CRYSTALLOGRAPHY OF VALENTINITE $\left(\mathrm{Sb}_{2} \mathrm{O}_{3}\right)$ AND ANDORITE(?) ($2 \mathrm{PbS} \cdot \mathrm{Ag}_{2} \mathrm{~S} \cdot 3 \mathrm{Sb}_{2} \mathrm{~S}_{3}$) FROM OREGON*
 Waldemar T. Schaller, U. S. Geological Survey, Washington, D. C.

Contents
Introduction... . . 651
Valentinite . 652
Axial Ratio.. 652
Forms and Angles . 653
Discussion of Prism Zone. 657
Combinations. 661
Andorite(?) . 662
INTRODUCTION
A set of ore specimens from the Ochoco mining district, Oregon, submitted for mineralogical study by G. F. Loughlin of the U. S. Geological Survey, showed a number of unusual minerals. Their occurrence is mentioned in a recent report by Gilluly, Reed, and Park (1933). The locality is Gold Hill (Howard district), Ochoco Creek area, northeastern part of Crook County, central Oregon. The matrix of the specimens submitted was largely carbonate; calcite, manganian dolomite with ω index $=1.690-1.693$, and calcian rhodochrosite with $\omega=1.783$.

One specimen contained a few hair-like metallic crystals, which break when bent, probably due to a basal cleavage. They are provisionally assigned to jamesonite and the following measurements were obtained on one of the thicker hair-like crystals.

Table 1. Measurements of Jamesonite

Measured	Jamesonite
$(110):(110)=101^{\circ} 51^{\prime}$	$101^{\circ} 21^{\prime}$
$(110):(110)=9833$	10122
$(110):(120)=1926$	1917
$(110):(001)$ cleavage $=90^{\circ}-92^{\circ}$	9000

A few of the hair-like crystals, however, were very flexible and could easily be bent double, showing the presence of a second hair-like mineral with no basal cleavage. The material seems to correspond to the mixture of "feather ore" previously called warrenite, which, however, is a mixture of jamesonite and zinckenite, as previously described by Schaller (1911).

[^0]A single prismatic crystal of another mineral, provisionally referred to andorite and described in the following paper, was found on one specimen. Other minerals present are: aragonite, pyrite, tetrahedrite, and two other metallic minerals, one lead-gray and another prismatic dark reddish-black, which could not be identified on account of the paucity of material.

Apparently this locality might yield several of the rarer silver sulphosalts and anyone having access to the locality should make a careful search for well crystallized minerals of this character.

A number of small non-metallic crystals in one of the cavities of a specimen proved to be valentinite, antimony oxide, $\mathrm{Sb}_{2} \mathrm{O}_{3}$, and their goniometric measurements showed a large number of crystal forms, many of them new. They are described on the following pages.

VALENTINITE

The optical properties and chemical reactions of these crystals are typically those of valentinite. The optical axial planes for red and blue light are normal to each other and the negative axial angle is small, with strong dispersion. The doubly terminated crystals are small, about a millimeter in length, and have no attraction as specimens. They would probably pass unnoticed unless one was making a detailed examination of the mineralogy of the material.

Axial Ratio

The a-axis is calculated from the average measured ϕ angles of the prisms of the seven measured crystals. The measurements for $B\{340\}$ and $C\{450\}$ are omitted as they show much greater divergence from the calculated angles than do those of the other prisms. Likewise, those prisms whose ϕ angle is very large (greater than 81°) are also omitted as they are too close to $\{100\}$ to yield ratios of comparative value. The c-axis is calculated from the average measurements of the ρ angle of the new side dome $T\{0.11 .8\}$. The axial ratio so obtained is $a: b: c=0.3930$: 1:0.4350.

This ratio is close to those recently given by other authors, as follows:

	$a: b: c$
Spencer $(1907):$	$0.3938: 1: 0.4344$
Ungemach ${ }^{1}(1912):$	$0.3928: 1: 0.4333$
Cesàro $(1925):$	$0.3952: 1: 0.4342$
Schaller:	$0.3930: 1: 0.4350$

[^1]The average of these four values gives the axial ratio of valentinite as $a: b: c=0.3939: 1: 0.4339$.

Forms and Angles

A total of 22 forms were found on the 7 crystals measured. These include the two pinacoids $a\{100\}$ and $b\{010\}$, nineteen prisms of which 15 are new for valentinite, and the new side dome $T\{0.11 .8\}$.

Fig. 1. Idealized drawing of valentinite from the Ochoco district, Crook County, Oregon. The crystal is about a millimeter high. Forms: $b\{010\}, m\{110\}, T\{0.11 .8\}$. The narrow striated face B adjoining $b\{010\}$, shows the position of $A\{350\}, B\{340\}$, and $C\{450\}$. The broad striated area in front includes the prisms from $D\{10.9 .0\}$ to $S\{910\}$.

