the angle between 
the corresl~ondi~tg ~ay Or and its front.normal Of. 

Or O[ being perpendicular to R N t i e  respectively (Fig. 19.), 
RN 1 

Cos 0 -- ~os ~ Of -=- cos NRO =/~-'-0 = r-~': 
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h e n c e  tangO----- ~ r  '2 - -  1 

= (a',e~ + b'V '9 + c'z '9) ~x ''~ + y'~ + z '~) - -  (ag~ '9 + eV '~ + ~z'~)' 
= (a~-- b~)gx'gV'%(1,'--~)gy'9,'%(~-- a~)9~,,..r 

29.  Given the diredion.eosines A tz v of a line of transmission, to find 
O, the angle between the eorrestoonding ray Or and its front.normal Of." 

1, t t Z l  Find r / r 2  (Art. 8 ), and then x/y~'z/ ,  s Y2 9, the co-ordinates of the 
points RxP~ (Art. 9) ; also r~"2= ,~ ,9 ,9 ,~-- .,~ ,9 ,9 xl +Yl +zl  a n d r  9 --a,  2 +Y9 +z2 ; 
finally we have see 0~ = r l r / ;  sec 0~ = r2r2'. 

3 0 .  I./ a ray lies iu a given axial lalane of the indicatrix, to find the 
direction for which the inclination 0 to the front-normal is a maximum. 

First proof. 

Let the given axial plane be AOC. Each direction of'transmission 
lying in this plane corresponds to two points Rj/~ on the indicatrix : one 
of these R.2 always coincides with B, and the corresponding ray coincides 
with its front.normal ; the other R1 is in the plane AOU, and the corres- 

ponding ray coincides with its front-normal only when R~ is at d z i  Cor 0. 

I f  x ' 0  z' be the co-ordinates of R~, tan O=(e2-a 9) z'x' (Art. 28) .  

Hence, writing egz '2 = 1 - agx '2, we have 

tan~O__... ( c  a_)a(l_agx,9 ) agx,9___ ( e  a)  9 {�88 } 

For a maximum value of 0, a~.d 9 ~ �89 ---- e% '9. 

Or being parallel to the tangent of the indicatrix at R~, 
a~x f a 

tan r O A -  ----+__- 
0 9 Z~ e 

or Or is parallel to A C or ~C, when the inclination to the 
front-normal is a maximum. 

,Second proof. 

From Article 21, Corollary 8, if P is a point on the indicatrlx lying 
in the symmetral plane AOC, and P A  represents the direction of a ray 
belonging to the elliptic section, the corresponding ray-front is perpen- 

dicular to the plane AOC and intersects it in a line parallel to ~ ; hence 

the angle A P A  is the angle of inclination of the ray to its front : the 

interior angle is a minimum when P coincides with C or 6 7` 
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81, l / a  ray 16~s in a givsn axial Tlano of the indicatrix, to find th~ 
maximuta inclination of the ray to its front-n~maL 

First proof. 

Taking AOO for the given axial plane, as in the preceding Article, we 
have, when a ~ x  '~ = �89 

7g 
and cot 0 = tan 9. AUO, or 0=~ - -  2 A frO. 

Hence the maximum or minimum angle which a ray lying in the axial 
plane AOU can make with its front is given by the angle AC'A. 

Second proof. 
This result is also manifest from the fact that when the ray Or is paral- 

lel to ~lC, the conjugate diameter OPq, and therefore also the ray-front, is 
parallel to CA ; as in the second proof given in Art. 3 0 .  

3 2 .  Giv~ the so.ordinates x'y'z' of R, to find the direction-cosines l m n 
of the normal Of to the corresponding ray-front. 

For any line 1 m n in the plane RNOr, as already proved in Article 6,  
we have the equation 

l y 'z '  (b ~ - c ~) + ,,.-'.V (~ - a~) + ,.~'/(a~ - b~)=0. 
If  the line I m u is likewise perpendicular to OR, of which the direc. 

x~" y '  z p 
we have also tiOn-cosines are ~r,. ~r- r '  ' 

lx' +my' q- ~z'..~-O. 
From these equations the ratios 1: m : n are found to be : ~  

1 m u 
b - = ~  = ~  

where 
D=-~'~'~ (~ - a  ~) -x'y'~ ( ~ -  b~)=x'(1 - a~,"~), 
E - - r  ~ ( ~  - ~)  -- y'~'~ (b ~ - c ~) = y'(1 -- ~,~r'~), 
F = , ' r  ~(b ~ - ~ ) -  ='.~'~(~-,,~)=='(I-~,,"~); 

whence 
1 m n " 

_ J 

~' ( x - a ~ ' 9  y '  ( 1 - ~ r  '~) ~' (1 - , ~ ' ~ )  
where r '~'- O/~'--x 'l + y'~ + z '~. 

These equations determine the direction-cosines l m n of the normal 
Of of the ray-front corresponding to the point x'y'z' or/~. 
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3 3 .  Givc~ the direetion-eo,ines I m )~ of the front.normal Of, to f ind 
/'~ f~ the respective velocities oat" the two corresponding ray-fronts resolved 
normally to them. 

In Article 2 3  it was shown that the velocity of the ray-front of the ray 
1 

Or resolved normally to the front is ~ :  denofingtheresolved velocity by 

1 1 
f and s u b s t i t u t i n g ' f = ~ = r T - i n  the equations of the last Article, we 

h~ve 

/ x:--a ~ / '~-b 2 l~_e'~ --'V"--7' 
Each of these fractions is equal to 

h" + my' + m '  
But the denominator of the last expression has been proved to be 

zero (Art. 32); hence the numerator is also zero, for tim fractions 
equivalent to the expression are never all of them indeterminate and are 
never infinite; we thus have 

l'J " 'm"~ ' n~ - 0  
s - a S + f - : g "  + . r ~ -  - ' 

This is a quadratic equation in i f ,  and its two rootsf~ ~ J,~,~ are the resolved 
velocities required. 

Multiplied out it takes the form 
/ ,  - f ( ( ~ + c'-)t ~' + ( e~' + ,~),,,'~ + (.~ + b~)n ~} + b~c~l '~ + ~"a~m -' + a'~b~,,~O. 

3 4 .  Given f~ f,,  the velooitie8 of normal.transmi, don of two ra R- 
.froat~ having a common direction of  normal Of~fo, to flnd 1 m n the diree- 
tion-eosine~ of the latter. 

From Art. 3 3 ,  
l ~ m I 1~ ~ 

A~_ a------~ + f ~  + f ~ = o  

f :  - + = 0 .  

Determining the ratios l 2 : ~1~ ~ : n "~ from these equations, we find that 
~2 ?B2 ~2 

(~,,,-c'-' ~ ( . t ic .  '-') ~.,"-a")-(~'~=i" ~ ~ " ' t ,  '') (t;"=~;")=(a'-v ~) (A'-o") (t:'-'~e), 
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The sum of the numerators of the fractions is unity : the sum of the 
denominators is 

I , W  [ W-- "~)  + ( ~ --  nO+  (<'+~ - -  ~"0 ] 
- r [a ~ (b ~- r + b ~ (c"'~") + o~ (~-b~)] 
+ a' (~' - r + ~' (o ~ - a ~) + o' (a ~ -- ~0. 

The coefficients of f12f~ 2 andf i  '~-t-f~ ~ vanish, and the remaining term 
may he transformed into 

-@'---b~.) (b~- -~)  (~--a'-').  

Hence l 2 -  (/~'-- aS) ( f2~-  a'~) 
W -  a 0  (e ' ~ - a T  

n~= (f,~-/,~) (A '~- b D 
( r  b0 (a ~ = ~}' 
t~.~ - e'/(/2'-' - e ~) 

35 .  Given the direaion-vodnes 1 m u of th$ normal8 0fl l Jr2 of two 
~'ay-front, having the same direction, to find the eo.ordinates .qryl%it 
x.~' y~' z 2' of the eorrespondi~lg points R T on the iudicatri.r. 

The values fl'2f2 '~ having been found by the equation of 'Article 3 3 ,  
the co-ordinates xl' Yl' r x~' y~' z2' of the points R and T respectively 
are determined by the following equations, also from Art. 3 3  : - -  

x l '  = Yl' ~1' = 
l m "n  

l l i t  ,I. 

i ;  > - a  ~ f 2 "  - b'~ f , 2 - -  c '~ 

remembering, also, that the r of each point must satisfy the 
equation of the indiea~x. 

I t  will be observed that the above equations are identical in form with 
those given in Art. 9 :  in the one case the direction-cosines and velocities 
are those belonging to the rays, and in the other case are those belonging 
to the front-no,reals. 

36 .  ~iv*n "fl f~, thr velocities of normal-transmission of two ray-fronts 
having, a common direction of normal Off f2, to flnd the eo.ordinates x y~' ~' 
a'.~'y~'z.; of tl~ eorreopondinq point, R T on the indieatrix. 

From Art. "35 
:vl  I Yl g l l  - -  1 
1 - - -  ,11. n - - ]  (say), 

#'i ~ - a '~ f , " -  b" A ' -  e' 
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The square of each of these fractions is equal to 
a,1 '~ + yl '~ + zl '~ 

l ~ m ~ n ~ �9 

(f-X~q ~ + (~ ) -~  +-(A~-p)~ 
1 

Hence, remembering that xl ''~ + yl '2 + zl ''~ = 0 /~  =7-1. ~, we find on 

substituting the values of l z m ~ n ~ given in Art. 8 4  

A ~ A ~ a  ~ 

- ~  = ~ ( e  - . ~ )  ( ~ =  b~) ( A  .~ - a 0  
x {(b ~ - ,~) (/1 ~ - ~ )  (r~ - ,~) (A  ~ - a~)} 

or (a~ _ V0 (V - -  e') (,~ - -  a 9  ( tp - a ~) ~ - -  b0 ( ~ - -  *~) 
On expansion of the numerator it will be seen that the terms involving 

A %  ~ f i~& ~ f l  4 a~b"e 2 all vanish, and that the coefficients of f2  and j~a re  
equal but of opposite sign : the numerator then takes the fol~ 

(A ~-f2) (.2_ b~) (6~_ ,~) (,~_ ~) 

Hence A ~-= "fl"~ (f(~ - - f 2 )  
(A'-' - a'9 Of, ~ -  b") ( r , " -  e ) '  

t ~ _ ( f . ; ~  - a ~) (f;~ - a~) (]','~ _ e~) 
and ;h ''~ - ~ ( f l ~ _ a 2 ) ,  ~- An (fl. 2 _ f i ) )  (e ~ _ a~ ) (a ~ _ b~ ) . 

Corresponding symmetrical expressions give the values Of y,2:,2 a~,~!tj~z,~. 
The above relation, with many others of this SectiOn, was first given 

by Sylvester, x starting from the vibrational inferences of Fresnel. 

3 ~ .  r the direelion-eosines l m  n o.f a fro~t-~wrmal (~, to t~nd 

those of  the eorrespondimj rays Or Ot. 

Find the co-ordinates of'/~ and T by the method of Art. 35 ,  and then the 
direction-cosines of the rays Or Ot by means of the equations in Article 6.  

3 8 .  Give~ the direetion-cosims of  a ra~ Or, to f i~d those of the cor- 

responding front-normals.  

Find the co-ordinates of t~ and 1~ (Art. 9), and then the direction. 
cosines of the corresponding front-normals by Article 3 2 .  

39 .  The front-normal surface, or p~dal o f  the ray-surface. 
It  was shown in Art. 3 3  that if f be the velocity of transmission of 

a ray-front resolved along its normal Of, of which the direction-cosines 
are l m n, 

j~_ .~  + f~_--:~ +p-:~..~ =0.  

-~ philos, Magazine, set. 3 : 1837, vol. ll~pp~ 461, 597 ; !838, vol. 12, pp. 73, 34L 
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Hence, if ~ y  z be the co-ordinates of jr, and the length of O f  be de- 
noted by r, we have 

r = f :  ~-~lr,  7j-----mr, z--•r.  
Substituting in the above equation, we get 

~_a~+ ~ +  ~ - - 0 .  

This is the equation of ~ e  locus of the points f ,  or of the pedal o 
the ray-surface: the velocity of normal propagation of a ray-front along 
any radius vector of the surface is measured by the length of the radius 
vector. 

40 .  The polar reciprocal o f  the ray-surface belongs lo the aame family 
surface of wave-slowness or index-surface. 

The radius of a concentric reciprocating sphere being taken as unity, the 
pole ~ n ~ which corresponds to the ray-front wiU lie in the front-normal Of 

1 
at a distance ~ from the origin. 

Hence if x y z r  refer to the pointf~ and ~ ~p to the pole of the ray- 
front, we have 

x ~ y ~ z ~" 1 
r p' r p' r p p 

Substituting these values in the equation of the locus of the points /~ 
we find for the equation of the polar reciprocal of the ray. surface 

~ + + ,=o  

f;~ f O~ 

or . i + - T - ~ +  ~ i = 0  

This is a surface of the same family as the ray-surface, being derived 

from the ellipsoid ~ + ~ + ~ = 1 in the Same way that the ray-surface 

itself is derived from the indicatrix a ~  + b~y 2 "F o~z 0" = 1, 
The surface has been distinguished by Hamilton as the surface of  

wave-slowness, and by ~ac  CuUagh as the index,surface. ~ 

I Tran~. Boy. Irish Acad. : 1837, eel. 17, p. 142; 1839, eel. 18, p. 38. 
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41. T h e  o p t i c  b i - n o r m a l s  (primary optle a:~'es). 

From Article 2 5  it follows that if the section of the indicatrix by a 
plane having the direction of the ray-front is a circle, ever v point R on 
this section corresponds to a ray having the same direction of front and 
the same resolved velocity normal to the front, and therefore the same 
position of front. The normals of the indlcatrix at the points/~, and thus 
the planes of polarisation of the corresponding rays, may have any 
azimuth whatever. 

That there are at least two directions of central section of the indicatrix 
for which the curve of section is a circle is seen as follows :--the section 
of the indicatrix by anyplane OBP (Fig. 15), passing through the mean 

axis OB, is symmetrical both to the line BOB and the plane AOG, and 

therefore to POP, P being a point of intersection of the curve with the 
plane AOG: hence the section is in general an ellipse of which OB. O.P 

Fro. 15. 

arc the axes. if  the direction OP be so taken in the plane AOC that 
the radius vector OP is equal to OB, which is always possible ~ince OB 
is intermediate in length between OA and OC, the axes of the ellipse 
become equal and the ellipse becomes a circle. 

