THE AMERICAN MINERALOGIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA

Vol. 18	OCTOBER, 1933	No. 10

ON THE USE OF STANDARD GLASS POWDERS IN REFRACTIVE INDEX DETERMINATIONS

T. SUENO, Tokyo, Japan.

The dispersion method, employed for the first time by H. E. Merwin¹ and developed* by S. Tsuboi,² is now used extensively. Any one who has tried this method knows how useful it is for the determination of refractive indices of minute crystals. Later the double variation method was proposed by R. C. Emmons,³ and his apparatus is now on sale.

For a number of years the present writer has used an apparatus as shown in Fig. 1, which is a modification of Tsuboi's. It consists essentially of three thermostats containing water of different temperatures, and a system of water circulating tubes which connects the thermostats to a disk on the microscope stage. The disk is similar to that used by A. N. Winchell. The temperature on the stage can be quickly controlled by varying the temperature of the circulating water by means of a specially devised cock.

In connection with the dispersion method, or the double variation method, the Abbé refractometer is ordinarily used for determining the refractive indices of the immersion media. Accordingly, the method is not applicable to crystals having higher indices than 1.7. Also, there are certain inconveniences in the usual method.

* In spite of the opposition from G. Tunell and G. W. Morey (Am. Mineral., Vol. 13, 1932, p. 376) the present writer uses this statement, for S. Tsuboi showed for the first time how the principal refractive indices of double refracting crystals can be determined by the dispersion method. Moreover, Tsuboi proposed the use of Hartmann's dispersion net in the dispersion method, and simplified the procedure of finding graphically the refractive indices of powdered minerals for light of different wave lengths.

¹ H. E. Merwin and E. Posnjak, J. Amer. Chem. Soc., Vol. XLIV, 1922, pp. 1965-1994.

² S. S. Tsuboi, Miner. Mag., Vol. 18, 1923, p. 108.

S. S. Tsuboi, Japanese Journ. Geol. and Geogr., Vol. III, 1924, p. 19.

S. S. Tsuboi, Journ. Geol. Soc. Tokyo, Vol. XXXII, 1925, pp. 1-6.

S. S. Tsuboi, Journ. Geol. Soc. Tokyo, Vol. XXXVII, 1930, p. 39.

⁸ A. N. Winchell and R. C. Emmons, *Am. Mineral.*, Vol. XI, 1926, p. 115. R. C. Emmons, *Am. Mineral.*, Vol. XIII, 1928, p. 504 and XIV, 1929, p. 441.

THE AMERICAN MINERALOGIST

In the first place, there is often a large difference between the temperature on the microscope stage and that of the Abbé refractometer, which makes the result unreliable, though the correction may be obtained by determining the temperatures with the thermocouple of copper and constantan, as E. H. Ashton and W. C. Taylor⁴ have suggested. In the second place, the immersion liquid may partially evaporate and its composition and refractive index may change during the experiment, especially at the higher temperatures. We may overcome this trouble by using pure compounds as immersion media instead of mixtures as pointed out by Winchell and Emmons⁵; but pure liquids with appropriate refractive indices are sometimes very difficult to prepare.

In order to avoid the inconveniences enumerated above, the writer proposes here the use of *standard glass powders* in refractive index determinations with the microscope. By this method the refractive index and dispersion of the immersion liquid can be determined simultaneously with those of the crystal mounted on the microscope stage, without using the Abbé refractometer.

In the method here proposed we have no need of using numerous thermostats and water circulating systems, as it is not necessary to keep the refractometer and the microscope stage at the same temperature. It is only necessary to have such apparatus as will maintain the microscope stage at a constant temperature. An electric heating stage with a device for automatic temperature control, such as an Eisenberg or a Walton stage (Leitz), for instance, will meet this need.

I. ISOTROPIC CRYSTAL

Immerse the crystal under investigation in liquid X with proper standard glass powders, A and B, and the refractive index of the crystal as well as those of the glass powders are compared with that of the liquid, using a petrographic microscope and a Fuess monochromater. The refractive indices and dispersions of the standard glasses must have been determined previously and plotted on a Hartmann's dispersion net (Fig. 3). Suppose the refractive index of the liquid X matches those of the glass powders A and B, respectively, at wave lengths a and b. Then, locate the points X_a and X_b (Fig. 2) corresponding to a and b, on the disper-

⁴ E. W. Ashton and T. C. Taylor, Am. Mineral., Vol. XIII, 1928, p. 411. ⁵ Op. cit. sion lines A and B; the connecting line $X_a X_b$ represents the refractive index and dispersion of the liquid X.