The general habit and distribution of forms on these crystals are shown in Figure 1. The dominant forms are $m\{110\}$ and the new side dome $T\{0.11 .8\}$ which is the only terminal form present. The prisms other than $m\{110\}$ are all line faces. The side pinacoid $b\{010\}$ is generally narrow but wider than a line face whereas $a\{100\}$ is a line face. The faces of m are vertically striated and those of $T\{0.11 .8\}$ are horizontally striated parallel to their intersection. The reflections from the unit prisms were good; all the others were poor.

Table 2. Valentinite: Forms and Angles
New forms are starred

Form	No. crystals	No. faces	Average measured ϕ angle	Calculated ϕ angle	Difference
$b\{010\}$	7	10	$0^{\circ} 09^{\prime}$	$0^{\circ} 00^{\prime}$	$0^{\circ} 09^{\prime}$
$a\{100\}$	2	2	8942	9000	18
${ }^{*} A\{350\}$	3	3	5648	5643	05
${ }^{*} B\{340\}$	2	2	6244	6218	26
${ }^{*} C\{450\}$	3	3	6407	6347	20
${ }^{m}\{110\}$	7	28	6839	6830	09
${ }^{*} D\{10.9 .0\}$	5	8	7036	7029	07
${ }^{*} E\{760\}$	4	7	7126	7121	05
$\sigma\{540\}$	5	7	7233	7231	02
${ }^{*} F\{430\}$	5	9	7335	7333	02
${ }^{*} G\{10.7 .0\}$	4	6	7432	7435	03
${ }^{*} H\{14.9 .0\}$	6	8	7548	7548	00
${ }^{*} J\{30\}$	4	5	7645	7642	03
${ }^{*} K\{950\}$	4	5	7748	7740	08
${ }^{*} \mu\{210\}$	4	6	7854	7852	02
${ }^{*} L\{730\}$	3	4	8024	8025	01
${ }^{*} M\{830\}$	3	3	8141	8136	05
${ }^{*}\{\{310\}$	3	4	8242	8231	11
${ }^{*} N\{410\}$	3	4	8422	8423	01
${ }^{*} P\{510\}$	3	3	8547	8530	17
${ }^{*} S\{910\}$	3	3	8735	8730	05
${ }^{*} T\{0.11 .8\}$	7	7	3053	$3049^{\text {a }}$	05

${ }^{\mathrm{a}}$ The ρ angle.

Table 3. Valentinite: Measurements of ϕ Angle of $m\{110\}$

Crystal no.	Limits	Average of fair and good reflections
1	$68^{\circ} 08^{\prime}-68^{\circ} 25^{\prime}$	$68^{\circ} 23^{\prime}$
2	$6832-6841$	6836
3	$6843-6903$	6846
4	$6838-6930$	6855
5	$6826-6846$	6837
6	$6834-6846$	6840
7	$6801-6838$	6837