There are only two directions for which a radius vector OP of the ellipse 

AO0 has the value OB or 1. If  a~ 0 ~" are the co-ordinates of P, 

1 x ~ ,~ 
a ~ + c % 2 = l ,  anda?+~ = ~ :  hence b~_02 = a ~ b  ~. 
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If  t 0 ~ be the direction-cosines of 0~, the perpendicular to the llno OP, 
l z_., ~ # 
- = _  and a 9 b2=b~_ig. 

The angle pOe is given by the relation tan pOC = _ / b g _ c ~ .  

The two directions Op~ Op~ thus possess certain optical characters which 
in calcite and analogous crystals only belong to that single direction which 
is termed the optic axis : for ray-fronts normal to either Op1 or Op~ may 
have any azimuth of plane of polafisation whatever, and their velocities 
resolved normally to the direction of front are equal. By reason of this 
analogy, the directions Olh Op9 have likewise been termed optic axes. 

But the front-normals 01~ Op~ not being coincident with the cortes. 
pending ray.s, for they are not axes of the indicatrix, the directions Op~ Op~ 
do not possess all the characters which belong to the optic axis of a 
uniaxal crystal; to distinguish them from the directions 0,~ O~, which 
have been termed secondary optic axes, they have received the name 
Primly  Optic Aa, ea: they have also been termed by Sir William 
Hamilton Lines of Si,~gle Normal-Velocity. 

Where precision of thought and language is necessary, the lines may 
conveniently be termed the Opt/o Bi-normals, for they are directions 
in which a line is doubly the central normal of a ray-front : the term 
is correlative to bi-radial, and such a bi-normal cannot be confused with 
that of a three.dimensional curve. 

42 .  There cannot be more tl~an one pai'r of optic bi-no~mals. 

I t  has already been proved that the only bi-normals in theplane . 4 0 0  
are r Op2: it remains to prove that there are no oti~er bi-normals in 
any direction whatever. 

From Article 3 3  we have for the relation between I m n / t h e  equation 
-4- m9 n2 

/ ~  - ]w..b~ +/ -r~_  e, ,,, o, 
or e ( /9_ V) ( p -  ~) + m' (yg_ e) ( /9_ ~) + ~ ( /9_ ~) ( p _  b~) = o. 
Since a b e are in descending order of magnitude, the expression on the 

loft-hand side of the last equation is positive, and therefore cannot b e  
zero, if / has any value greater than a or loss than e; as is otherwise 

1 
evident from the fact that f =  ~-R~ where R is a point on the indieatrix : 

hence no value of f greater than ~ or less than e can make the expression 
zero, 
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Further, if m is distinct fi'om zero, the above expression is necessarily 
negative when f=-b :  hence it changes sign and passes through a zero 
value as f decreases from a to ~, and again as ] decreases from b to e. 
If m is distinct from zero, the two values of ]2 which satisfy the above 
equation are thus unequal. 

Hence the bi-normals can only lie in the plane .400. 
Since OB is normal to the plane of polarisation for any ray-front of which 

the normal lies in the plane -JOG', one root of the equation corresponding 
to such a ray-front is always f=b,  and this must be the value of the equal 
roots: the directions of the bi-normals may therefore be found directly 
from the general equation (Art. 33) as follows : -  

For any front-normal in the plane ,dOG, m=0, and the values of p are 

-4- n~ given by the equati~ (~-r--a~ ~ .. --p~-c~ = O: hence, the directions of the 

front-normals in the plane .40C for which f - -  b are given by the equation 
l 2 n 2 = b~---c ~ ; which is identical with the equation of last Article. 

43 .  The direction of a line Of being defined by its inclinations rl m to 
the bi-normals Opl Opt, to find the transven'se planes of the two rays 
of which the corresponding fronts are perpendicular to the given line. 

Let [Pl] [P2] be the circular sections 'of the indicatrix perpendicular 
to the bi-normals 0p~ Op,,. respectively, and let [f] be the central section 
of the indlcatrix parallel to the given direction of ray-front (Fig. 16). 

Let [f] intersect [Pl] [P2] in E1 E2 respectively. 
All radii vectores in the two circular sections being equal, (Lb;I= OE,~: 

and the axes "oR OT of the elliptical section [f]  are therefore the in- 
ternal and external bisectors of the angle E/)Eo. 

By Art. 2 6  the two rays Or Ot corresponding to the front-normal 0f  are 
in the planes f01~ lOT respectively. 

Again, Of is perpendicular to both 0Et  and OE~; 
Opl Op2 are perpendicular to OE1 and OE~ respectively. 

ltenee OE~ is perpendicular to both Of and Opl, and therefore to their 

plane fOp1 ; 
OEg is perpendicular to both Of and Opt, and therefore to their plane 

The planesfOE~ j'Op~ are thus at right angles : likewise the planesfOE.~ 

f o p .  
Hence the planes fOR fOT which bisect the angles betweenfOE~ and 

fOE~, also bisect the angles between fOlh fop2, the planes which pass 
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through Of and the bi-normals ())~1 Opt. In other words each of the 
perpendicular planes, which bisect the angles between the two planes 
passing through Of and one or other of the bi-normals, contains one 
of the rays of which the front is normal to Of, and is the transverse plane 
of the contained ray. As already pointed out in Art. 26 ,  it is the trans- 
verse planes, not the planes of polarisation, of the two rays correspond- 
ing to a single direction of front-normal which are perpendicular to each 
other 

~HE TR,~NS~ISSlON 0I~ LIGHT IN CRYSTAL~. 

4 4 .  The direction of  a line Of being defined by its inclinations lr x 7r~ to 
the bi-~wrmals Op~ Opt, to f ind fa f2 the velocities of normal-transmissiou 
of the ~wo ray-fronts which are perpendicular to the given line. 

From the equation of Art. 33 ,  it follows that 
/1' §  = Z ~ (b ~ +c  a) +m ~ (~ +a ' )  +,~ ~ (a~+b ~) 

fl~f2~-~'--'12b2c ~ + m2c~a 2-]- n~a~b~. 
Hence, proceeding by the method of Art. 20 ,  it may be shown, having 

due regard to the relative magnitudes of f~ and f2, that 
f i~-f~--- - (~-c  ~) sin ~rl sin ~ ,  and that 

2 A '  = a ' + c ' + ( a ' - c ' )  cos (~;-~'~) 
~/,~ = a, + c ~ + ( a ' -  c') cos (.', + ~,):  

whence 

~ 1 2 ~ a  ~ C082 ~rl--Tr~A.C~ Bin I ~rl~Tr2 
2 " ---~--' 

f ,~=a" cos' ~r'~2 ~'+c2 sin ~ 2 
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45. The bi4.adlal c o n e  (the cone of/ront.normals which cor- 
respond to the rays transmissible along a hi-radial). 

We have seen (Article 11)that in general for any given direction of 
ray Or there are four corresponding points of the indicatrix on two 
diameters 0R10R~ of the conjugate plane. Also (Article 27), there are 
two corresponding front-normals 0/~ 0/2, lying in the planes Orl~ OrlT~ 
and perpendicular to 0~1 OP~ respectively. But we have seen that 
in the case of a bi-radial Os~, every point B on the conjugate section 
corresponds to a ray transmissible along that direction with the velocity 
b. Further, Oat is not an axis of the indicatrix, and thus is only 
coincident with the corresponding central normal Ou for the tw5 rays 
transmissible in the direction 0si which correspond to the two points B 
in which the axis BOB meets the conjugate section. 

M" ?d" /~ ~fl 

S' __: i'",. r'i': ", S 

, : ,, , ,  _ . ~  . . . .  _ _  ) 

I 

~ t  t ,  

Fzo. 17. 

If M"_~' (Fig. 17) be the right circular cylinder touching the indicatrix 
in the curve MSM, in which the plane conjugate to the bi-radial 0~i meets 
the indicatrix, and M'S'M' be a basal section perpendicular to the axis, 
the front-normal 0a, corresponding to any point ,$ on the curve, is in 
the plane 85'81 passing through the axis of the cylinder, and is at right 
angles to OS. Hence, as the point S moves round the curve MBI~', the 
corresponding normal Oa describes a cone of which the bi-radial ()s~ 
is an edge, for it corresponds to the points B B on the curve: the 
cone may be conveniently designated a hi-radial cone. In the next 
Article it will be shown that the hi-radial cone intersects the base of its 
corresponding cylinder in a circle. 

Corollary. Since the front corresponding to a ray touches the ray 
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surface at the point where the ray meets it, a cone of tangent planes can 
be drawn at each of the points in which a hi-radial meets the ray-surface. 

46. A plane  pe~oendieutar to a bg-radial interneete the cone o f  ror- 

responding f ron t -no~na l s  in  a circle. 

F i r s t  proof,  

Taking the base of the cylinder at such a distance from 0 that 0sa = b, 
we have n81 = 081 tan nOea (Fig. 17), for the angle neaO is  by construc- 
tion a right angle. 

1 1 
Also, by construction, 8 N  = 0~l--'b" 

O N  . ON Hence tan nOsa = tan O S N  = ~Y-S = o" , 

and nsl = b2"ON. 

Let B~B be a section of the cylinder parallel to the base, and let the line 
S S  r intersect the curve ~B in the point ~ : further let MOsx be the sym- 
metral plane of the indicatrix which contains the axes 0 , 4 0 U ,  and 0m be 
the direction of the front-normal corresponding t~o the point M on the 
indicatrix. 

S N  and aO are equal and parallel, s~nce they are both normal to the 
axis of the cylinder and in a plane containing it : hence O N  = S~. 

Draw Se ae perpendicular to the axis O B  ; and let the angle between 
the conjugate section and the base of the cylinder be q, : then 

Sea = MOI~ = mOsl = ~. 

Let the angle nsam be denoted by 0 : to determine the relation between 
nsl and the angle 0, we thus require to express O N  or 85 in terms of the 
angle nsxm or nOlo. 

1 
We  have S~ = ~ e t a n ~  = Or ~-~-cos 0 tan~. 

Hence nsx = b~'ON ~- b~'So " =- b cos 0 tan ~b = sam cos 0. 
The angle me81 is thus a right angle; and the locus of 1~ is a circle 

passing through the point ex, and having ms~ for diameter. 
Second proo f .  

Let x ' y ' z '  be the co-ordinates of any point 8 on the section conjugate 
to the bi-radial Osl : by Article 18  

X r Zr~ 

~. (b~-e ~) - h q ~  ~)" 
Now y',  being the perpendicular from S or o- to the plane 3IteM's . is equal 

sin 0 
to ~rO s i n ~ O o - =  $ ~ 
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Finding ~' d also in terms of 0 by means of the above equation, we have 
b.~_ c 2 cos~0 a 2 -  b ~ eOS~0 

' a~  _ 6 2 G a 

Also sin 2 = On ~ -  Osl ~. 

Draw s l f  parallel to OS and therefore perpendicular to On: 
Osl ~ 1 

then On = ~gf = l~ '08,  for Of =-'O'-S (Art. 23) .  

Hence sin ~ = b40S ~ -  b 2. 
= b4 ( z '~ -+y '~+~ ,~ )_  y~ 

Substituting the above values of x' y' z' in terms of 0, we get 

s~n = b cos  0 , / ( a ~ _  b~) (b,~_ c~), or 
a o  

sin = k cos 0, where k is constant for all values of 0. 
For 0 = 0, n takes the position m ; hence sdt = slm cos 0, as before. 

Also ,~,~ = k = ~ , /( , , '~-b ~) v ~ -  ~0. 
a ( '  

4T. Afierture o f  the bi-radial cone. 
If  the angle mOs~ be termed the aperture of the cone, the aperture is 

given by the relation 

tan m O s , -  ~,m __ 1 .,/(a, ~_ b~ ) (b, ~_ c2). 
s~O ac 

The "ingle rnOs~ is the angle between Os,  a bi-radial, and Or~, a line 
perpendicular to the plane which is conjugate to that hi-radial; a rela- 
tion by means of which the above value may likewise be obtained. 

4 8 .  Polarisation o f  the ray corresponding to a given front-normal  o f  
the bi-radial cone. 

For the ray transmissible along Os~ which has On for its front-normal, 
the normal of the plane of polarisation is S N  or ns~ : hence the plane of 
polarisation of that ray Osx which has On for its front-normal, meets the 
base of the cone in a line parallel to the line nm, or in other words in the 
line which joins sa to the other extremity of that diameter of the circle 
which passes through n. 

4 9 .  T h e  b i - n o r m a l  c o n e  (the cone of rays r to a 
front  which is perpendicular to a bi-normal). 

In general (Article 26) ,  if OR OT(Figs. 13, 18) be the axes of a central 
section of the indicatrix, the points R T correspond to rays Or Ot having 
fronts in the same direction, namely parallel to the plane O R T :  also, 
if Of be the normal to the fronts, the rays Or Ot lie in the planes f O R  
l O T  and are perpendicular to the lines which are normal to the indieatrix 
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at R and T respectively. But we have seen that all points on the 
circular section perpendicular to a bi-normal 0/~ correspond to rays 
having the same position and direction of front, the latter being parallel 
to the circular section : further ()p~ is not an axis of the indicatrix, and 
thus is only coincident with the corresponding ray for the two points 
B B on the circular section. 

Hence, as the point It  moves round the circular section of the indica- 
trix, the ray Or, which is always in the plane R()/~, describes a cone of 
which the bi-normal 0p, is a~ edge, for it corresponds to the points B 
on the curve. The cone may be conveniently designated a hi-normal 
c o ~ e .  

Corollary. Since erery front touches the ray-surface where the cor- 
responding ray.meets it, a hi-normal is perpendicular to a plane which 
touches the ray-surface in a closed curve. In the next Article it will be 
shown that this curve is a circle. 

l l r  

W .  

Fro. 18. 

5 0 .  A plane perl~eudicular to a bi-normal i~terseets the cone of cor- 
responding rays ia a circle. 

Let WI~  (Fig. 18) be the points where the circular section inter- 
sects the plane AOC : let ()Tl=b, and R be any point on the circular 
section: the plane ROpD containing the ray Or corresponding to the 
point/2, will intersect a plane, drawn through Pl parallel to the circular 
section, in a line pxr parallel.to OR ; similarly, if Ow be the ray corres- 
ponding to the point W,T,w is parallel to OW : hence the angle rplw =angle 
ROW.  Denote it by O. 

Also 
plr ~= Or ~ -  Op/  

= a*x'2+b*y'~+c4z'~-b 2, if x'y'z' be the co-ordinates of the 
point R (Article 4) .  
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But y '  being the perpendicular from R on the plane WOp~ or .JOG, 
sin 0 

we have y'---.OR sin I P O R = - - - F - .  