Further procedure is quite similar. The wave length x, for which

FIG. 1

TABLE I

	Li	Na	T1		Li	Na	Tl
No. 1	1.6690	1.6764	1.6834	No. 16	1.7178	1.7263	1.7344
2	1.6715	1.6790	1.6862	17	1.7212	1.7299	1.7382
3	1.6740	1.6815	1.6887	18	1.7253	1.7342	1.7424
4	1.6770	1.6847	1.6919	19	1.7296	1.7383	1.7467
5	1.6804	1.6879	1.6950	20	1.7337	1.7425	1.7510
6	1.6830	1.6906	1.6977	21	1.7382	1.7472	1.7556
7	1.6867	1.6943	1.7016	22	1.7429	1.7520	1.7606
8	1.6902	1.6980	1.7052	23	1.7473	1.7566	1.7654
9	1.6936	1.7016	1.7090	24	1.7506	1.7599	1.7689
10	1.6977	1.7056	1.7132	25	1.7540	1.7636	1.7724
11	1.7018	1.7099	1.7174	26	1.7581	1.7681	1.7771
12	1.7038	1.7120	1.7198	27	1,7642	1.7741	1.7834
13	1.7078	1.7160	1.7239	28	1.7690	1.7790	1.7886
14	1.7116	1.7202	1.7281	29	1.7744	1.7847	1.7944
15	1.7152	1.7239	1.7319	30	1.7776	1.7881	1.7979
			1	11			1

THE AMERICAN MINERALOGIST

the refractive index of the crystal matches that of the liquid X, is determined. Then, the experiment is repeated either with the same liquid at another temperature, or with another liquid, Y, and the wave length y determined, at which the matching occurs. To obtain n_D , join the points $n_x n_y$ corresponding to x and y, respectively, to the dispersion lines of X and Y. The connecting line $n_x n_y$ represents the refractive index and dispersion of the crystal, and the intersection of this line with the D line will give n_D .

II. UNIAXIAL CRYSTAL⁶

In order to find the ω and ϵ indices of a uniaxial crystal, it is best to follow the method outlined by S. Tsuboi. The following example will suffice to demonstrate that method. The powders of a crystal of corundum and standard glasses, Nos. 23 and 24 whose dispersions are represented in Fig. 3, were immersed in a suitable liquid. Examinations were made in monochromatic light to determine at which wave lengths the refractive indices of the standard glasses and n_1 and n_2 of each powdered grain of mineral would

⁶ The following procedures are quite similar to those described in S. Tsuboi's paper, *Journ. Geol. Soc. Tokyo*, Vol. XXXII, 1925, pp. 2-6.

TABLE	2
TUDDE	4

Standard glasses Liquid	No. 23 550µµ	No. 24 490μμ	Standard glasses Liquid	No. 23 604μμ	No. 24 545μμ
Corundum	n1	n_2	Corundum	n_1	n_2
	525µµ	495μμ		533µµ	513µµ
	521	494		529	513
	513	495		535	513
	510	495		541	513
	530	494		563	513
	511	495		545	512
	522	495		563	513
	513	495	- C	543	513
	509	494		556	512
	497	495		535	512
	504	495		547	513
	520	495		552	513
	515	495		553	513
	542	494		525	513
	520	495		557	513
	500	495			

TABLE 4

TABLE 5

Standard glasses Liquid	No. 24 572μμ	No. 25 513μμ	Standard glasses Liquid	No. 7 514μμ	No. 8 478µµ
Comundum	17 -		Hyper-	58 9 0	
Corundum	111	n_2	stnene	n_1	n_2
	546μμ	522µµ		506μμ	480μμ
	555	520		538	violet
	574	522		536	475
	544	523		506	477
	572	523		518	485
	546	522		518	violet
	550	520		500	violet
	533	522		496	violet
	532	520	1	500	475
	527	522		513	472
	546	521	1	502	violet
	552	522		527	473
	557	522		497	470
	545	522		547	477
	549	522		529	violet
	540	522			

match that of the liquid. The observations were made on 15 grains of the mineral chosen at random and it was found that the matching occurred for the wave lengths given in Table 2.

The experiment was then repeated at another temperature, or by immersing the powders in another liquid, and the results as shown in Table 3 were obtained.

To find the dispersion of the liquid, mark the points corresponding to 550 $\mu\mu$ and 490 $\mu\mu$, respectively, on the lines Nos. 13 and 14, and connect them.

As can be seen in the above tables the value for n_2 is constant in every grain, whatever its orientation. This corresponds to that of ω .

To obtain ω_D mark the points corresponding to 495 $\mu\mu$ and 513 $\mu\mu$ (the mean of the wave lengths in the column for n_2 in Tables 2 and 3) on the lines representing the first and second liquids in Fig. 4 and connect them; then the intersection of this line with the D line will give ω_D of the mineral.

The value of n_1 observed in each grain is that for the extraordinary ray, and varies from ω to ϵ , ϵ being, in this case, the minimum value of n_1 . Of the various values for n_1 given in Table 2, the value

427

for the light of wave length 542 $\mu\mu$ (the longest wave length) is the lowest, since the dispersion of the immersion liquid is stronger than that of the crystal. Likewise, of the values of n_1 in Table 3, 563 $\mu\mu$ is the lowest. Assuming that these lowest values of n_1 represent approximately ϵ, ϵ_D can be obtained graphically in a manner similar to that indicated for ω_D .