Average $=68^{\circ} 39^{\prime}$

Table 4. Valentinite: Measurements of ϕ Angle of Other Prisms

	$A\{350\}$	$B\{340\}$	C 4450 \}	$D\{10.9 .0\}$	$E\{760\}$
Calculated Average of measurements Individual measurements	$\begin{array}{r} 56^{\circ} 43^{\prime} \\ 5648 \\ \left\{\begin{array}{r} 2-5613 \\ 4-5731 \\ 5-5639 \end{array}\right. \end{array}$	$\begin{array}{r} 62^{\circ} 18^{\prime} \\ \\ 6244 \\ 5-6245 \\ 6-6237 \end{array}$	$\begin{array}{r} 63^{\circ} 47^{\prime} \\ \\ 6407 \\ 1-6345 \\ 6-6418 \\ 7-6418 \end{array}$	$70^{\circ} 29^{\prime}$ 7036 $3-7037$ $3-7047$ $4-7034$ $5-7049$ $6-7015$ $6-7051$ $7-7047$ $7-7011$	$71^{\circ} 21^{\prime}$ $3-7126$ $3-7136$ $4-7125$ $4-7135$ $5-7146$ $5-7125$ $5-7103$ $6-7115$
	$\sigma\{540\}$	$F\{430\}$	G\{10.7.0\}	$H\{14.9 .0\}$	$J\{530\}$
Individual measurements	$\begin{array}{r} 72^{\circ} 31^{\prime} \\ 7233 \\ \left\{\begin{array}{r} 2-7227 \\ 2-7230 \\ 3- \\ 3-72 \\ 3-720 \\ 4-7257 \\ 6-7218 \\ 7-7252 \end{array}\right. \end{array}$	$\begin{array}{r} 73^{\circ} 33^{\prime} \\ 7335 \\ 1-7329 \\ 2-7350 \\ 2-7337 \\ 2-7351 \\ 3-7326 \\ 3-7326 \\ 5-7323 \\ 5-7326 \\ 6-7351 \end{array}$	$\begin{array}{r} 74^{\circ} 35^{\prime} \\ 2-7432 \\ 2-7425 \\ 2-7445 \\ 2-7423 \\ 3-7442 \\ 5-7427 \\ 6-7431 \end{array}$	$\begin{array}{r} 75^{\circ} 48^{\prime} \\ 7548 \\ 1-7609 \\ 2-7528 \\ 2-7536 \\ 4-7551 \\ 5-7559 \\ 6-7548 \\ 6-7610 \\ 7-7520 \end{array}$	$\begin{array}{r} 7642^{\prime} \\ 7645 \\ 2-7621 \\ 2-7651 \\ 3-7639 \\ 5-7717 \\ 6-7635 \end{array}$
	K 9950$\}$	$\mu\{210\}$	$L\{730\}$	M $\{830\}$	$\pi\{310\}$
Calculated Average of measurements Individual measurements	$77^{\circ} 40^{\prime}$ 7748	$\begin{array}{r} 78^{\circ} 52^{\prime} \\ 7854 \\ 2-7836 \\ 2-7853 \\ 3-7904 \\ 4-7910 \\ 5-7824 \\ 5-7918 \end{array}$	$80^{\circ} 25^{\prime}$ 8024 $3-8006$ $4-8042$ $4-8042$ $5-8007$	$\begin{array}{r} 81^{\circ} 36^{\prime} \\ 8141 \\ 1-8136 \\ 2-8149 \\ 4-8139 \end{array}$	$\begin{array}{r} 82^{\circ} 31^{\prime} \\ 8242 \\ 1-8229 \\ 4-8207 \\ 6-8255 \\ 6-8317 \end{array}$

	$N(410)$	$P(510)$	$S\{910\}$	
Calculated	$84^{\circ} 23^{\prime}$	$85^{\circ} 30^{\prime}$	$87^{\circ} 30^{\prime}$	
Average of measurements	8422	8547	8735	
	(3-83 54	2-85 59	4-8739	
Individual	4-8452	4-85 58	5-8724	
measurements	$\left\lvert\, \begin{aligned} & 5-8419 \\ & 5-8423\end{aligned}\right.$	5-85 24	$7-8743$	

Table 5. Valentintte: Measurements of $T\{0.11 .8\}$

Crystal no.	Measured		Difference from calculated ρ angle	
	ϕ	ρ	0.11 .8	
1	$0^{\circ} 56^{\prime}$	$31^{\circ} 48^{\prime}$	$0^{\circ} 59^{\prime}$	$1^{\circ} 45^{\prime}$
2	-	32	-	-
2	-	31	-	-
3	042	3042	07	39
3	011	3053	04	50
4	033	3112	23	109
4	034	3109	20	106
5	052	3101	12	58
5	033	3023	26	20
6	030	3051	02	48
6	010	3052	03	49
7	039	3015	34	12
7	039	3036	13	33

Average (omitting crystal no. 2) $=30^{\circ} 53^{\prime}$.
Calculated $=3049$.
The indices $\{0.11 .8\}$ seem to be the simplest which can be given to this new side dome. The calculated ρ angles for other indices, close to $\{0.11 .8\}$, are as follows:

$$
\begin{aligned}
& \rho \\
&\{065\}=27^{\circ} 30^{\prime} \\
&\{043\}=3003 \\
&\{0.11 .8\}=3049 \\
&\{075\}=3117 \\
&\{032\}=3304
\end{aligned}
$$

Average of measured angles $=30^{\circ} 53^{\prime}$

The closest calculated angle for a simple form is that for $\{043\}$ a form not listed for valentinite, but not a single one of the 13 measurements is as low as $30^{\circ} 03^{\prime}$ though two measurements approach this value. As the last column in the preceding table shows, the differences between the measured angles and $30^{\circ} 03^{\prime}$ are considerable. The differences between the average measured angle for T and the nearest known forms, $\{065\}$ and $\{032\}$, are also considerable.