Also, since R is on a circular ,section, 

p , ~  =a~_-~- ~ (Article 41)  

Finding ~'  and z' in terms of 0 by means of this equation and the 
relation a2~'~-t-Pf2-t-~z ' g -  1, we get 

P -  c~ eos~O . ,~ = a s -  b~ cos20 

Substituting these values of x '~, y'~, z '~ in the equation for ~vd', 

cosO ~ / ( a ~  b~ ) (b~ c~), or we have ~lr = --b 

1o~r---~ lees O, where g is a constant for all values of O. 
For 0 = O, r takes the position w : 

1 
hence Iv~r "~plu, oos O; and p,w = - [  ~/(a~--b ~) (P--c~). 

The angle ~v~rw is thus a right angle ; hence the locus of r is a circle 
passing through the point ~v~ and having iv!w for diameter. 

The section of the cone of rays by a plane perpendicular to that hi- 
normal which is the front-normal for the rays is therefore a circle. 

51. Al~erture o f  the bi-normal cone. 
I f  the angle WOp~ be termed the aperture of the cone, the aperture is 

given by the relalion 

p l O =  
The angle wOp~ is equal to the angle between the radlus-vector OW 

and the normal of the indicatrix at W, for Olv ~ and Ow are respectively 
perpendicular to OW and the normal at W ; a relation by means of which 
the above value may likewise be obtained. 

52 .  Polaris~tion of the rags of the bi-~ormal cone. 

The plane of polarisation of the ray Or is a plane perpendicular to the 
transverse plane O~r. The line Opt, being perpendicular to the plane 
l~rw, is perpendicular to the line joining p~ to r, the other extremity o f  
that diameter of the circle_~xrw which passes through r ; the line ~T~, being 
perpendicular to both _~0 and p~r, is perpendicular to the plane O p~r 
containing them: as any plane passing through p~;', or its parallel rw, is 
likewise perpendicular to the plane ()2~r, the plane Orw is the plane of 
polarisation of the ray Or. 
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58 .  R e p r e s e n t a t i v e  s u r f a c e s  d e r i v e d  f r o m  t h e  I n d i -  
c a t r i x .  

(a) The characters of a ray of light transmitted in a crystal may also 
be expressed by reference to corresponding points on the polar reciprocal 
of the indicatrix relative to a concentric sphere : th i s  surface is an 

~:~ Y~ + ~---1 (p. 381 and Fig. 19). ellipsoid represented by the equationa" ~ + 

If  OR, a radius vector of the indicatrix, be .normal to a tangent 
plane of the polar reciprocal of the indicatrix, meeting the plane in a point 
M, OR'OM=I,  if the radius bf the reciprocating sphere he unity. If  P 
be the point in which the tangent plane perpendicular to OR touches the 
polar reciprocal, and P G  be the normal of the latter surface at the point 
P, the lines /)6~ PO lie in the plane RNOr: le~ PG intersect the ray 
Of in the point G. If  m be the point in Which OP intersects the plane 
which touches the indicatrix at R, OP'Om _--1, and OP is thus the 
iuverse of RN. Hence, to every point P on the polar reciprocal of the 
indicatrix corresponds a ray Or : it lies in the plane PGOr, and is per- 
pendicnlar to OP : its velocity of transmission is measured by OP :. its 
transverse plane is PGOr : the ray-front intersects the transverse plane 
PGOr perpendicularly in a line parallel to P(i-, and i~s velocity of normal- 
transmission is measured by PG. 

(b) Von Lang ~ has pointed out that if a surface be derived from the 
ellipsoid a~.~+bgy~.4-dzg.~l by elongating eaoh radius vector until the new 
length is measured by the nth power of its original value, the derivative 
surface may likewise be used for the geometrical representation of the 
characters of transmitted rays. This result can be gcneralised still farther, 
as follows : -  

Let ~-~(r) be any function of r, which always increases and decreases 
with r, or vic~ wrsrt : it will have an apsidal (i.e. maximum or minimum) 
value at the same time as r. I f  then a new surface be derived by 
elongating each radius vector r of the indicatrix to a length #, determined 
by the relation p - -  ~-~(r) or r - -  ~b(p), a central section of the new surface 
will have its apsidal diameters in exactly the same directions as those of 
the section of the indicatrix by the same plane. If  #~ p~ be the half- 
lengths of the new diameters, the corresponding ray-fronts are respectively 

at d is tances land 1 1 and 1 - or ~-~[) .~-~-~ from the central section ; the ray- 
r l  ~'2 

surface itself is the envelope of these planes. 

8itS. ,~.  Wiea, 1861, vol. 48, seo. 2, p. 645, 
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The general equation of the new surface is easily found : -  
I f  r be the length of a radius vector of  the indicatrix and l m n be its 

a~l~ + b~rn ~ + e ~  = 1  ; ~ ~ ~" being the co-ordinates of direction-cosines, 

the corresponding point on the new surface, ~ = lp, ~ = rap, ~ = np : 

whence a ~  + b2~ ~ + c ~  - -  r ~ 

which is the required equation. 
Fresnel's , ' surface of elasticity" is the particular case in which 

t 

(p) =~,  for the equation then becomes a ~  2 + h2~ 2 + ~ =  (~  + ~ + ~)L 

For the " surface of elasticity," the transverse planes of the rays corres- 
ponding to a given direction of ray-front pass through the apsidal dia- 
meters era  central section, as in the case of the indicatrix, but the distance 
of the ray-front corresponding to a semi-diameter of length p~ is not 

-- as in the indicatrix, but or P~. 
Pl 

The corresponding ray is only perpendicular to the corresponding 
normal of the representative surface in the case of the indicatrix : in every 
case, however, the normal of the representative surface lies in the plane 
passing through the corresponding diameter and the front-normal : for the 
curves of intersection of the two surfaces by the given plane have parallel 
tangents at the extremities of their maximum and minimum diameters. 
Hence, as in the case of the indicatrix, the plane passing through a 
diameter and a normal of the surface at the extremity of the diameter is 
the transverse plane of the corresponding ray. 

(v) In exactly the same way a series of surfaces can be derived from 
the polar reciprocal of the indieatrix. 

The above generalisation serves as a reminder that there is not neces- 

sarily a simple relation between a surface of goometrical representation 
and the characters of the ether. 
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~ECTION ~ . ~ A R I O U S  OPTICAL RELATIONS WHICH ARE INDEPENDENT OF THE 

PHYSICAL CHARACTER OF THE PERIODIC CHANGE. 

1. In Section II we have shown that after the discovery of the 
polarisation of light by reflection by Malus in 1808, and of the corres- 
pondence of optical and morphological symmetry by Brewster in 1819, 
the true laws of transmission of light in biaxal crystals must soon have 
been suggested, independently of any hypothesis as to the physical character 
of the periodic change : in fact, their enunciation by Fresnel in 1821 was 
only two years later than Blot's discovery of two empirical laws by which 
the accurgcy of a geometrical representation could be tested. If the 
truth of the construction given by Huygens for the case of calcite is 
acknowledged, the suggestion presents itself as soon as the planes of 
p)larisation of the two rays transmissible in any direction in a crystal of 
calcite are represented by Weir nermals. 

In the present Section we proceed to indicate very briefly, for the 
convenience of the student, various other important relations~ which, 
though really independent of any hypothesis as to the nature of the 
periodic change, are usually imagined and expressed as belonging to an 
elastic ether. It will at the same time be shown that the form of the ray- 
surface f0r biaxal crystals is not merely suggested by a geometrical 
generaIisatlon as a tentative one, but is a necessary consequence of the 
difference of symmetrical development of the same physical characters, 
whatever they may be, which ori~nate the sphere and spheroid of a 
uniaxal crystal : it will further be shown that the same form of the ray- 
surface would result from the general features of perpendicularly transverse 
undulations, and be independent of the real nature of the periodic change. 

t~'eliminary algebraical e,~Tresslou for the transmission of a ray o/ 
ordinary light. 

~. It will be convenient, in the first place, to find a mathematical 
expression connecting the magnitude of the disturbance or change of state 
at any point in a ray of ordinary light of simple colour with the position of 
the point, the time, and the period of the vibration. For  this purpose 
it is necessary to make an assumption as to the law of the change : the 
simplest which can be made is that at any point of a ray of ordinary light 
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of simple colour the variation of the state with the time follows the same 
law as the variation of position of an isoehronous pendulum. 

I t  will be found that, for a ray of simple eolour, the expression 

is one which satisfies this condition and is consistent with all experi- 
ments as vet referred to ; 

x denoting the distance of any point in the ray from a fixed point in it, 
~j the magnitude of the disturbance or change of state at the point x at 

the time t ; 
v the velocity of transmission, 
k the wave-length, 
a and a two constants for all values of x and t : - -  
1. At a given po6~t, indicated by its distance x from the origin, the 

change of state varies periodically with the time t : the same value of y, 
and therefore the same change of state, recurs whenever the expression 

2y ( v t - x ) + a  increases by 2~', that is when t increases by the constant 
k 

interval -~. The same change of state recurs, but with opposite sign, 

2~r 
whenever the expression ~-(vt-x)-}-a increases by ~', that is when t 

increases by half the above interval. 
2. At a given instant, indicated by the time t, the change of state is 

the same in magnitude and sign for a l l  points separated from each other 
by the distance X : it is the same in magnitude and opposite in sign for all 
points separated from each other by half that distance. 

8. The relation between ~/and t is identical with the relation between 
the position of an isoehronous pendulum and the time. 

a, being the maximum value of ~/, is the amplitude of the vibration. 

~ ( v t - x ) + a  being the phase of the vibration at the point x at the 

time t, , is the phase of the vibration at the origin (x ~ O) at the epoch 
from which the time is;measured (t ~ 0). 

The period of the vibration being independent of the amplitude, the 
law is consistent with the independence of colour and intensity. 

Conversely, if the magnitude of the change of state at each point of a 

I t line is given by the expression ~t~a~m -~ (v t - x )+a  , and the change 

is of the physical character which belongs to light, a ray of light of simple 



THE TRANSMISSION OF LIGHT IN CRYSTAL~, 851 

eolour is passing along the line with a velocity r : the intensity corres- 

ponds to the amplitude a, the colour to the period X while the phase of 
r 

the vibration at the origin at the initial epoch is a. 
From analogy with sound, we may tentatively assume that the intensity 

of the light corresponding to this simple change of state is measured by 
the square of the amplitude. 

Resultant effect of the sim, nltaneous transmission of two or more such ra$/s 
along the same line. 

3. The fact of the periodicity of the change was deduced from 
experiments relative to the mutual interference of rays of light : it is easily 
seen that the above expression for the change, combined with the principle 
of superposition, is consistent' with the observed phenomena from which it 
was deduced. 

(a) I f  the comp'ment rays have the same wave.length a~d velocity. 
1. For let two rays of the same simple colour, transmissible along a 

given line with the same velocity v, b e  represented respectively by the 
expressions 

if both are transmitted simultaneously, the principle of superposition 
requires the resultant change to be determined by the expression 

y ~ a s i n { 2 - ~ ( v t - - x ) + a  I +b sin l~ (v t - - .~ )+~  } �9 

If the terms can be added together in the same way as numerical 
quantities of  a single ~ind, 

y = (a cos .  + b cos ~) sin ~ (vt-- x) + (a s in.  + b sin ~) cos ~ (,'t - x) 

= c sin 1-~ ( v t - x ) + ,  l , 

if c ~ ---- a 2 + b ~ + 9.ab cos (a --/3) 
a sin a + b sin 

and tan 7---aces a+bcos fl" 
Hence the resultant effect of the two rays is identical with that of a 

single ray transmitted along the same line with the same velocity and the 
same wave-length (and thus of the same colour), but having an intensity 
v g and an original phase T. And the intensity of the resultant ray depend~ 
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not only on the intensities of the component rays but on their difference 
of phase at the same point at the same instant : if a and b are equal and 
a differs from fl by any odd multiple of z-, the intensity of the single 
resultant ray is constantly zero. 

2. I t  may in this way be shown that the resultant effect of the simul- 
taneous transmission of any number of such rays of the same simple 
colour along the same line with the same velocity is identical with that 
of a single ray of the same eolour and velocity, and having a determinable 
phase and intensity. 

(b) I f  the component rays differ in wave-length or velocity. 
On the other hand, if the component rays differ either in velocity or 

wave-length, the resuItant effect is not that of a single ray of simple colour: 
the resaltant effect is still expressed by 

2~r , ) ; 

but the expression cannot take the simpler formcsinl~:(v"t--x)-I- , t  ' 

in which e and ~, are both constants : indeed, the resultant effect is not 
'O V t , 

periodic at all unless the r a t i o -  h: ~ is commensurable. 

Kinematical representation of the periodic change at any l~oint of 6ueh a ray. 

4.  Whatever be the physical character of the periodic change at any 
point of a ray of light, the state at any point P at a given instant 
may thus (consistently with any facts as yet indicated) be represented by 
the above expression 

} 
y : a  sin,, - -  (ct--x)-k-a~ : 

this algebraical expression may in turn be represented geometrically ; the 
magnitude y being represented by the distance of a point p from the point 
P ,  and the distance being considered positive or negative according to the 
direction in which it is measured. The phenomena of interference, from 
which the above expression has been deduced, merely require the direction 
in which the line P# is measured to be necessarily the same for all points 
of the same ray, and for all interfering rays transmitted along the same line. 

This mode of representation in no way assumes that the actual change 
of state at the point P is a to-and-fro motion of a particle of ether ih the 
arbitrary line Pp ; the direction of the line Pp is required to be constant 
merely to secure that the changes, if they have any directional character 
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at all, may be added together like simple numerical quantities of the 
same kind: that the change is really directional in character may be in- 
ferred from the fact that it is being transmitted in a definite direction 
through the medium. In  exactly the same way, the transmission of a ray 
of light along a line is sometimes conveniently represented (in the discus- 
sion of aberration, for instance) by the transmission of a point along the 
line with constant velocity, although light is certainly not due to the 
transmission of a particle along the direction of the ray. 

Preliminar!l alyebraioal e~Tression for the transmission of a q~ay of 
plane-loolarised light. 

5.  I t  was found by Fresnel, in conjunction with Arago, that two rays of 
plane-polarised light, if their planes of polarisation are parallel, may 
mutually interfere in exactly the same way as ordinary light : hence, as 
far as this experiment goes, the periodic change at any point of a plane- 
polarised ray can be represented in exactly the same way as for ordinary 
light; the only difference being that while an ordinary ray is so far analo- 

gous to a circular cylinder that its characters are identical on all its sides, 
a plane-pelarised ray is analogous to an elliptical cylinder to the extent 
that the properties of the ray are dissimilarly symmetrical relative to two 
perpendicular planes (pages 288 and 298).  