The values of ω_D and ϵ_D thus obtained are:

 $\omega_D = 1.769$ $\epsilon_D = 1.761$

And the dispersion is: $\omega_F - \omega_C = 0.013$

III. BIAXIAL CRYSTAL

To demonstrate the method for obtaining α_D , β_D , and γ_D of biaxial crystals, a hyspersthene crystal from Taihoku, Taiwan, Japan, will be taken as an illustration. The powders of a hypersthene crystal and standard glasses Nos. 7 and 8, whose dispersions are represented in Fig. 3, were immersed in liquids, and the refractive indices of the mineral, standard glasses and liquids were compared in the same way as in the case of the corundum. The results are given in Tables 5, 6, and 7.

	TABLE 6			TABLE 7	
Standard glasses Liquid	No. 7 580μμ	No. 8 526µµ	Standard glasses Liquid	No. 9 610μμ	No. 10 537μμ
Hyper- sthene	n_1	n_2	Hyper- sthene	nı	n ₂
	564µµ	503µµ		red	559µµ
	531	509		625µµ	565
	587	499		610	558
	570	509		red	576
	540	526		red	560
	533	517		red	554
	537	518		red	565
	572	506		red	549
	527	500		638	570
	587	503		red	553
	545	491		red	557
	529	495		red	580
	578	502		red	609
	537	515		613	567
	528	509		red	566

S. Tsuboi has shown the following relationship $\alpha \leq n_1 \leq \beta \leq n_2 \leq \gamma$ holds for a grain of a biaxial crystal of any orientation. Because of this relationship it is clear that the refractive indices of the mineral that match *n* of the first liquid for light of wave lengths 547 $\mu\mu$, and 496 $\mu\mu$, as well as those that match *n* of the second liquid for 587 $\mu\mu$, and 527 $\mu\mu$, are α , and β respectively. And the refractive index that matches *n* of the second and the third liquids, respectively, for 526 $\mu\mu_{\gamma}$ and 553 $\mu\mu$ corresponds to γ . Marking the points representing these wave lengths on the line of liquids in Fig. 5 and

FIG. 5

applying the same graphical method as in the preceding examples, the following values were obtained:

 $\alpha_D = 1.694; \beta_D = 1.701; \gamma_D = 1.707; \beta_F = \beta_C = 0.015.$

METHOD FOR PREPARING THE STANDARD GLASS

Any type of colorless and transparent glass with appropriate refractive index and dispersion, which is stable and not easily devitrified, may meet the need of a standard glass, without regard to its composition. However, a glass of weak dispersion is preferred, because then the difference in dispersion between the glass and the immersion liquid is large and a comparatively small number of standard glasses are sufficient for our purpose.

The refractive indices and dispersions of the glasses prepared for the present purpose are shown in Table I, and are represented on Hartmann's net (Fig. 3).

The process of making a standard glass is as follows. At first two kinds of glasses of the following extreme compositions, A and B, are made in the glass furnace by mixing As₂O₃, quartz sand, Pb₃O₄ and KNO₃.

	Quartz	As ₂ O ₃	PbO	K_2O	
A	38.0	0.3	56.7	5.0	(%)
B	23.0	0.3	75.0	1.7	(%)

When the mixture is heated caution must be taken against blackening due to the separation of metallic lead caused by the action of the reducing flame when used for a long period. The use of K_2CO_3 is avoided, as it may liberate carbon dioxide which sometimes reduces the lead oxides. For melting the glass a crucible of chamotte is used and it is heated for about two hours at about $1300^{\circ}C$. When the molten glass becomes free from bubbles, it is immersed into water and a frit obtained. The frit is crushed in a ball mill to a fine powder and sieved through 4900 mesh. It is important to render the powder extremely fine, for otherwise it may be difficult to obtain a homogeneous glass in the second heating.

FIG. 6

THE AMERICAN MINERALOGIST

Next the glass powders of the extreme compositions A and Bare mixed in various proportions and a series of mixtures, 50 grams each, obtained. These are melted in a carbon resistance electric furnace, keeping the preparations at 1000°-1200°C, for about an hour and a half, stirring the melt from time to time with a small platinum spatula attached to the end of an iron rod in order to obtain a homogeneous melt. A small amount of arsenic and antimony oxides are added to facilitate and to expedite the refining of the glass. The crucible used is made chiefly of alumina-e.g., "S.M." of Samposha Company. After removing the crucible from the furnace, it is placed in a small dish of chamotte and cooled to room temperature in about 3 hours. The internal stresses produced upon cooling the glass causes no harm for our purpose, and there is little need for annealing. The outermost part, about 3 mm. thick, is removed, and the homogeneity of the remaining central part is ascertained by comparing the refractive indices of different portions of the mass with one another by the dispersion method. The refractive index and dispersion of the standard glass thus obtained are determined by the prism method. Table I shows the indices and dispersions of the standard glasses manufactured for the present purpose, and Fig. 3 represents the dispersion diagrams plotted on Hartmann's net.

ACKNOWLEDGMENTS

The writer wishes to thank Prof. S. Tsuboi of the Imperial University of Tokyo for his suggestions and criticisms during the preparation of this paper. In the manufacture of the standard glasses the writer was greatly assisted by Mr. T. Echizenya.