> Difference from $\{065\}=3^{\circ} 23^{\prime}$
> Difference from $\{032\}=211$

A discussion of the side dome series of forms from (001) to (010) does not help in deciding the correct indices for T. Taking the zone segment from (011) to (021), in the middle of which T lies, and reducing it to the general type $0 \cdots \infty, T$ becomes $\frac{3}{7}$ instead of the normal $\frac{1}{2}$. The form $\{043\}$ would yield $\frac{1}{2}$ but as just shown the measurements do not agree with these indices.

i	-	Q	T	g	f	X	
011	098	005	0.11 .8	032	053	021	
$\frac{v-v_{1}}{v_{2}-v}=$	$\frac{9}{8}$	$\frac{6}{5}$	$\frac{11}{8}$	$\frac{3}{2}$	$\frac{5}{3}$	2	
$N_{2}=$	0	$\frac{1}{7}$	$\frac{1}{4}$	$\frac{3}{7}$	1	2	∞
	$\left(\frac{1}{7}\right)$	$\left(\frac{1}{4}\right)$	$\left[\frac{3}{7}\right]$	1	2	∞	

Discussion of Prism Zone

The following discussion of the prism zone follows the well known method of Goldschmidt's comparison with normal series. It not only served to confirm the correctness of the indices of many of the new prisms but it has been of greatest value in deciding the correct indices of three of the new prisms with more complex indices.

The poor reflections obtained from most of these new prisms with a consequent considerable variation in the measured angles do not suffice, alone, to correctly determine the indices.

Including the two pinacoids $b\{010\}$ and $a\{100\}$ there are now 26 forms in this zone, including the two given by Cesàro (1925). This zone consists naturally of two sections extending from $b\{010\}$ to $m\{110\}$ and from $m\{110\}$ to $a\{100\}$. In the first section from b to m, the ϕ angles of the forms differ from adjacent ones by many degrees except for the two forms $B\{340\}$ and $C\{450\}$, where the difference is only $1^{\circ} 29^{\prime}$. But for the second section from m to a, the forms are closely crowded together and are about one degree apart.

The first section is:

b	ρ	x	n	A	B	C	m	
$\frac{h}{k}=$	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{3}{4}$	$\frac{4}{5}$	1
$\frac{v}{1-\eta}=$	0	$\frac{1}{5}$	$\frac{1}{2}$	1	$\frac{3}{2}$	3	4	∞
$N_{3}=$	0	$\left(\frac{1}{5}\right)$	$\cdot \frac{1}{2} \cdot$	1	$\frac{3}{2} \cdot$	3	(4)	∞

The two forms $\rho\{160\}$ and $C\{450\}$ are extra. Splitting the zone at $n\{120\}$:

R

$$
\begin{array}{lllllllllll}
& 0 & \frac{1}{6} & -\frac{1}{3} & \frac{1}{2} & & \frac{1}{2} & \frac{3}{5} & \frac{3}{4} & \frac{4}{5} & 1 \\
2 v= & 0 & \frac{1}{3} & \frac{2}{3} & 1 & \frac{v-v_{1}}{v_{2}-v}= & 0 & \frac{1}{4} & 1 & \frac{3}{2} & \infty \\
\frac{v}{1-v}= & 0 & \frac{1}{2} & 2 & \infty & 2 v= & 0 & \frac{1}{2} & 2 & 3 & \infty \\
N_{2}= & 0 & \frac{1}{2} \cdot & 2 & \infty & N_{3}= & 0 & \cdot \frac{1}{2} \cdot 2 & 3 & \infty
\end{array}
$$

All the forms in this section can be transferred to parts of the normal series.

The second section, from $m\{110\}$ to $a\{100\}$ is a long one with 19 forms and runs continuously with no well defined break. The form with the simplest indices, except for the two end members $m\{110\}$ and $a\{100\}$ is $\mu\{210\}$ which moreover lies in the middle of the zone. This zone is therefore split into two sections at $\mu\{210\}$, which are considered separately.

The first section from m to μ gives:

$$
\begin{array}{ccccccccccc}
& m & D & E & \sigma & F & G & H & J & K & \mu \\
& 110 & 10.9 .0 & 760 & 540 & 430 & 10.7 .0 & 14.9 .0 & 530 & 950 & 210 \\
\frac{h}{k}= & 1 & \frac{10}{9} & \frac{7}{6} & \frac{5}{4} & \frac{4}{3} & \frac{10}{7} & \frac{14}{9} & \frac{5}{3} & \frac{9}{5} & 2 \\
v-1= & 0 & \frac{1}{9} & \frac{1}{6} & \frac{1}{4} & \frac{1}{3} & \frac{3}{7} & \frac{5}{9} & \frac{2}{3} & \frac{4}{5} & 1 \\
\frac{v}{1-v}= & 0 & \frac{1}{8} & \frac{1}{5} & \frac{1}{3} & \frac{1}{2} & \frac{3}{4} & \frac{5}{4} & 2 & 4 & \infty
\end{array}
$$

$$
\begin{array}{llllllllll}
2 v= & 0 & \frac{1}{4} & \frac{2}{5} & \frac{2}{3} & 1 & \frac{3}{2} & \frac{5}{2} & 4 & 8 \\
\infty \\
N_{4}= & 0 & \frac{1}{4} \cdot \frac{2}{5} \cdot \cdot \frac{2}{3} \cdot & 1 & \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \cdot 4 & (8) & \infty
\end{array}
$$

All the forms agree with the normal series N_{4} except for (8), equivalent to $K\{950\}$, which is extra.