I f  all the characters of a plane-polarised ray can be accounted for by 
such a kinematical representation as is mentioned above, the line PlY must 
lie either in the plane of polarisation or the transverse plane ; but it may 
have any inclination whatsoever to the ray, so long as for two interfering 
rays the direction is identical. 

More qeneral representation of the periodic change at any looint o] tm 
ordinary or plane-polarised ~'a~r 

6. Since, as far as the above experiments are concerned, the inclina- 
tion of the direction Pp to the line of transmission of either a plane- 
polarised or an ordinary ray, may be any whatsoever, it follows that the 
change may really not be simple, but multi~vlr in direction; assuming 
that each transmitted periodic change will interfere for itself, as if those 
having other directions did not exist. 

In fact, it will be seen that the periodic change may likewise be repre- 
sented by the composite expression 

�9 9.7r 

consisting of any number of terms ~ tbr each separate term, independentl~" 



8~4 L. FLETCHER ON 

of its directional relations, resumes its original value atdlstances along the 
ray separated from each other by the common length A, ora t  times sepa- 

rated fi'om each other by the common period-X: hence, if two rays an- 

nihilate each other under given circumstances, annihilation will again take 
place if one of the rays is moved parallel to itself through the distance A 
along its line of transmission. 

And it is important to remark that as each term recurs ~ndividuall.y 
after the same interval of time or distance, the  whole expression likewise 
recurs and has the same total value, even if the terms are not subject to 
the same law of addition as simple numerical quantities. 

I t  will also be obvious on reflection that any ray which is within the 
reach of experiment is necessarily composite as regards the origin of its 
vibration, even if it be simple as regards its colour : the luminous source 
is not a geometrical point, but a surface of considerable dimensions as com- 
pared with the wave-length of a ray of light ; hence the periodic change, 
of which the effects are observed at a given point of a line of transmission, 
is really of composite origin and due to the superposition of the periodic 
changes transmitted from the points of a luminous area of appreciable 
magnitude. 

As for the difference between an ordinary and a plane-polarised ray, the 
first suggestion which presents itself is that the latter is due to the dis- 
tortion of the ordinary ray from which it was derived ; just  as an elliI,- 
tical cylinder may be derived from a circular cylinder by compression in a 
direction inclined to the axis. 

F.,Terimental diseove~ T made by Fresnel and ilraga. 
7. (a) But Fresnel and Arago found that, when one of two interfering 

plane, polarised rays is turned through a :right angle round its direction of 
transmission, the interference-effects completely disappear, whatever the 
difference of phase of the two rays. Hence, with this relative position 
of the planes of polarisation, the periodic change produced at any point 
by the transmission of one ray is in no direction coincident with a periodic 
change produced by the transmission of the other ray ; for as we have 
seen (Art. 3), such coincidence would involve a variation of intensity of 
the resultant effect: if this be granted, it follows that fpr a plane-polarised 
ray the actual periodic change must be in only a single direction, and the 
single direction must be perpendicular to the line of transmission; for 
otherwise the two positions of the plane-polarised ray would give two 
positions of the periodic change which would have a resolved part in 
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common. Since the direction is single, it must be in one of the sym- 
metral planes of the ray : hence the direction of the actual periodic change 
is perpendicular to the direction of transmission, and may be either in or 
perpendicular to the plane of polarisation : in either case it may be repre- 
aented by a line perpendicular to the plane of po]arisation. 

In the above bxperiments of Fresnel and Arago, the rays were allowed 
to interfere during aerial transmission; .it may reasonably be assumed, 
however, that the same kind of symmetry with respect to two perpendi- 
cular planes obtains "for a plane-polarised ray as transmitted within any 
crystalline medium: the assumption is not only reasonable on general 
grounds, but is consistent at once with all known experimental results and 
with the requirements of the most recent version of the elastic theory 
(see also pages 293, 308). It is not the only assumption which can be made : 
Fresnel himself was led by the hypothesis of an incompressible elastic 
ether to infer that a plane-pol~rised ray transmitted within a bi-refractive 
medium is in general symmetrical to only a single plane, perpendicular to 
the plane of polarisation ; he inferred, in fact, that the vibrations of the 
ether lie in the transverse plane and are in general oblique, not perpendi- 
cular, to the direction of the ray. That Fresnel felt the unsatisfactory 
character of the inference, in the absence of any experimental proof of 
the obliquity, will be seen on reference to the original memoir. 1 

(b) If the two polarised rays which have been obtained from a ray of 
ordinary light by means of a crystal of calcite are transmitted along the 
same line, it is found that the resultant effect is again that of a single 
ray of ordinary light: hence we may infer that in ordinary light, as in 
plane-polarised light, the vibrations are perpendicular to the direction of 
transmission of the ray. 

ReTresentation of the "resultant e~'eet of the simultaneous tra~smission 
along the same line of two or more l~lane.l~olarised rays havbzg di~'erent 

directions of planes o/polarisation. 
8 .  (a.) I f  the comi~onent rats have the same wave-length and velocity. 

(1.) The periodic change at any point of a plane-polarised ray being kine- 
matically represented by a vibration perpendicular to the plane of 
polarisation, let two rays be transmitted with the same velocity along the 
same line, having different directions of the plane of polarisation : and, in 
the first place, let the algebraical expressions for the corresponding 
changes be respectively 

~ - ( ~ t - x )  + .  ~ , =  . 

I Loe. cir. ; 1827, p. 158. 
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Assuming as before the principle of superpositlon, the effect of ~rans- 
mitring both rays simultaneously will be represented by the motion of a 
point of which the co-ordinates y and z, measured along the normals of 
the planes of polarisation, are given by the expressions 

y=asin {X- (vt-'~')+al 

z=b ~in { 2~ (vt- *) + /3 } �9 
2re 

Eliminating X- (vt-.), we tlnd 

y~' z ~ 2yz ~ + 7~,- ~ cos ( a -  ~t) = s in'(~-  ~). 
Hence the point, of which the position at any instant represents the 

resultant disturbance at that instant at a corresponding point on the line 
of transmission, describes in general an ellipse, of which the magnitude 
and position relative to the planes of polarisation of the original rays are 
independent both of x and t : all the ellipses are thus equal and parallel, 
and form a cylinder of which the base is elliptical, and the axis is in the 
direction of transmission. I t  will be found that the direction in which the 
point moves round the ellipse is determined by the relative phases of the 
two rays. The composite or resultant ray of light due to the so.existence 
of the original rays is said to be ellipticatly polarised ; a ray of which the 
characters are related to a cylinder with elliptical base must differ from a 
ray of ordinary light, of which the characters are the same on all its sides. 

(2.) I f  the rays have the same intensity, and their difference of phase is 
measured by the angle between their planes of polarisation, a = b, and a - / 3  
is equal to the angle between the directions of y and z: in this case the 
ellipse becomes a circle, and the cylinder'becomes one with a circular base. 
The composite ray is then said to be drcularly p,~la~ised. Such a ray is 
similarly related to every plane passing through it, and yet differs from 
one of ordinary light : for the motion of the representative point is not 
symmetrical to a plane, and the characters of the ray may conceivably 
differ with the direction in which the circle is described by the ideal point. 
In  fact, experimental methods enable us to distinguish, not only between 
a ray o f  ordinary light and one which is circularly polarised, but between 
two circularly polarised rays of which the motion of the ideal point is in 
opposite directions. 

(3.) I f  sin (a-/3)=0, that is to say, if the difference of phase is zero 
or a multiple of~r, the ellipse becomes one or other of the two straight ]ine~ 



THE TRANSMISSION OF LIGHT IN CRYSTALS, ~ 5 7  

(~b) '~ - - - -0 :  hence the resultant rayis itself pla.e-polarised, the direc~ 

tion of the plane of polarisation depending on the ratio a : b, and thus 
being determined by the relative intensifies of the two component rays. 
Conversely, such a single plane-poIarised ray of simple colour is equivalen~ 
in its effects to two such plane-polarised rays of the same simple colour, 
transmitted along the same line with the same velocity, and with their 
planes of polarisation in any assigned directions. If the two assigned 
directions be perpendicular to each other, and e be the inclination of one 
of them to the plane of polarisation of the original ray supposed to be 
represented by the expression 

,/=a sin I T ( ~ t - x ) + a  ~' 

the two equivalent rays are represented respectively by the expressions 

y =a sin u sin t ~ (rt - ,~) -i- 

for the resultant effect of these two rays is such that 

Y ----tan 0 ,  a constant quantity, 
z 

whatever be the time or the position of the point in the line of trans- 
mission. 

(4.) Further, it will be seen that any number of such rays of the 
same simple colour transmitted along the same line with the same velocity 
but with different phases, amplitudes and planes of polarisation, will have a 
resultant effect identical in general with that of a single elliptically polarised 
ray of the same simple colour, transmitted along the same line with the 
same velocity. For. let the simple rays be severally represented by the 
expressions 

y, -" alsin X ( ~ -  ~) +"l  

y~=a,sin{2-~ (v'--x) + a,} 
o e e  o # e  $ $ e  c o o  �9 �9 a $ a $ . . . $ $ o  e e $  e o a  e a o  

and let the inclinations of the respective planes of polarisation to a fixed 
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plane of reference through the line of transmission be 0~ 0~ . . . . .  0~. Each 
single ray being equivalent in effect to two rays with perpendicular planes 
of polarisatlon, one of them coincident with the fixed plane of reference, 
the whole system of rays is equivalent to the following two systems : -  

all the members of each of these systems having a common direction of 
plane of polarisation. 

As each system is equivalent to a single plane-polarised ray (Arts. 3 
and 5),  the two systems are together equivalent in general to a single 
elliptically polarised ray. 

(5.) Whether the resultant ray be elliptieally, circularly, or plane~ 
polarised, the resultant change has the same period as the change for 
each component ray, and is thus of unaltered eolour. 

(6.) At a given instant, the  ideal points representing the state at all 
points of the resultant ray lie on a spiral curve surrounding the elliptical or 
circular cylinder, if the ray be elliptically or circularly polarised, and on an 
undulating curve (the curve of sines) in the transverse plane, if the ray be 
plane.polarised. 

(b.) I f  the component rays direr iu wave-length or velodty. 
If  the two component rays differ in wave-length or velocity of" trans- 

mission, the resultant effect is still represented by the combined 
expressions 

' = a  sin { ~ ( v t - - x ) + a  I 

z = b sin 12~r , U(v t-.~)+~ ! 
�9 V V t . 

but it is not periodic a~ all unless the ratxo~-: ~ as commensurable : and 

even in that case the curve described by an ideal point is not a conic 
section. 

The resultant effect can only be that of a plane-polarised ray if the ratio 

of y to z, and therefore of sin l ~ ( v t - x ) + a l  to sin I2~(vt--x)+fi} 

is independent of the time : but if either v or A is different from v' or ~.' 
respectively, this constancy is impossible, whether the planes of polarisatlon 
of the original rays are real or imaginary. 
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Disereloaney of observed and calculated results. 
9. But the above calculation of the resultant effect of the simultaneous 

transmission along the same llne of two plane-polarised rays of the same 
colour with planes of polarisation at right angles to each other is in direct 
disagreement with the experimental result recorded in Art. 7b, for the 
result of superposition of the two plane-polarised rays obtained from an 
ordinary ray by means of a bi-refractive crystal is not an ellipticallypolarised 
ray, but a ray of ordinary light having identical characters on every side. 
We are thus led to inquire how far the constancy of "character of the periodic 
changes at points in the same ray has really been established by experi- 
ment. 

In fact, the annihilation-effect (p. 286) of two rays of identical charac- 
ter has only been established for a transference of one of the rays through a 
distance of at most 50,000 wave-lengths : the wave-length in air for sodium- 
light being nearly 5--6s~ mi[limetres, the above distance is nearly 80 mi|- 
limetres or about one inch : as light is transmitted through air at the rate 
of 186,000 miles a second, a distance of one inch corresponds to the 

1 
lapse of only 11,784,960,000 th part of a second. 

The discrepancy disappears i f  a ray is assumed to consist of  a series of 
independent sets of waves of the same length. 

10. For the sake of a numerical example, let us imagine that two given 
rays are absolutely identical in character ; that each ray[consists of a series 
of sections ; that each section consists of at least a million similar waves, 
but that the waves of one section are absolutely independent of those of 
every other, except that they have the same period and are transmitted with 
the same velocity. 

Let the constant sections of one ray be A~B~ B1C~ C~D1 .. . . . . . . .  Y1Zt, 
and the identical sections of the other ray be .4sBs BsOs C2Ds ... . . . . . .  Y2Z,2 : 
consider the resaltant effect of transmitting both heterogeneous rays simul. 
taneously along the same line. 

(1.) If  the initial points A~ A,2 coincide, the vibrations are in unison at 
every point of every section, notwithstanding the heterogeneity of each ray. 

(2.) I f  the ray As ......... Z,z be moved parallel to itself along its own 

direction through the distance -~, the two rays will annihilate each other 

at all points where identical sectlous are superposed, but will in general 
fail to do so in the regions where different sections overlap ; that is, for 
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distance ~ at the end of every section. Hence at any given point there 

will be annihilation while at least 909,999~ waves pass by, and more or 
less unison while half a wave is passing the same point. 

(3.) In the same way, if the ray A2 .. . . . . . . .  Z2 be moved parallel to itself 
along its own direction through the distance 50,000�89 wave.lengths, the 
two rays will still annihilate each other at all points where identical 
sections arc superposed, but will in general fail to do so in the regions 
where different sections overlap ; that is, for a distance 50,000,~ wave- 
lengths at the end of each section, ttence, at any given point, there will 
be complete annihilation while at least 949,999�89 waves pass by, and more 
or less unison while 50,000�89 waves are passing the same point : in other 
words, instead of complete annihilation, there is more or less light during 
at most ~ t h  part of the time : the light will be apparently continuous, but 
its intensity will not exceed the ~uth part of the maximum joint effect of 
the two rays. The variability of the periodic character will thus account 
for the appreciable diminution of the interference-effect when one of the rays 
is moved p'arallel to itself through a considerable number of wave-lengths. 

In tile following pages we shall only need to consider sqts of waves be- 
longing to a single section of constant periodic character, and may thus 
proceed as if the constancy of character wine really a property of the 
whole ray. 

The same assumption accounts for  the remarkaMe fact that rays of the 
same simTle colour, but obtained from di~'erent sources, cannot be made to 

annihilate each other. 

11. Hitherto, for simplicity, we have left unmentioned the remarkable 
fact that rays of light of the same simple colour, whether ordinary or plane- 
polarised, cannot be made to annihilate each other if they have been 
derived from different sources. This is quite inexplicable if a ray is 
assumed to have constancy of periodic character throughout its extent ; 
but it is immediately accounted for by the assumption arrived at in the 
preceding Article : if a ray consists of a series of independent sets of 
waves, it is physically impossible for two rays from different sources to be 
identical in their characters. 

For a plane-polarised ray, only the amplitudes and phases will differ 
in tile different sets. 

We have seen that two plane-polarised rays of constant periodic cha- 
racter throughout would give an elliptically polarised ray of which the 
ellipses would have a definite magnitude and position dependent on the am. 
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pl~tudes and phases of the component rays : if each of the plane-polarised 
rays, instead of being of constant periodic character throughout, consists 
of independent sets of waves, the resulLant effect will generally be a rapid 
succession of eltiptically polarised sets, the magnitudes and positions of the 
ellipses changing as different sections of the plane-polarised rays become 
superposed ; the resultant ray will thus generally be identical in character 
on all its sides, as far as observation can detect. 

Not onbj is the assumgtion of variability of perioclic character necessar~j, 
but a constancy of periodic character could, not be physically maintained. 
12. A simple pendulum, disturbed and then set free to oscillate under 

the constant action of gravity, soon comes to rest if allowed to communicate 
its motion to a surrounding medium: to maintain the oscillations, the 
pendulum requires to be repeatedly disturbed, and each impulse may change 
the phase and amplitude, and possibly also the direction of the vibration. 
In the same way, the vibrations of character at the points of a luminous 
body must be maintained by the repeated action of something analogous 
to an impulsive force. It  is impossible to imagine that the representative 
impulse can always have the same magnitude and direction a n d  occur at 
the particular instant when the vibration is in a particular phase. Hence 
the vibration must, of almost absolute necessity, be different in its ampli- 
tude, phase, or direction, after ever), impulse. 

Farther, as already remarked in Art. 6,  any luminous source available 
for experiment is not a geometrical point, but an area of appreciable mag- 
nitude, and the resultant effect at any point is due to the superposition of 
the effects of rays transmitted from every point of the luminous area : even 
if it were possible that the vibrations at a single point could be maintained 
constant in periodic character, it is inconceivable that the constancy of 
periodic character could be maintained at points belonging to an appreci- 
able area. 

A representative force. 

13. In the case of a plane-polarised ray of constant charadter throughout 
the part considered, the vibratory motion of the representative point p is thus 
the same for all points P in the line of transmission, and only the phase of 
the vibration differs at different points at a given instant : hence the expres- 

'2~- 
sion y = a  s i n ~  vt, which represents the change of state at the time t at 

271",t~ 
the point tbr which - ~ - -  a ~-~ 0, also represents the vibration at any other 

point of the ray, if we have due regard in every case to the epoch from 
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which the time is measured. The general expression for the law of the 
change at any point of a plane-polarised ray has been deduced on the as- 
sumption that the variation of the state with the time is exactly the 
same as the variation of position of an isochronous pendulum; or, 
what is the same thing, of a particle of unit mass vibrating in a straight 
line and attracted towards an origin in the line by a force of .which 
the magnitude is proportional to the distance therefrom. For the 

velocity u of the attracted particle at the time t being ~ ,  the accelerative 

&~ gay 
force at the same instant is d[ or ~ : b~ hypothesis the force is attractive, 

and is measured b y f  2 times the distance, or by - i f! l ,  wherefis  a constant 
d'~y 

quantity: hence d-~ ~- _fay.  

It is easily seen that y---- Bsin(ft +/3),  in which B and fl are both 
independent of the time, is a solution of this differential'equation: for 

differentiating once we have ~-----fBcos(fl+fl), and differentiating a 

second time ? ~  =- f2Bs in ( f l  +fl) = - f l y .  

If  the time be measured from an epoch of passage through the origin, 
the constant/3 is zero and the expression becomes y=Bsinft. 

Hence in the case of plane:polarised light, the vibratory motion of the 
2~r 

representative point p, being expressed by the relation y ~ a  sin -~ vt, is 

identical with that of a particle of unit mass attracted towards the origin by 

a force which is measured by ~ timesthe distance. 

Even if the actual change of state at the point P were an oscillatory 
rotation of an ethereal particle about a diameter, as suggested by Rankine, ~ 
the above kinematical representation would still hold : in that case, the 
direction of  the line Pp would represent that of the axis of rotation of the 
ethereal particle at P, and the distance Pp would represent the angular 
disturbance at the given instant. 

Or again, the real change may be an electro-magnetic disturbance, what- 
ever that may be. 

The representative force is depende~t on the lumlnm~ source. 

14. But it will be obvious on reflection that the relation between the 

1 Philos. Magazine; 1853, set. 4, vol. 6, p. 403. 
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~listance of the ideal particle, and the ideal force which acting upon the ideal 
particle would cause a vibration isochronous with that of the periodic 
change involved in the transmission of the given ray of light, is generally 
independe~it of the specific properties of the transmitting medium, The 
ratio being 4~r~v ~ : ~,~ depends only on the ratio k : v, that is to say on the 
period of the vibration or the colour of the light. Now simple light 
generally retains its colour after transmission through any number of 
different media ; it is only in fluorescent bodies that the colour of the light 
or ~he period of the change suffers alteration: whence we must infer 
thai the period of vibration at any point of a ray, and thus the ratio 
of the ideal force to the distance, depends in general, not on the specific 
properties of the medium, but on the period of vibration of the chang e at 
the luminous source. The change of colour frequently observed after the 
passage of light through a medium is really due to the heterogeneity of 
the colour of the original light, and to the change of relative il~tensity (not 
period of vibration, or colour) of the component simple rays. 

Further analogy witlt soumL 
1 5 .  The same is true in the case of sound. Here again the trans- 

mission of a simple note causes a periodic change which may be represented 

algebraica.lly by the same expression ~a]-~asint~(vt-x)+a I, and 

kinematlcally by the same to-and-fro motion of a particle attracted to an 
_ 4~-2v ~ 

origin with a force measured by ~ times the distance : and the constant 

ratio 4~r~v ~ : ),~ depends only on the period of the vibration or the note of 
the sound, and thus on the source of the sound, not on the properties of the 
transmitting medium. But the actual change of state at any point of a line 
of transmission of sound being known to be  generally a to-and-fro motion 
of a particle of the medium, the ideal particle and its motion may generally 
be taken to coincide with the real particle and its motion. Hence the 
magnitude of the representative force which acts on the ideal parti~le must 
not be confused with that of the elasti0 force which is evoked at the 
same point by the disturbance of the sound-transmitting medium: the 
representative force depends on the period of vibration at the source ; the 
elastic force evoked by a given displacement depends on the specific 
properties of the medium : the resultant force acting on the real particle 
depends, not only on the specific properties of the medium,-but o', the 
continued action of the luminous source. 
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The representative force in the ease of the vibraHo~t of  an eh, stic etlwr of which 
the effective dettsity depends on the direction ef the vibration. 

16.  To take another example : in the latest hypothesis as to the properties 
of an elastic luminiferous ether, it is assumed that the actual and effective 
elasticity of both volume and figure and the actual density of the ether are 
the same for all directions in a hiaxal crystal, but t h a t  the effectlve 
density "qaries with the direction of vibration and is related to three 
mutually perpendicular lines. Hence, if the ether vibrates freely after 
disturbance parallel toOne or other of these lines, the period"of vibration 
will depend on the direction of the disturbance ; for, though the effective 
elasticity is the same for each direction, the effective density, or effective 
mass to be put in motion, is different : and the ideal force, which acting on 
an ideal particle of unit mass gives a synchronous representative vibration, 
will have a different relation to the distance for the three directions of 
disturbance, although the ethereal elasticity, both actual and effective, is 
assumed to be really identical for all directions. 

A fallacy. 

17. We are now in a position to recognise the fallacy of k method 
which has been used for the derivation of Fresnel's wave-surface from the 
properties of an incompressible elastic ether. I t  is first proved that the 
elastic force evoked by a unit displacement along a line OP, which is 
the radius vector of a certain ellipsoid, if resolved along the direction of 

1 
displacement OP, is 0 - ~  : that if OP is an axis of a section of the ellipsoid, 

the other component is perpendicular not merely to OP but also to the 
plane of the section : that if the section has the direction of the wave- 
front, the second component is without effect owing to the incompressi- 
bility of the ether: that the effective elastic force for unit displacement 

1 
is thus ~ -~ .  It  is then tacitly assumed that the effective elastic force is 

4rr'u 
identical with the above representative force (which is measured by X~ 

47r% 2 1 
times the distance) : hence it is inferred that - X~ --  Op ~. I t  is next 

wrongly assumed that the wave-length k is always the same for rays of the same 
velour transmitted in the same medium, and that X in the above relation is 
thus a constant : whence it is concluded that the velocity varies inversely as 
OP. That the proof is fallacious is clear from the last Article, in which it has 
been shown that in the representative vibration the relation of the ideal force 
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to the ideal distance is independent of the specific properties of the medium 
and depends on the luminous source. Indeed the assumption of the constancy 
of ~ is inconsistent with the conclusion, namely that v differs with the direction 

of vibration; it is obvious that the period ~ and the wave-length ~ ~nnot  be 

both constant if v be variable : the colour really depends on the .period (~" 
r not solely on the wave-length. 

Fresnel himself proceeded in a different way, and assumed a relation 
founded on the analogy of a line of vibrating ethereal particles to a 
vibrating string. 

Iu  general, i f  a plane-polarised ray i~ tra~smissible i~ a give~ direction, 
the plane of  polarisation can have at most two di~'erent directions. 

18. W e  have seen (Ar~. 8) that if two plane-polarised rays of the 
same wave-length can be transmitted along the same line with the same 
velocity but with different positions of the plane of polarisation, they may be 
identical in effect with a single plane-polarised ray transmitted along the 
line with the same velocity but with an intermediate position of the plane 
of polarisation ; the direction of the latter being determined by the ratio 
of the amplitudes of vibration of the component rays : conversely, the 
effect of a single ray of given plane of polarisat~on and simple colour is 
identical with that of two rays of the same simple colour transmitted along 
the same line with the same velocity, and with their planes of polarisation 
in any assigned positions. 

Now a plane-polarised ray can be transmitted along the line of inter. 
section of two planes of physical symmetry of the medium, for the planes 
of symmetry of the plane-polarised ray and the planes of symmetry of 
the medium may be taken to coincide : but the velocity of the ray will 
depend upon the position of the plane of polarisation, if the physical rela- 
tions of the medium relative to the two planes of symmetry are different. 
If  the latter be the case, as for instance when the line is an axis of sym- 

met ry  of an ortho-rhombic crystal, no ray having a plane of polarisation 
oblique to the symmetral planes of the crystal can be transmitted along 
it : for such a ray, if transmissible, would be kinematieally equivalent to 
two rays transmitted along the line with the same velocity, each having 
its p!ane of polarisation coincldent with a different plane of symmetry ; 
two rays can be actually transmitted with these positions of the plane of 
polarisation, but that their velocity should be equal is in general phy- 
sically impossible. 

In exactly the same way it follows that ff along any line, whether a n  
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axis of symmetry or not, a plane.polarised ray can be transmltted with l~s 
plane of polarisation in two different directions but with different velocitie~ 
in the two cases, a third position of the plane of polarisation is physically 
impossible. 

The refraction of  the medium cannot be higher than double, 

19. Hence, for a given direction of transmission in such a medium, a 
plane-polarised ray cannot have more than two different velocities : and 
the medium cannot present more than double refraction ; for, according to 
the undulatory theory, whatever the nature of ~he physical change, the 
direction of the refracted ray is dependent upon its velocity. 

Degree of the equation of the ray-surface. 

gO. A diameter of the ray-surface for such a medium will thus inter- 
sect the surface in at most four real points, two on each side of the origin ; 
and the equation of the ray-surface cannot be of a degree higher than the 
fourth, if it be granted that the above method of proof excludes the exis- 
tence of im~iginary velocities and imaginary points of intersection of a real 
line with the surface. 

In fact, even if there he two imaginary positions of the plane of polari- 
sation for a given real direction of ray-txansmission, the imaginary velocities 
must be in general unequal~ since the two planes will be differently related 
to the crystal and will thus correspond to different crystalline properties, 
whether real or imaginary. But even ff the planes of polarisation be 
imaginary, the difference of the imaginary velocities of the two plane- 
polarised rays prevents the resultant effect from being that of a single 
plane-polarised ray with an imaginary plane of polarisation (Art. 8b). 

The tr~msmlssibility o/ even a e~nfle plane-polarised ray is not a u 
necessity ; but i f  one positian of a plane of u be pos.~ible, there is 

a second at right angles with thefirst. 

21, We may remark that it is not a physical necessity that a plane- 
polarised ray should be transmissible at all : a plane-polarised ray cannot 
be transmitted, for instance, along the morphological axis of a crystal of 
quartz. 

As a plane-polarised ray is symmetrical to two planes, the plane of 
polarisation and the transverse plane, it would seem that if the characters 
of a crystal admit of one symmetral plane of the ray having a given 
position, they must admit of the other symmetral plane having the same 
position : in other words, for a given direction of transmission, if there is 
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one possible position of the plane of polarisation, there is a second at right 
angles to the first. The same result is later arrived at in another way and 
the positions of the perpendicular planes are determined (Art. 40c). 

Transmission of a ray along an axis of tetragonal or hexagonal symmet~T. 

22.  On the other hand, the morphological axis of a tetragonal or hexa- 
gonal crystal is the intersection of two or more symmetral planes for 
which the physical relations are identical : hence along such a line it is 
physically possible to transmit two rays having the same velocity and 
different planes of polarisation, and thus having a resultant effect identical 
with that of a single plane-polarised ray. The amplitudes of the component 
rays being arbitrary may be so adjusted that the equivalent single plane- 
polarised ray has any plane of polarisation whatever : and it follows that 
along the morphological axis era given totragonal or hexagonal crystal a ray 
may be transmitted with any direction of the plane of polarisation, but in 
each ease with the same velocity. 

The vdocity.factor. 

23.  The velocity of transmission of a plane-polarised ray of given 
colour is found to depend on the properties of the medium: since the 
vibration is'in only a single direction, we may assume that the velocity of 
transmission corresponding to a given direction of vibration depends 
soldy on the properties of the medium relative to the direction of the 
vibration. To avoid confusion of ideas, let the action of the medium in so 
far as it affects the velocity of a ray of given direction of vibration be 
said to be due to a velocity.factor ; the magnitude of the factor depending 
on the properties of the medium for the direction of the periodic change 
or vibration. 

The vdocity-faetor is neeessari*y the same for all directiOnS laerpendieu~ar to 
an a~s of tetragonal ar hexagonal symmetry. 