If this zone section be further split at 1, equivalent to $F\{430\}$, the two sections will agree with N_{3}.

$$
\begin{aligned}
& \begin{array}{ccccccccccc}
m & D & E & \sigma & F & F & G & H & J & K & \mu \\
0 & \frac{1}{4} & \frac{2}{5} & \frac{2}{3} & 1 & & 1 & \frac{3}{2} & \frac{5}{2} & 4 & 8 \\
\infty
\end{array} \\
& \begin{array}{rllllllllllll}
\frac{v}{1-v}= & 0 & \frac{1}{3} & \frac{2}{3} & 2 & \infty & & \left.\begin{array}{lllllll}
v-1= & 0 & \frac{1}{2} & \frac{3}{2} & 3 & 7 & \infty \\
N_{3}= & 0 & \frac{1}{3} \cdot \frac{2}{3} \cdots 2 & \infty & \infty & & \\
N_{3}= & 0 & \frac{1}{2} \cdots \frac{3}{2} \cdot 3 & (7) & \infty
\end{array}\right)
\end{array}
\end{aligned}
$$

For the form $D\{10.9 .0\}$ the measurements alone would hardly differentiate between $\{11.10 .0\},\{10.9 .0\}$, and $\{980\}$ as the following comparison shows.
D, average measured
Calculated for
$\left\{\begin{array}{lr} & 70^{\circ} 36^{\prime} \\ \{11.10 .0\} & 7018 \\ 10.9 .0\} & 7029 \\ \{980\} & 7042\end{array}\right.$

Of the eight measurements of D, two agree better with $\{11.10 .0\}$, one better with $\{10.9 .0\}$, four better with $\{980\}$, while one is half way between $\{10.9 .0\}$ and $\{980\}$. But the discussion shows that $\{10.9 .0\}$ is the correct symbol.
In the discussion $\{11.10 .0\}$ would yield $\frac{2}{9}$ and $\{980\}$ would yield $\frac{2}{7}$ in the normal series N_{4} instead of $\frac{1}{4}$, and $\{11.10 .0\}$ would yield $\frac{2}{7}$ and $\{980\}$ would yield $\frac{2}{5}$ in the normal series of N_{3} instead of $\frac{1}{3}$.

For the complex indices of G, namely $\{10.7 .0\}$ the question might arise whether the simpler ones $\{750\}$ might not be better. The comparison of measured and calculated angles shows:

	ϕ
G, average measured	$74^{\circ} 32^{\prime}$
Calculated for $\{10.7 .0\}$	7435
Calculated for $\{750\}$	7417

Of the six faces of G measured, the angles are closer to $\{750\}$ for only two of the measurements. The discussion would yield $\frac{4}{3}$ instead of $\frac{3}{2}$ for N_{4}, and $\frac{1}{3}$ instead of $\frac{1}{2}$ for N_{3}. The discussion therefore verifies the
measurements that the more complex indices $\{10.7 .0\}$ are to be preferred for the correct indices of G.

The most complicated indices of all the new forms here described are those of $H\{14.9 .0\}$. The discussion shows however that these indices readily fall into the normal series. Simpler indices which suggest themselves are $\{320\},\{850\}$, and $\{11.7 .0\}$. The comparison of measured and calculated angles is as follows.

H, average measured	ϕ
Calculated for $\{850\}$	$75^{\circ} 48^{\prime}$
$\{11.7 .0\}$	7610
$\{14.9 .0\}$	7656
$\{320\}$	7547
	7517

Of the eight measured faces of H, one $\left(75^{\circ} 20^{\prime}\right)$ agrees very closely with the calculated value for $\{320\}$; two agree very closely with the calculated value for $\{850\}$, and two agree closely with the calculated value for \{11.7.0\}. As all the reflections measured were poor, there is no justification for claiming that the measurements show four distinct forms instead of one. The only question is as to the correct indices of this form. And according to the measurements, the only question is between $\{14.9 .0\}$ and $\{11.7 .0\}$. The measurements alone are not sufficient to decide this question as the following comparison shows. The differences (Δ) between the measurements and the calculated angles for $\{14.9 .0\}$ and $\{11.7 .0\}$ are as follows:

Crystal no.	Measurements	$\Delta\{14.9 .0\}$	$\Delta\{11.7 .0\}$
1	$76^{\circ} 09^{\prime}$	$+21^{\prime}$	$+13^{\prime}$
2	7528	-20	-28
2	7536	-12	-20
4	7551	+03	-05
5	7559	+11	+03
6	7548	0	-08
6	7610	+22	+14
7	7520	-28	-36

There is practically no choice, the measurements agreeing about as well with one as with the other.