24 .  We have shown, from prineiples of mere symmetry of the medium 
and superposition of changes, without regard to their physical character, 
that along the morphological axis of a tetragonal or hexagonal crystal a ray 
is transmissible with the plane of polarisation in any azimuth whatever, 
and that the velocity of transmission of the ray is always the same : hence, 
for all directions of vibration perpendicular to the morphological axis of a 
uniaxal crystal, the velocity-factor has the same magnitude, It follows 
that the symmetry of the velocity-faCtor, at any rate for directions of 
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rectilinear vibration lying in a plane perpendicular to the tetragonal or 
hexagonal axis of symmetry, is of a higher order than that of the mor- 
phological development. 

The corresponding geometrical character is worthy of remark, namely, 
that in a parallelepipedal system of points every plane of the system 
passing through an axis of tetragonal or hexagonal symmetry is a plane of 
symmetry for the planes and lines, though not for the points, of the system: 
the symmetry of the system relative to such a plane being in genera~ 
"symmetry of aspect," a~d not absolute. ~ 

Transmission of a ray in a direction lying in a pla~e of physical s~lmrnetrg 
but oblique to an axis of  tetragonal or hexagonal symmetrg. 

25.  Consider the ease of a ray transmitted in one of the planes of sym- 
metry S of a tetragonal crystal, but in a direction oblique to the morphological 
axis. Either plane of symmetry of the plane-polarised ray may be taken 
to coincide with the plane of symmetry S of the crystal : this is confirmed by 
experiment, for these directions of the planes of polarisation of a ray are 
found to be physically possible. Bat if the plane of polarisatlon of the 
ray is coincident with the plane of symmetry S of the crystal, and the 
vibration is assumed to be perpendicular to the plane of polarisation, the 
vibration is perpendicular to the morphological axis whatever the position 
of the ray in the plane: hence, according to the preceding Article, the 
velocity-factor, and therefore the velocity of the ray, will be the saree for 
all ray-directions in this plane, and one carve of intersection of the ray- 
surface with the plane of symmetry S of the crystal will be a circle. On 
the other hand, if the plane ofpolarisation of the ray is normal to the plane 
of symmetry S of the crystal, the vibration will be in the same plane of 
Symmetry S and in a direction oblique to the morphological axis: the 
physical characters belonging to the direction of the vibration, including 
the velocity-factor, will thus vary with the direction of the ray, and the 
velocity-curve corresponding to those rays of which the plane of polarisa- 
tion is normal to the symmetral plane S of the crystal will not be circular : 
the curve will be symmetrical, however, both to the morphological axis 
and a line perpendicular to it, for they are directions with respect to 
which all the characters of the crystal are symmetrical. Further, the 
second curve will touch the first at its points of intersection with the 
morphological axis : for the two directions perpendicular to that line, and 
lying respectively in and perpendicular to the plane of symmetry 3, are by 

1 H. J. S. Smith ; Philosophical Magazine, 1877, ser. 5. vol. 4, p. 18, 
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hypothesis similarln all their relations, and correspond therefore to the 
same velocity-factor ; hence both curves meet on the morphological axis, 
and therefore touch each other, for the morphological axis divides each 
curve symmetrically. 

But since the equation of the ray-surface has been shown to be of a 
degree not higher than the fourth, and the equation of one curve of 
intersection, a circle, is of the second degree, that of the other curve 
will likewise be of the second degree, and therefore represent an ellipse-- 
for the curve is closed and has unequal diameters. This result agrees 
with the experimental discovery made by Huygens. 

Transmission of rays along the axes of symmelry of an ortho-rhombie 
crystal. 

26. Take next the case of an ortho-rhombie crystal. In the first 
place, as shown in/~rt. 18,  a ray can be transmitted along any of the axes 
of symmetry, and have its plane of polarisation coincident with either of 
the symmetral planes of the crystal which intersect therein. The three 
axes of symmetry being independent of each other in all their physical 
relations, the velocity-factors will be independent ; and vibrations paral- 
lel to the several axes will thus in general correspond to different veloci- 
ties of transmission. Let the velocity corresponding to an axis OX, OY, 
or OZ, cousidered as a direction of vibration, be denoted by a, b, or c 
respectively: then two rays are transmissible along OX with velo- 
cities b and c, and planes of polarisation normal to OY and OZ respec- 
tively : two rays are transmissible along OY with velocities c and a, and 
planes of polarisation normal to OZ and OX respectively : two rays are 
transmissible along OZ with velocities a and b, and planes of polarisation 
normal to OX and OY respectively. 

Transmission of rays in a symmetral plane of an ort.ho-rhombic crystal. 

2 7 .  Again, as far as directions lying in the plane of symmetry OXZ 
are concerned, there is no eusential difference between an ortho-rhombie 
and a tetragonal crystal, if OZ is the morphological axis of the latter. 
The essential difference between two Such crystals is that in one of 
them (the ortho-rhombic) the third axis of symmetry OY is independent 
of OX in its physical relations, and in the other (the tetragonal) is iden- 
tical therewith. Hence we may infer ~hat in the symmetral plane OXZ of 
an ortho-rhombic crystal, a ray is transmissible in any direction with its 
plane of polarisation either coincident with or perpendicular to that plane. 
Also, as in the ease of a tetragonal crystal, the intersection of the ray- 
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surface with the symmetral plane will be a circle and a concentric ellipse : 
but, in the ortho.rhombic crystal, the circle and ellipse will be independent 
of each other in magnitude, since the velocity-factor for the direction of 
vibration OY is independent of that for the direction of vibration OX.  

Intersections of  the ray-surface with the sgmmetral planes o f  an 
ortho-rhombie crystal. 

2 8 .  The intersections of the ray-surface with the axial planes O Y Z ,  
OZX, OXY of an ortho-rhombic crystal will thus be given by the following 
equations : ~  

( f  + za _ aa) (bar + ~.a _ bac a) = O, 
(.a + :~ _ l,') (car a + aa,~ ~ -- caa a) = O, 
(~,,a + ua _ c a) (~,. ,., + ~,a~a _ ~,~a) = o .  

General equation o f  the ray.surface f o r  an ortho-rhombic crystal. 

29. The equation of the ray-surface itself must be of the form 
(y' +~ '  - a') (~'U' + ca~ ~ - b'e a) + x  § = O, 

since it reduces to the first expression when x is made zero. But ac- 
cording to Art. 2 0  the quantity x ~(x//z) cannot consist of terms of degrees 
higher than the fourth : further, the surface being symmetrical to the axial 
planes, its equation can only involve even 15owers of x y z: hence the only 
terms which can enter tbe expression x ~(wyz) are x', za~ ~, ~ / / a n d  a, ~. 

The general equation is thus of the form 
(ya + z" - a a) (b*y ~ + c'z' -- b'~ ~) +. A x '  + Bzax ~ + O.ray a + D.~ �9 = 0;  

or, multiplying out, 
,4xa + bay, + car, + (ha + c a) fz~ + Bza~ + 6 x ' f  + Dx ~ - t; (c* + a') f 

-- c~ ( aa + ba) z~ T a%aca ..~. O. 
Also, it is evident from the equations of.the curves of intersection with 

the three axial planes that w//z and abe are simultaneously cyclically inter- 
changeable (Art. 2 8 ) ;  hence 

A----a~; B--~ca-4-aa; C~--a~+ba; D=- -aa(b~+c~) .  
Substituting these values, the equation becomes 

or, multiplying by ~, 
r~( a~x~-~ba~a.4-e~za)-~a{ aa(ba+ca)x~-ba(~-.aa)y~-~(a~-~ba)za}~agb9c9(x~-y~z~) ~ 0 

or ~,a,~Cra--b~) (~a--~a)§162 a(,a-~a~ (r'--b') = 0  
aax ~ bay 2 tar ~ 

or r , ~  + r , _ ~ "  ~, +i.,L-~c,-- 0 : 

which is Fresnel's equation of the ray-surface, 
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X he ray.surface for a mono-summetric or anorthic cros~aL 

30.  (a) Next consider the case of a e~ystal which admits of th~ trans- 
mission of a ray of plane-polarised light in any direction, but presents only 
a single plane of geometrical and physical symmetry, and thus belongs to 
the roche-symmetric system: let the normal of the plane of symmetry 
be OY. 

Since, from a purely geometrical point of view, a roche-symmetric 
crystal may be regarded as a homographic transformation of an ortho- 
rhombic crystal, it first suggests itself that the ray-surface for a mono- 
symmetric crystal may be such as would result from a corresponding trans- 
formation of the ray-surface for an ortho-rhombic crystal. That the analogy 
is imperfect, however, is evident from the fact that there is no corresponding 
distortion of the planes of polarisation; whatever the direction of ray- 
transmission within the mono-symmetric crystal, the planes of polarisa- 
tion of the two transmissible rays are perpendicular to each other (Art. 
21). 

1. As in Art. 27, any ray whatever lying in the plane of symmetry can 
have that plane for either its plane of polarisation or its transverse plane �9 
hence, exactlyin the same way asbefore, it follows that the plane of symmetry 
intersects the ray-surface in t~o curves, the one a circle, the other a con- 
centric ellipse: the former corresponding to the rays which have the 
symmetral plane for the plane of polarisation, thslatter to the rays Ibr which 
the plane of symmetry is the transverse plane. If OX OZbe the axes of 
the ellipse, a ray transmitted along OX will thus have its representative 
vibrations parallel to either OY or OZ ; and a ray transmitted along OZ 
will have its vibrations parallel to either OY or OX. 

2. A ray transmissible along the line OY can have its plane of polari- 
sation in only one or other of two directions of which the normals are 
perpendicular both to each other and to the line OY (Art. 21). 

8. Since the elliptic and circular sections of the ray-surface made by 
the plane XOZ are both of them symmetrical to the lines OX OZ, while 
the plane X O Z  is a plane of general physical symmetry of the crystal, and 
its normal OY is an axis of genersl symmetry of diagonal type, we may 
reasonably assume that for this~articularproTerty (so long as there is no 
variation of colour or temperature) the planes Y O X  YOZ are themselves 
planes of symmetry of the crystal ; in which case, the lines OX OZ will be 
the directions of vibration of the two rays transmissible along the axis OY. 

4. For the given colour and temperature, the circumstances are 
identical, for this particular property, with those of an ortho-rhombic 
cr~stal having O~" OY.OZ for axes of symmetry : and the ray-surface 
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will thus for a mono-symmetric crystal have the same general form as for 
an ortho-rhombic one. 

(b) The general form of the ray-surface, being quite unaffected by the 
degradation of the symmetry from the ortho-rhombic to the roche-sym- 
metric type, is clearly independent of the type of symmetry altogether : 
the general form will therefore be the same even for an anorthie crystal. 

The difference in the type of symmetry thus affects, not the general 
form of the ray.surface, but only the constancy of the directions and rela- 
tive lengths of the axes of the surface for different, coIours and tempera- 
tures. An axis of general symmetry of the crystal is necessarily an 
axis of symmetry of the ray-surface whatever the colour of the light or the 
temperature of the crystal (p. 297). 

The form of the ray-surface is indeTendent of the physical character of the 
periodic change. 

31.  The rigorous accuracy of the form assigned to the ray-surface by 
Fresnel is thus a necessary consequence of the general features of perpendi- 
cularly transverse undulations, independently of the physical character of 
the change. 

And although, as in the case of an incompressible elastic ether with 
effective rigidity dependent upon the direction of vibration, the same form 
of ray-surface may result notwithstanding the obliquity of the transverse 
vibration, this is not generally true. The form of the ray-surface which 
follows, for example, from a version of the elastic theory of double 
refraction suggested by Rankine and further developed by Lord Rayleigh 
is different from that of Fresnel, and only gives the latter as a first approxi- 
mation. That version, according to which the ether is incompressible and 
has an effective density dependent on the direction of vibration, involves 
the general obliquity of the latter to the direction of transmission? 

In fact, whatever the degree of symmetry of the characters of a plane- 
polarised ray as transmitted within a medium, the above form of ray- 
surface will result from any hypothesis which has for necessary conse- 
quence that if one plane-polarised ray is transmissible in a given direction, 
a second plane-polarised ray is transmissible in the same direction with 
a different velocity and has its plane of polarisation perpendicular to that 
of the first. 

I t  may be remarked that in the above reasoning no assumption as to the 
molecular constitution of the ether has been necessary. 

I Philosophical Magaziue; 1851, ser. 4, vol. 1, p. 441: 1888, ser. 5, vol. 26, pp. 525, 527, 
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Resilience. 

32 .  I t  was explained in Art. 14  that the period of the change at any point 
of a ray of light depends in general on the period of the change at the 
luminous source, and not on the specific ~ properties of the medium ; but 
the latter may conceivably affect some or all of the remaining characters of 
the ray, namely, amplitude and direction of vibration, velocity and direc- 
tion of transmission through the medium. The property by virtue of 
which a periodic change of any kind is transmissible through a medium 
may be denoted by the gen.eral term resilience : we may imagine tlmt a 
disturbance at any point of the medium evokes an opposing resilience of 
which the magnitude increases with the amount of the disturbance. 
Optical resilience, in so far as it affects only the velocity of transmission 
of a periodic change having a given direction, is identical with the 
velocity-factor for that direction, mentioned in Art. 23.  When the periodic 
change is a vibratory motion such as follows the removal of a compressing 
or distorting force, resilience is identical with elasticity of volume or 
figure. 

From this point of view, the periodic change at any point of a 
ray of plane-polarised light may be treated as a resultant ~ffect of two 
forces; the one an initiator!/ linear force periodic in its variations, and 
having a period identical with that of the luminous source; the other a 
secondly force or a resilience, evoked by the disturbance produced by the 
initiatory force. 

Free and forced vibrations. 

33.  The periodic change at a point of a ray of light is a forced vibra- 
tion, resulting from the continued action of the luminous source : it differs 
from a free vibration, such as would be produced by resilience alone if 
the luminous source were removed while the medium is in a state of 
disturbance. 

A simple case of free vibration. 

34.  In the simplest possible case of free vibration of a character of a 
medium, we may imagine that the disturbance at the point is of such a 
kind that at any instant it can be represented by the length and direc- 
tion of a straight line y drawn from an ideal particle of unit mass to the 
point, and that the resilience of the medium can be represented by an 
ideal force acting in the line of disturbance, tending to diminish the dis- 
turbanee, and proportional in magnitude to the disturbance itself, the 
proportion being independent of direction : such a medium may be said 
to be ~otro~aJly resilient for the given character. 
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As in Art. 13 we may write 
ey 

where f is independent of the time and depends on the properties of the 
medium. 

A solution of this equation is y = B s i n ( f t + ~ ) ,  where B and fl are 
constants : the expression represents a vibration of which the period is 
2 ~  
7 '  since any value of y recurs when t is increased by an integral multiple 

of that quantity. 
As already pointed out, such a mode of representation.is still possible, 

even when the actual change is an oscillatory rotation of an ethereal 
particle (Art. 13).  

A simple case of forced vibration. 

35.  But suppose that in the above medium the vibration at the point is 
not free but forced, and that the initiatory force is a periodic one related to 
the time in the same way as the disturbance at a point of a plane-polarised 
ray of simple col0ur ~ the initiatory force can in such case be represented by 
an expression of the form 8sinst, where Sand s are constants, and the latter 
depends only on the period of vibration of the luminous source. As be- 
fore, the ideal resultant force acting on the ideal particle of unit mass is 

d ~ '  and is due to the superpositiou of the initiatory force S sin sg and the 

# y  
resilience _fay : hence ~ = Ssinst--fly.  

I t  is easily seen that y-----B sin st 'is a solution of this differential equation : 

dY ~-~ =- -  Bs sin st : for differentiating, we got i l r s t~  = Bs cosst, and next d2y 

substituting in the above equation, and dividing by sin st, w e  get /__;, s 
B = _ : and thus y = f ~ _ ~  sins~. Hence the resilience affects 

merely the amplitude, not the period or general character of the vibration 
at the point. 

The resilienee being--f ly  has likewise the same period as the initiatory 
force. 

Transmission of a simple foreed vibration in an isotropieally redlieng 
medium. 

36.  I f  a luminous source is in a state of periodic vibration represented 
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klnematically by the linear motion of a particle attracted to an origin by a 
force proportional to the distance, and is surrounded by a medium such 
that the resilience is represented by a force acting in the line of disturb- 
anee and proportional to it in magnitude, the changes transmitted through 
the medium along a given direction perpendicular to that of the vibra- 
tlon may thus be expected to be always in the same plane and have 
the same period ; no resilient force oblique to the plane containing the 
direction of ray-transmission and the direction of vibration of the luminous 
source is evoked by the disturbance : in any direction o f  an isotropicaUy 
resilient medium, a plane-polarised ray, if transmissible at all, may thus 
be transmitted with any azimuth of plane of polarisatlon whatever. 

A more general case of free vibration o f  an ~olotro~al ly  resilient medium. 

3 7 .  As a more general ease, we may imagine that in a crystalline 
medium there are three directions, not co-planar, inclined obliquely or 

perpendicularly to each other, for each of which a disturbance evokes a 
resilience which in its effects is represented by an ideal force, contrary and 
proportional to the disturbance, acting on an ideal particle of unit mass ; 
the relation .of the ideal representative force to fhedistance of ,an ideal 
attracted particle of unit mass being, however, like most other physical 
characters, different for the three directions: the latter may be termed 
axes of optical resilience. 

That sach a representation is possible, even in an elastic ether of which 
the elasticity is-the same in all directions, has already been pointed out in 
Art. 16 : for if the effective density depends on the direction of vibration, 
the period of a free vibration will also vary with the direction, since 
although the real accelerative force has the same constant relation to the 
distance it will have a different effective mass to keep in motion. 

When it is desirable to emphasisothe fact that the resilient force under 
consideration is the ideal force which would produce an analogous to-and- 
fro motion of a particle of unit mass and not the statical force necessary to 
the maintenance of a given state of disturbance, we may conveniently dis- 
tinguish it as vibrational resilience. I f  the  three constants of vibrational 
resilience be respectively e'~f2g ~, and x y z be the distances which re- 
l~resent the disturbances parallel to the respective axes at any time ~, we 
have for a free vibration due to a distarbance along each of the axes 

a~x d~y _ d~z 

whence, in the same way as before, 
�9 -~Asin(et  + a) ; y ~ Bs in ( f t - k  [3) ; z -~ 0sin(~t-b ~,). 
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According to the principle of superposition of changes, if the direction 
0f the initial disturbance at the poiut is inclined to the three axes of 
resilience, the initial disturbance may he resolved along thosa directions, 
and the resultant free vibration is such as would result from the com- 
position of the free vibrations corresponding to the several axial direc- 
tions. Hence, if the vibration is free, the disturbance at a given instant 
is determined by the above triad of equations. 

Since the ratios x : y : z depend on the time, the motion of the repre- 
sentative particle is not in a straight line passing through the origin. 
The particle in fact describes a eur~'e in three dimensions, and never 
passes twice through the same position unless the ratios e : f : g are com- 
mensurable. 

The quantities e2f2g " may be conveniently termed coel~icients of optical 
vibrational resilience: and the medium may be said to be ceolotroplcally 
resilient. The coefficients of vibrational resilience are independent of x 
and t for the same ray, bu t  even with the same medium may conceivably 
be different for different rays, and thus vary with the period of the change, 
or in other' words, with the eolour of the light. 

In Art. 4 2  it is pointed out that obliquity of mutual inclination of the 
axes of optical resilierce is not met with even in mono-symmetric or 
anorthic crystals. 

.4 more general case or forced vibration of an ceolotropieatly resilient medium. 

3 8 .  Consider next a forced vibration of a crystalline medium having 
three dissimilar oblique or rectangular axes of vibrational resilience as 
before : assume that the initiatory force at any point of a ray may again be 
represented by an expression of the form Ssinst, where s is a constant 
depending on the period of the change at the luminous source. 

If  OP be any line passing through an origin O, and OL OM ON, 
lengths measured along the axes of resilience, be edges of a parallelepiped 
of which OP is a diagonal, whatever the length OP we have 

OL=X'OP OM=I,'OP (L~v'OP, 
where X/~ v are constants for a given direction of OP. 

F~om the principle of superposition, it follows that the initiatory force 
Ssinst acting in the line OP can be resolved into three initiatory forces 
kSsinst i~Ssinst uSsinst, acting along the axes of x y z respectively. 

In exactly the same way as before we have the following expressions 
for the several vibrations parallel to the respective axes : - -  

~,S  ~ ~ S  . s �9 uS X~-Z~_82sinst; y - -  f-~-~_~sm t, ,~ .-v--=~sinst: 
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where the quantities k/~ v e'2J "~ g~ S and s are all independent of the time. 
Hence the ratios x : y : z are also independent of the time, and the 

representative particle vibrates in a straight line through the origin. 
The period of the resultant vibration is identical with that of the 

initiatory force, but the direction of the vibration is different. I f  k'/~' v' 
determine the direction of the resultant vibration, 

X ' : f t ' : v ~ = x : y : Z ~ e ~ _ s  2 : f 2  s ~ :g~  s ~ �9 

Further, the axial components of the representative resilient force being 
- e ~ x ,  - f ~ y ,  - g ~ z ,  or 

e2~'8 " ~ f ~ 2 ~  sinst, g % 8  . e2 _ s~ sms t ,  J - -  ~-~-~_ s~ slnst, 

the resultant resilient force will have a direction determined by the ratios 

Hence the resultant resilient force always acts in the same direction 
throughout the vibration, but it is inclined to the direction ~./~ v of the 
initiatory force and also to the line of vibration ~'/~'v', both of which pass 
through the origin: further the resultant resilient force has the same 
period as the initiatory force. 

Transmiss io~  o f  a s imple  f o r e e d  vibratiol~ ~n an ceogo~ropically resi l ient  

med ium.  

39. In such a medium, therefore, an initiatory linear periodic force 
having a direction inclined to an axis of resilience and acting a t  a given 
point gives rise at that point to a linear periodic vibration in a direction 
inclined to the initiatory force, and to a resilience of which the resultant 
effect is represented by a periodic force acting on the ideal particle in a 
third and constant direction not passing through the given point. Since 
the periodic change is transmitted through the medium by virtue of the 
resilience, and action is always equal and contrary to reaction, we should 
thus expect that along any line of transmission the direction of the periodic 
change will in general vary from point to point of the ray ; and that the 
transmitted periodic change can only be in a direction lying always in ~he 
same plane, if the plane containing the initiatory force and the direction of 
transmission likewise contains the direction of the resilient force, and 
therefore also the direction of representative vibration. 

Co,sider, for example, the case of a ray transmissible along au axis r ~X 
of an ortho-rhombic crystal : from the symmetry it follows that a plane. 
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polarised ray transmitted along OX must have its vibrations parallel to 
one or other of the dissimilar axes OYOZ,  and that for a ray of given 
simple colour the velocity of transmission will depend on the direction of 
vibration. If, however, the initiatory force at the initial point of the ray, 
though perpendicular to OX, is oblique to the axes OYOZ,  it may be re- 
solved into two forces, parallel to O Y O Z  respectively, and each may be 
regarded as originating a simple plane-polarised ray: the motion of the 
representative point will be the resultant of the motions belonging to each 
ray, and will thus be continually changing its direction as the disturbance 
is transmitted along OX. 

Case of a~ ortho.rhombic crystal. 

40 .  (a.) Direction of O~e resultant vibrational resilience for a given 
disturbance. For simplicity, lot the crystalline medium present three 
mutually perpendicular but dissimilar symmetral planes, and thus belong 
to the ortho-rhombic system : the axes of resilience neeessariry coincide 
with the crystallographic axes, the lines of intersection of the symmctral 
planes. Let X Y Z be the components, parallel to the axes of co-ordinates, 
of the representative resilient force corresponding to a disturbance.defined 
by the co-ordinates x' if' z' : then 

X ~ - ~ x '  ; Y ~ - f y '  ; Z : - g ~ z  '. 
The direction-cosines of the resultant resilience /7 are in the ratios 

.~ : Y : Z : .or ~x' : ./'Uy, : 9gz,. 
But if an ellipsoid egaP+py~-bg2z~=--I be of such dimensions that it 

passes through the point P (x'y'z'), t he  direction-coslnes of PG the 
normal of the ellipsoid at the point x'y'z' are likewise in the ratios 
o~x ' : p y '  : g~z' (Fig. 19). 

Hence the resultant resilient force due to a disturbance OP acts in 
the direction P G  of the normal of the ellipsoid es,~+/~y~-i-g~--~l at 
the point P (x'y'z') lying on its surface. 

(b.) Direction o.I transmission of a plans-polarised ray of which the direc. 
tlon of the plans of laolarisatloa is given. 

If  O]be the centre of the ellipsoid and OP the representative direction of 
vibration, the initiatory force must also lie in the plane OP(t which con- 
rains the direction of vibration and the secondary force: further, the 
direction o f  transmission must lie in the same plane (Art. 39  ). The 
vibration being always perpendicularly transversal to the direction of 
transmission, the ray Or corresponding to the vibration OP is thus in 
the plane OP(I and perpendicular to OP (Fig, 19). 

(c.) The plans, of polarieation for a given direction of ray are l~erpen. 
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31eular to each other, end have direetiom whid~ can be defined by means of 
~n ellipsoid. 

I t  has already been proved (Section IV, Art. 9.4) tha• if OP be a central 
radius vector of an ellipsoid, and P G  the normal of the ellipsoid at P, the 
line OP is an axis of the section of the ellipsoid by a plane through OP 
perpendicular to the plane OPG ; for a given direction of ray Or 
there are thus two possible directions of vibration OP~ OPt, which can 
be transmitted without change o f  plane, and they are the axes of the 
section of the ellipsoid by a plane to which the ray Or is normal. Hence 
the planes of polarisation corresponding to a given direction of ray are 
perpendicular to each other and are determined by the above geometrical 
construction. 

(d.) Magnitudes of Uw total and effective vibrational reeilience for a given 
disturbance. 

I f  F be the resultant resilience, ~ = X~+ Y~+Z~o4x'~+f*y'~+g4z '~. 
But if OM (Fig. 19)be the central normal to the tangent plane at 

P O,'u'r), 

0 - ~ = e ~  + f y  +gz  . (See. IV, Art. 4). 

1 
Hence the resultant resilience F is measured by ~-~. 

The resilience being in the direction P6~, and the actual vibration in 
the direction PO, the effective resilience is F cos OPG 

_ O M  1 

=-~'OT=O-p. 
This corresponds to a disturbance of magnitude OP : hence the effective 

1 
resilience for a unit disturbance in the direction OP is ~-p~. 

(e.) Relation between the effective vibrational resilience and the velocity 
of transraission, 

In the development of his theory of Double Refraction, Fresnel was 
compelled to make an assumption as to the relation between the effective 
elastic force and the velocity of normal propagation of the corresponding 
wave, and supported his assumption by reference to the analogy of a 
vibrating string, 

In the preceding Articles, all the forces are purely representative, anti 
the assumptions and reasoning founded thereon are really independent of 
the physical character of the change. But it is clear that the velocity of 
transmission must depend on the physical characimr of the periodic change, 
and that it is impossible to proceed farther and deduce the absolute velocity 
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of transmission without some assumption involving the nature of the ehaJage 
and the constitution of the ether. All that we have been able to suggest 
hitherto is that the velocity is in some way dependent on the characters 
of the medium relative to the direction of the vibration, and these  
characters have been collectively expressed by the term velocity-factor : 
in other words, it was suggested that the velocities of the two rays'trans- 
missible in the direction Or are determined by some function of the 
directions of vibration OP10P2, and thus by some function of the lengths 
OPt OP2, for the length of a radius vector of an elllpsoid'is determined 
by the direction. But we have also shown (Art. 9.9) that, without any 
assumption as to the real nature of the change, it is possible to determine 
the velocities rx r2, of the two rays transmissible in a given direction, in 
terms of a ~ e, the velocities corresponding to vibrations in the directions 
of the principal axes : hence the velocity r of transmission along Or is 
necessarily so related to OP, an axis of the section of the ellipsoid 
,~+f~y~+g2z ~= 1 by the plane perpendicular to Or, that the equation 

a ~  ~ b~!/2 c2z 2 _ 

represents the ray-surface. There is only one relation between r and OP 
which leads to this form of ray-surface, namely r = O P :  we are thus 
compelled to infer that the velocity of transmission of a ray is directly pro- 
portional to that radius vector OP of the above ellipsoid e~e~+f2~d~+g%~= ], 
which has the same direction as the vibrations of the ray : from Art. 4 0 d  
it follows that the same'relation is expressed by the statement that the ray- 
velocity is in~er,el~/proportional to the square root of the effective resilience 
for unit disturbance in the direction of vibration. 

I t  follows from the above relation that : ~  
I f  a line Or is perpendicular to a central section of the ellipsoid 

e~.~+f~y~+g~z~=--l, and OPx OP~ are the axes of the section, a plane- 
polarised ray can be transmitted along Or, having ()Px or OP~ for the 
normal of its plane of polarisation and a velocity of transmission measured 
by OP~ or OP2 respectively. 