The discussion however shows that $\{11.7 .0\}$ reduces to $\frac{8}{3}$ for N_{4}. This value of $\frac{8}{3}$ does not belong in the normal series N_{4} and moreover is more complicated than $\frac{5}{2}$, derived from $\{14.9 .0\}$, which does belong in N_{4}. In the normal series $N_{3},\{11.7 .0\}$ becomes $\frac{5}{3}$ which does not be-
long in N_{3} and is more complex than $\frac{3}{2}$ derived from $\{14.9 .0\}$, which does belong in N_{3}.

The discussion therefore shows that the correct indices for H are $\{14.9 .0\}$, a fact which cannot be determined from the measurements alone.

Although the form $K\{950\}$ is extra in both N_{4} and N_{3}, it causes no disturbance in the normal series and the measurements of the five faces of K, three of which agree closely with the calculated value, fully substantiate this form.

The second section of the zone, from $\mu\{210\}$ to $a\{100\}$, is as follows:

μ	L	M	π	-	R	N	P	S	a	
$\frac{h}{k}=$	210	730	830	310	17.5 .0	720	410	510	910	100
$\frac{v}{2}=$	1	$\frac{7}{3}$	$\frac{8}{3}$	3	$\frac{17}{5}$	$\frac{7}{2}$	4	5	9	∞
$v-1=$	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{7}{10}$	$\frac{3}{4}$	1	$\frac{3}{2}$	$\frac{7}{2}$	∞
$2 v=$	0	$\frac{1}{3}$	$\frac{2}{3}$	1	$\frac{7}{5}$	$\frac{3}{2}$	2	$\frac{3}{2}$	$\frac{9}{2}$	∞
N_{3}	$=$	0	$\frac{1}{3}$	$\frac{2}{3}$	1	$\left(\frac{7}{5}\right)$	$\frac{3}{2}$	2	3	(7)
∞										

This section of the zone gives nearly a perfect normal N_{3} series, with only one member ($\frac{1}{2}$) missing and two extras. The form $\{720\}$ of Cesàro, to which the letter R is assigned, fits in perfectly. The form $\{17.5 .0\}$ is undoubtedly vicinal to $\{720\}$, Cesàro giving a calculated difference of only $0^{\circ} 11^{\prime}$.

The form $S\{910\}$ is extra in the normal series but is well substantiated by the measurements of three faces.

Combinations

The combinations observed on the seven measured crystals of valentinite are shown in the following table.

Table 6. Valentinite: Combinations Observed on the Seven Measured Crystals

Form	1	2	3	4	5	6	7
$b\{010\}$	b						
$a\{100\}$	a	-	-	a	-	-	-
$A\{350\}$	-	A	-	A	A	-	-
$B\{340\}$	-	-	-	-	B	B	-
$C\{450\}$	C	-	-	-	-	C	C
$m\{110\}$	m						
$D\{10.9 .0\}$	-	-	D	D	D	D	D
$E\{760\}$	-	-	E	E	E	E	-
$\sigma\{540\}$	-	σ	σ	σ	-	σ	σ
$F\{430\}$	F	F	F	-	F	F	-
$G\{10.7 .0\}$	-	G	G	-	G	G	-
$H\{14.9 .0\}$	H	H	-	H	H	H	-
$J\{530\}$	-	J	J	-	J	J	-
$K\{950\}$	K	-	K	-	K	K	-
$\mu\{210\}$	-	μ	μ	μ	μ	-	-
$L\{730\}$	-	-	L	L	L	-	-
$M\{830\}$	M	M	-	M	-	-	-
$\pi\{310\}$	π	-	-	π	-	π	-
$N\{410\}$	-	-	N	N	N	-	-
$P\{510\}$	-	P	-	P	P	-	-
$S\{910\}$	-	-	-	S	S	-	S
$T\{0.11 .8\}$	T						

ANDORITE(?)

The single prismatic crystal referred to in the introduction to valentinite was about a millimeter long and of a dark gray to nearly black

Fig. 2. Idealized drawing of crystal of andorite(?). Crystal about a millimeter high Forms: $k\{120\}, L\{230\}, m\{110\}, o\{320\}, y\{031\}, \gamma\{021\}, F\{052\}$.
color. It was detached and measured on the goniometer with the results shown below. The crystal was lost when it was attempted to apply microchemical tests.