That this relation is consistent with the form of the ray-surface arrived 
at in Art. 2 9  may be proved as follows : ~  

if.) 2ransformation of She above eon,truetion. 
From O draw OM perpendicular to the plane which touches the 

ellipsoid e2~+Py~+g~z~= 1 at the point P,  and let M be the foot of 
the perpendicular: produce OM to R, making O]~.OM= 1. 

(1.) First~find the locus of the points R when P takes all positions 
on the ellipsoid e'~.~;*+f~d'~+g~,'~ = 1. 
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Let x'y'z' be the co.ordinates of P (Fig. 19) ; the tangent plane at P is 
e*x'x+pg'y~-9%'zffi I : hence, as in Art. 40d,  

1 4 F2 4 r 4 J'2 
OM2--ex + / y  +gz . 

If ~ ~ ~ be the eo.ordinates of the point/~, we have [2y, f z "  

for, by construction, the line OMR is perpendicular to the tangent plane 
e~r'x+fy'y + f ; z  = 1. 

. , / (~+~+~) 
Each of these fractions is equal m j ( e ~ z , ~ )  ; that is OR'OM, 

or unity. 

r 

) 
Fxe. 19. 

Wethushave .~-----ex';~=/y'; ~---gZ':g 
whence, since e~x'2 ~-~y'~ ~-g% '2 = 1, 

it follows that ~ + ~ +  ~-----1. 
J 9 

This is the equation of the locus of the points 2~, and represents an 
ellipsoid with the same symmetral planes as e~x2-bpy~q-g~z~-~ 1, but with 

semi-axes e fg  instead of 1 1 1 
e f g  

(2.) The equation of the plane which touches the ellipsoid ~ q-~-b-~---- 1 
e~ f g2 

at the point R (~ n 0 is 

x~ Yn z~ 
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If Om be the perpendicular on this plane from the origin, the direction, 

~ ~ r x' z ~ cosines of Om have the ratios : 9~ : ~ ,  or : y ,  : ; hence the line Om 

passes through the point/~. 

RN, the normal of the ellipsoid e 2 T ~ - r ~ l j  ~ at R, is parallel to 

Ore, and wiU thus intersect the line Or which ties in the plane O R P  : if 
N be the point of intersection, R N =  O.t. 

(8.) In the same way as before, since Om is the perpendicular from 

the origin to the plane 7 -t'7~ "{-~ ~ 1, 

The plane O R N  is thus identical with the plane O P G  ; the normal 
-TiN to the ellipsoid at the point /~ has the same direction as O P  and 

1 
represents the direction of the vibration: ~ is equal to O P  and there- 

fore measures the velocity of transmission. 

Hence the relation given above in Art. 40e is equivalent to the 
following : ~ I f  Or is the direction of transmission of a ray, the direction 
of the vibration, or the normal of the plane of polarisation, is normal 

x y z 
to the line Or and also to the ellipsoid ~ - t - ~ + ~ ' - 1 ;  its velocity 

is measured by the inverse of the length of this normal intercepted be- 
tween the ray and the ellipsoid : further the normal of the ellipsoid is per- 
pendicular to the plane of polarisation of the corresponding ray. 

It has been proved in Section IV that the ray-surface which follows 
from this relation is 

1,~ 1 ~  1~ 

it has also been proved (Art. ~9),  without any assumption as to the l~eal 
nature of the periodic change, that the equation of the ray-surface is 

a2,c ~ b~y ~ c'~z2 ^ 
r~ _--_--_--_--_-=X~ + r.~ _ ~  + ~=--cc~ = o : 

the results are consistent with each other if e , f -=~,  g ~ . ;  the 
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ellipsoid ~-i-~3-1-~=l is identical with the optical indicatrix 

Compariaon wih Frevzd's elastic forces. 
41. (a.) If a b c are the velocities of transmission of those rays of 

which the vibrations are parallel to the axes of x y z respectively, Fres- 
nel's method of derivation requires the elastic forces evoked by unit dis- 
placements along the axes to be taken as a 2 b 2 c ~ respectively : according 
to the above method, the ideal forces, which by their action on an ideal 
particle of unit mass would produce vibrations synchronous with those of 

1 1 1  
the medium, will be measured by e ~ f  or ~ ~ ~ for unit displacements of 

the ideal particle along those directions. 
(ft.) I n  Fresnel's method, the evoked elastic force normal to the direction 

of vibration of a real particle of ether is regarded as of no effect owing to the 
incompressibility of the medium : in the above method no assumption is 
made as to the compressibility or incompressibility of the medium, but 
that component of the representative resilient force which is normal to 
the direction of vibration of an ideal particle is regarded as balanced by 
an equal component of the representative initiatory force at 'the same 
point of the ray. 

Case of a mono.symmefric or anorthie crystal. 
4 2 .  If the medium could present three dissimilar axes of optical resi- 

lience obliquely inclined to each other, it would follow as before that the 
axiak components of the resilient force, corresponding to a disturbance 
defined by the co-ordinates x'y'z', would be 

X =  --eg~ ' ; Y--  - - f y '  ; Z =  - - f z '  : 
but the resultant resilient force F would no longer act along the normal 
to the ellipsoid e%~-~-f~y~-Fp~z~l, and the planes of polarisation of the rays 
transmissible along a given direction would no longer be at right angles to 
each other. 

As such a character is  not presented by any crystal which has been 
examined, we may infer that in all crystalline media the axes of optical 
resilience for a given colour and temperature are always mutually perpen- 
dicular, and that the symmetry of the crystal merely affects the directions 
of the triads of perpendicular lines and the ratios of the corresponding eo- 
eilicients of optical resilience. 

An unsatisfactory variation of F~'esnet's method. 

43.  At first sight it would seem that the following would be a ~atidac- 
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tory and more simple mode of altering Fresnel's assumptions and reason- 
ing so as to accord with the recent conclusion that the vibration is paral- 
lel, not to the radiils vector RO, but to the normal RN of the ellipsoid 
a~.~ +b~y~ +c% ~ -~ 1. 

Let - - a ~ , - - b ~ ,  --d~', be the resolved axial components of the elastic 
force on a particle, due to a displacement from the centre 0 to the po in t / /  
(~ rl ~) lying on the surface of the ellipsoid a~.~q-b~y~q-c2z~l. I t  may 
be shown as above that the elastic force acting on the particle when at R 

1 
is directed along the normal R N  and measured by R--~, N being as usual 

the point of intersection of the normal with the ray : hence the elastic 
force j b r  unit displac~ent measured perl~endicularly to the ray, and 

1 
thus parallel to the direction of vibration, is ~ .  

Hence if the particle were set free after having been. displaced to the 
point R and no other force than the evoked elasticity were acting upon it, 
the i~litial motion would be along the normal R N  under the action of a 

by R-~2 times the distance from the ray. Assure- force which is measured 

ing that the vibration is actually and permanently perpendicular to the ray, a 
periodic constraining force is requisite to maintain the isoehronous character 
of the motion: if it were possible that the constraining force and the evoked 

1 
elasticity could together be always measured by ~-~N 2 times the distance 

of the particle from the direction of the ray, we migh~ infer by analogy 
with the case of sound ' tha t  the velocity of transmission would be 

1 1 
measured by R---N' for- /~-  is the square root of the effective elastic force 

due to a unit displacement in the direction of vibration. 

I t  will be found, however, that such a motion cannot actually take place : 
the particle will only vibrate rectilinearly if the path passes thrbugh the 
origin. I f  the particle is not moving in a line through the origin, the 
evoked elastic force will be constantly changing direction; for at any 
instant it acts parallel to the normals of the ellipsoid a% ~ q- b~y 2 q- c% ~ ~ 1 at 
the points where a line joining the particle to the centre 0 meets the surface. 
Further the initiatory periodic constraining force is zero, not when the 
particle is at its position of maximum displacement, but when it is in its 
position of no disturbance. 
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Th6 transmission of dlipticatly or circularly polaHsed rays. 

4 4 .  We have seen above (Art. 8a)  that the simultaneous transmission 
of two plane-polarised rays of the same simple colour along the same line 
with the same velocity, but with different directions of planes of polarisa- 
tion, has for general result an elliptically polarised ray of the same 
simple eolour transmitted with the same velocity : further, the right-hand 
or left-hand character of the motion of the representative point round the 
ellipse depends only on the relation of the phases of the component rays. 
Hence, in general, an ellipticaIIy polarised ray, or, its special case, a circu- 
larly polarised ray, can be transmitted in any direction within a cable 
crystal, or along the morphological axis of a tetragonal or hexagonal crys- 
tal; and its velocity is independent of its right-hand or left-hand cha- 
racter, 

I f  the velocity of transmission of a plane-polarised ray along a given 
direction within a crystal is dependent on the azimuth of the plane of 
polarisation, we have seen (Art. 8b) that an elliptically or circularly 
polarised ray cannot result from the composition of two plane-polarised 
rays transmitted along that direction. 

The transmission of a circularly polarised ray, however, may be possible 
even when that of a single plane-polarised ray is not so : for instance, a 
right-hand or a left-hand circularly polarised ray, but not a plane-polarised 
ray, can be transmitted along the morphological axis of a crystal of 
quartz. "In such case, the velocities of transmission of a right-hand and 
a loft-hand circularly polarised ray of the same simple colour are neces- 
sarily different : for it will be found on calculation that a right-hand and 
a left-hand circularly polarised r ay  transmitted with the same velocity, if 
superposed, are kinematieaUy identical with a plane-polarised ray, the 
azimuth of the plane of polarisation of which depends solely on the relative 
phases of the component rays;  but according to hypothesis a plane- 
polarised ray is incapable of transmission. Such a line will be an axis of 
optical symmetry, but cannot lie in a plane of general symmetry;  for 
symmetry to the plane would require a right-hand and a left-hand ray to he 
transmissible with the same velocity. 

In fact, if a right and left circular motion of the same radius and 
period are simultaneously impressed on the same particle, the resultant 
motion is a vibration along that diameter os the circte to which the two 
circular motions are symmetrical, namely, the diameter passing through 
the two positions of t h e  particle which are identical for the component 
motions. I f  the two circular motions are transmitted through the 
medium with the came velocity, their relative phases, and thus the direc. 
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tion of the l lneof  resultant vibration, will he the same at all points of the 
resultant ray:  if they are transmitted with unequal velocities, the line 
of resultant vibration will have different azimuths for different points of 
the ray, and the change of azimuth will be proportional to the distance 
between the given points. Hence it follo~vs that if a plane-polarised ray 
be incident normally on a plate cut perpendicularly to the morphological 
axis of a crystal of quartz, the ray will not be in a state of plane-polarisa. 
tion within the plate, though it will be so after emergence : the planes of 
polarisation of the incident and emergent rays will be inclined to each other 
at an angle which is proportional to the thickness of the plate. 

SU~MABY. 

1. Fresnel's hypothesis--that  light consists in the vibratory motion of 
an incompressible elastic ether--being untenable, should be abandoned as 
an educational instrument. 

2. The later hypothesis--Lhat light consists in the vibratory motion of 
a compressible elastic ether, of which the elasticity (of volume and figure) 
is the same for all bodies and for all directions in the same body, and of 
which the effective density in bi-refractive m~dia is dependent on the direc- 
tion of the vibratory motion--satisfactorily accounts for most of the known 
optical laws: hence such terms as "axes  of optical elasticity," which 
relate to variation of elasticity, must be discontinued. 

8. Even this more satisfactory hypothesis may only be an approximate 
mechanical analogy, and may eventually be found to be inconsistent with 
experiment in some of its optical results ; hence it cannot be satisfactorily 
used as the ~s is  of a correlation of optical characters for the student of 
crystals ; in fact, though it appears to be fully established ' that electro- 
magnetic waves and light-waves differ only in length, an electro-magnetic 
disturbance seems to be inexplicable as mere vibratory motion of an 
elastic body. 

4. On the other hand, the accuracy of Huygens'  construction is now so 
far confirmed b y  experiment that it doubtless expresses a Law of Nature. 

6. This being the case, it is easily seen that the velocity and polarisa- 
tion of each of the two rays transmissible in a given direction in a uniaxal 
crystal can be simply expressed by means of the spheroid alone : q  

I f  R be a point on the spheroid, O the centre , /~N the normal, N O r  a 

line intersecting the normal perpendicularly, the point ~ corresponds to a 
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1 and plane of ray transmissible in the direction NOr wi~h velocity ~ . .  

polarisation perpendicular to ~ : ~  ~ .  

6. Genera]isatlon suggests that, in the case of erysD~ls belonging to a 
lower type of general symmetry, there is a similar correspondence between 
each ray and a point on an ellipsoid. 

7. Experiment confirms the rigorous accuracy of the generalisation. 

8. The surface of reference, whether a sphere, spheroid or ellipsoid, 
may be conveniently denoted by the term clerical indicatrix. 

9. All the optical characters can be directly deduced from the 
indicatrix itself, and reference to its polar reciprocal is for this purpose 
unnecessary : further, it is possible to develop the characters from the 
consideration of rays alone: 

10. The fron~ of a pencil of rays which have started simultaneously 
from a point is part of the ray-surface ; in the limit, if the pencil is of small 
aperture and includes a given ray, the pencil-front is part of the plane 
which touches the ray.surface where the ray meets it : hence the pencil- 
front corresponding to the given ray may be briefly designated as the ray. 
front. 

11. A plane passing through a ray and perpendicular to its plane of 
polarisatlon may be conveniently termed its transverse plane. 

12. In such case, it follows that the normal to the ray-front corres- 
ponding to the ray Or lies in the transverse plane RNOr and is perpen. 
dieular to OR, while the velocity of normal propagation of the front is 

1 
measured by ~0--R' 

13. The normal R N  is the direction of vibration of the ray corre- 
sponding to the point R, if the most recent hypothesis as to the properties 
of an elastic luminfferous ether is true. 

14. The so-called primary and secondary optic axes are not axes of 
symmetry, nor even constant lines, of the crystal: they may with pre- 
cision be denoted respectively as the optic bi-normals and hi-radial8 ; for 
they ar~ directions in which the two normals drawn from the centre to 
tangent planes of the ray-surface having the same direction, or the two 
radii vectores of the ray-surface having the same direction, are respec- 
tively coincident with each other. A crystal may still be loosely termed 
biaxal, when it is merely desired to suggest that the interference-rings 
shown by a plate in convergent polarised light are rudely like those 
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which might be expected to be seen if the crystal had two axes, each iden- 
tical in character with the optic axis of a tetragonal or hexagonal crystal. 

15. By help of simple assumptions, which naturally present them- 
selves and arc consistent with all known experimental results, Fresnel's 
equation of the ray-surface- may be deduced from the general principles 
of undulations, without regard to the physical character of the periodic 
change. 