A striated prism zone, terminated essentially only by side domes, giving poor reflections, made it impossible to decide whether the symmetry was orthorhombic or monoclinic. An extended comparison of the measured angles with those listed in the literature supplemented by a comparison of the habit with those of possible minerals, as given by Goldschmidt's Atlas der Krystallformen, lead to the conclusion that the measured crystal was either andorite, $2 \mathrm{PbS} \cdot \mathrm{Ag}_{2} \mathrm{~S} \cdot 3 \mathrm{Sb}_{2} \mathrm{~S}_{3}$, or freieslebenite, $3 \mathrm{PbS} \cdot 2 \mathrm{Ag}_{4} \mathrm{~S} \cdot 2 \mathrm{Sb}_{2} \mathrm{~S}_{3}$, with a considerable preference for andorite.

A total of 40 faces were measured, of which about half could be correlated with 13 forms of andorite and with 15 forms of freieslebenite.

The faces measured are listed below in the order of measurement, with the corresponding forms and angles for andorite and for freieslebenite. No attempt was made to interpret the measurements of these prism faces (nos. 7, 9, 17, 23, 26, and 34) for which no agreement could be noted with the known forms of either andorite or freieslebenite.

The axial ratios used are, for andorite, $a: b: c=0.6771: 1: 0.4458$, and for freieslebenite, $a: b: c=0.5871: 1: 0.9277, \beta=87^{\circ} 46^{\prime}$.

Table 7. Andorite and Freieslebenite: Comparison of Measured Angles

No.	Note book letter	Measured		Andorite			Freieslebenite		
		ϕ	ρ	Form	ϕ	ρ	Form	ϕ	ρ
1	${ }^{1}$	$44^{\circ} 06^{\prime}$	$90^{\circ} 00^{\prime}$	230	$44^{\circ} 34^{\prime}$	$90^{\circ} 00^{\prime}$	350	$45^{\circ} 39^{\prime}$	$90^{\circ} 00^{\prime}$
2	a	4522	9000	230	6543	0000			
3	b	6634	9000	320	6543	9000	430	6615	9000
4	c	8522	9000	-	-	-	810	8548	9000
5	d	8724	9000	100	9000	9000	100	9000	9000
6	e	8220	9000	510	8218	9000	510	8318	9000
7	f_{1}	6812	9000	-	-	-	-	-	-
8	f_{2}	6604	9000	320	6543	9000	430	6615	9000
9	f_{3}	6447	9000	-	-	-	-	-	-
10	f_{4}	6307	9000	430	6305	9000	-	-	-
11	f_{6}	6139	9000	-	-	-	110	5936	9000
12	f_{6}	5417	9000	110	5554	9000	560	5451	9000
13	f_{7}	4512	9000	230	4434	9000	350	4539	9000
14		3654	9000	120	3627	9000	-	-	-
15	g_{1}	3529	9000	-	-	-	250	3417	9000
16		3636	9000	120	3627	9000	-	-	-
17	y	3833	9000	-	-	-	-	-	-
18	x	4037	9000	-	-	-	120	4026	9000
19	w	4300	9000	230	4434	9000	-	-	-

Table 7. (Concluded).

No.	Note book letter	Measured		Andorite			Freieslebenite		
		ϕ	ρ	Form	ϕ	p	Form	ϕ	ρ
20	v	4611	9000	-	-	-	350	4539	9000
21	u	5359	9000	-	-	-	450	5345	9000
22	t	5608	9000	110	5554	9000	560	5451	9000
23	s	5704	9000	-	-	-	-	-	-
24	r	5817	9000	-	-	-	110	5936	9000
25	q	6312	9000	430	6305	9000	-	-	-
26	p	6812	9000	-	-	-	-	-	-
27	0	7020	9000	210	7118	9000	-	-	-
28	n	6633	9000	320	6543	9000	430	6615	9000
29	m	6403	9000	430	6305	9000	-	-	-
30	l	5705	9000	110	5554	9000	-	-	-
31	k	5422	9000	-	-	-	560	5451	9000
32	j	4449	9000	230	4434	9000	350	4539	9000
33	i	3632	9000	120	3627	9000	-	-	-
34	h	3715	9000	-	-	-	-	-	-
35	B	019	5223	031	000	5313	032	136	5418
36	D	019	5227	031	000	5313	032	136	5418
37	C	019	4707	052	000	4806	054	155	4914
38	E	255	3820	021	000	4143	011	224	4252
							034	312	3452
39	E_{1}	7551	4108	$524{ }^{\text {a }}$	7451	4107	$214{ }^{\text {b }}$	7421	4041
				312	7717	4521			
40	F	1931	6009	$141^{\text {a }}$	2016	6215	$153{ }^{\text {b }}$	1954	6222

${ }^{\text {a }}$ Form not known for andorite.
${ }^{\mathrm{b}}$ Form not known for freieslebenite.
Faces number 39 and 40 are extremely minute; they appear as mere bright specks on the goniometer but gave distinct though poor reflections. The measurements agree fairly well with the calculated values for pyramids of fairly simple indices for both andorite and freieslebenite, though none of these pyramids are known forms for either mineral.

Grouping the measurements of faces of the known forms together, on the assumption that the crystal measured was andorite, the results shown in the following table are obtained. The closest corresponding angle for freieslebenite is added to the last column.

Table 8. Andorite(?): Comparison of Measured and Calculated ϕ Angles of Known Prisms

Form	Measurements	Average of measurements	Calculated andorite	Calculated freieslebenite
$k\{120\}$	$\left\{\begin{array}{l}36^{\circ} 32^{\prime}-37^{\circ} 15^{\prime} \\ 3529-3836 \\ 3654\end{array}\right.$	$36^{\circ} 57^{\prime}$	$36^{\circ} 27^{\prime}$	$\{250\}=34^{\circ} 17^{\prime}$
$l\{230\}$	$\left\{\begin{array}{llll} 44 & 06 & -45 & 22 \\ 44 & 49 & & \\ 40 & 37 & -46 & 11 \\ 45 & 12 \end{array}\right.$	4432	4433	$\{350\}=4539$
$m\{110\}$	$\left\{\begin{array}{lllll}54 & 22 & -57 & 05 \\ 53 & 59 & -58 & 17 \\ 54 & 17 & & \end{array}\right.$	5523	5554	$\{560\}=5451$
$o\{320\}$	$\left\{\begin{array}{llll} 64 & 03 & -66 & 33 \\ 63 & 12 & -68 & 12 \\ 61 & 39 & -68 & 12 \\ 66 & 34 & & \end{array}\right.$	6538	6542	$\{430\}=6615$
$n\{210\}$	7020	7020	7118	
$\psi\{510\}$	8220	8220	8218	$\{510\}=8318$

A closer agreement of the measured prism angles with those of freieslebenite can be obtained by turning the measured crystal 90° around the c-axis, though then there is no agreement between the dome faces.
Table 9. Andorite (?): Comparison of Measured Prism Angles, if Crystal Is Turned 90° Around the c-Axis

Form	$90^{\circ}-\phi$	Freieslebenite
$k\{120\}$	$53^{\circ} 03^{\prime}$	$\{450\}=53^{\circ} 45^{\prime}$
$l\{230\}$	4528	$\{350\}=4539$
$m\{110\}$	3437	$\{250\}=3417$
$o\{320\}$	2422	$a\{140\}=2305$
$n\{210\}$	1940	$\{150\}=1849$
$\psi\{510\}$	740	-

[^2]An idealized drawing of the crystal is shown in Figure 2. The faces of the unit prism $m\{110\}$ are drawn as distinct faces, whereas actually they are rounded and strongly striated vertically. The forms $\{120\}$, $\{230\},\{110\},\{430\}$, and $\{320\}$ are the common prisms, each occurring with at least three faces. The lower portions of both faces of $y\{031\}$ are striated.

The crystal from the Ochoco district resembles in general habit Figure 2 of andorite and Figure 17 of freieslebenite, as listed in Goldschmidt's Atlas der Krystallformen.

The absence of any pinacoids (the measurement of face No. 5, with $\phi=87^{\circ} 24^{\prime}$ does not necessarily demonstrate the occurrence of $\{100\}$) favors the reference to freieslebenite, for andorite crystals commonly have pinacoids present, especially the side pinacoid $b\{010\}$. Thus, in the 15 combinations listed by Koch (1928) b is present on every crystal of andorite as it likewise is in the five drawings listed in Goldschmidt's Atlas der Krystallformen. Faces of $b\{010\}$ are frequently absent on crystals of freieslebenite.

The generally better agreement of the measured angles with those of andorite, however, would seem to favor the reference of the measured crystal to andorite. Additional and better material, though, needs to be examined before a definite identification can be made.

References

Cesìro, G. (1925): Acad.roy. Belgique, Cl. Sci., Mem. (fasc. 4), 1-57.
Косн, S. (1928): Cbl. Min., A, 30.
Gillulx, J. Reed, J. C., and Park, C. F., Jr. (1933): U. S. Geol. Surv., Bull. 846-A, 127-130.

Schaller, W. T. (1911): U. S. Geol. Surv., Bull. 490, 27.
Spencer, L. J. (1907): Min. Mag., 14, 328-331.
Ungemach, H. (1912): Bull. Soc. franc. Min., 35, 539-552. Ungemach's values have been adopted by Goldschmidt (1923), Atlas der Krystall formen, 9, 45-Heidelberg.

[^0]: * Published by permission of the Director, U. S. Geological Survey.

[^1]: ${ }^{1}$ Ungemach gave the axial ratio as 0.3936:1:0.4339. According to a personal communication from Prof. Palache (June 9, 1936), Cesàro, in a note, calls attention to an error in these values. The correct ratio is: $0.3928: 1: 0.4333$.

[^2]: a Form not known for freieslebenite.

