The American Mineralogist

JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA

Vol. 26
FEBRUARY, 1941
No. 2

CRYSTALLOGRAPHIC PROCEDURES*

C. W. Wolfe, Harvard University, Cambridge, Mass.

During the preparation of crystallographic descriptions for the new edition of Dana's System of Mineralogy and also in mineral descriptions from this laboratory, certain procedures are followed. These are presented here.

Measurements

To give a concise and accurate treatment of morphological investigations a tabulation such as that in Table 1 is used. In this table "No. Times" refers to the number of times faces of the listed form were seen, and "Qual." refers to the average quality of the reflecting signal. Rare or uncertain forms are so designated, since the investigating author can determine better than the reader the validity of a form. Uncertain forms are indicated by a question mark, letters being used only for established forms.

Table 1. Presentation of Morphological Data

Form	No. Xls.	No. Times	Size	Qual.	Measured Range $\phi \rho$ or Other Angles	Weighted Mean $\phi \rho$ or Other Angles	Calculated Values $\phi \rho$ or Other Angles
c	001	2	4	VL* *	A* *		
m	110	4	8	L	B		
w	011	4	4	M	C		
d	101	1	2	S	D		
p	111	4	12	VS	E		

* VL= Very Large	A $=$ Excellent
L=Large	B $=$ Good
$\mathrm{M}=$ Medium	$\mathrm{C}=$ Fair
$\mathrm{S}=$ Small	$\mathrm{D}=$ Poor
VS $=$ Very Small	$\mathrm{E}=\mathrm{Bad}$

* Contribution from the Department of Mineralogy and Petrography, Harvard University, No. 234.

Symmetry

The preferred statement of the crystal class is that of Groth (modified by A. F. Rogers, textbook, 1937), accompanied by the complete Her-mann-Mauguin symbols. Corresponding Schoenflies symbols and Dana (textbook, 1932) symmetry class numbers are listed in Table 2.

Table 2. Symmetry Class Notation

System	Groth (Modified)	HermannMauguin	Schoenflies	$\begin{gathered} \text { Dana } \\ (1932) \end{gathered}$
Triclinic	1. Pedial	1	C_{1}	32
	2. Pinacoidal	$\overline{1}$	C_{i}	31
Monoclinic	3. Domatic	m	C_{s}	30
	4. Sphenoidal	2	C_{2}	29
	5. Prismatic	$\frac{2}{m}$	$C_{2 h}$	28
Orthorhombic	6. Rhombic-pyramidal	$m \quad m \quad 2$	$C_{2 v}$	26
	7. Rhombic-disphenoidal	$2 \quad 2 \quad 2$	D_{2}	27
	8. Rhombic-dipyramidal	$\begin{array}{llll}\frac{2}{m} & \frac{2}{m} & \frac{2}{m}\end{array}$	$D_{2 h}$	25
Tetragonal	9. Tetragonal-disphenoidal	4	S_{4}	12
	10. Tetragonal-pyramidal	4	C_{4}	9
	11. Tetragonal-dipyramidal	$\frac{4}{m}$	$C_{4 k}$	8
	12. Tetragonal-scalenohedral	$42 m$	$D_{2 d}$	10
	13. Ditetragonal-pyramidal	$4 \mathrm{~m} m$	$C_{4 v}$	7
	14. Tetragonal-trapezohedral	422	D_{4}	11
	15. Ditetragonal-dipyramidal	$\frac{4}{m} \quad \frac{2}{m} \quad \frac{2}{m}$	$D_{4 h}$	6
Hexagonal P or R^{*}	16. Trigonal-pyramidal		C_{3}	24
	17. Rhombohedral	$\overline{3}$	$C_{3 i}$	22
	18. Ditrigonal-pyramidal		$C_{3 v}$	21
	19. Trigonal-trapezohedral	32	D_{3}	23
	20. Hexagonal-scalenohedral	$\overline{3} \quad \frac{2}{m}$	$D_{3 d}$	20

[^0]Table 2. Continued

System	Groth (Modified)	Hermann- Mauguin	Schoenflies	Dana (1932)	
P^{*}	21. Trigonal-dipyramidal	$\overline{6}$		$C_{3 h}$	19
	22. Hexagonal-pyramidal	6		C_{6}	16
	23. Hexagonal-dipyramidal	6		$C_{6 h}$	15
	24. Ditrigonal-dipyramidal	\bar{m}	m	2	$D_{3 h}$
	25. Dihexagonal-pyramidal	6	m	m	$C_{6 v}$
	26. Hexagonal trapezohedral	6	2	2	D_{6}
	27. Dihexagonal-dipyramidal	$\frac{6}{m}$	$\frac{2}{m}$	$\frac{2}{m}$	$D_{6 h}$

Elements

The elements, in general, include the direct (linear) and reciprocal (polar) axial ratios and interaxial angles plus the gnomonic projection constants (when these differ from the polar values). The elements are given relative to a chosen orientation of axes and unit parametral plane. Orientation refers here to the relative position of the axes of a unique elementary parallelopiped. The unit morphological cell is generally chosen to conform to the structural cell when this is known. Otherwise, the unit is chosen after a consideration of various rules such as Ungemach's rule of total of indices, the law of Bravais, the generalized law of Bravais proposed by Donnay and Harker, or, preferably, Donnay's morphological method of analysis used in conjunction with Peacock's harmonic-arithmetic rule. A consideration of these rules usually leads to a morphological unit which conforms with that derived by x-ray study. Exceptional treatments, however, are sometimes desirable when interrelation between species can be made clearer by an unconventional treatment. Rarely, the x-ray unit involves a complication of the morphological discussion. In such cases it is not retained.

Tabulation of Forms and Angles

The table of forms and angles following the elements should include all of the common and less common forms, with letters and important angles for each. Four categories of forms are recognized in the new edition of the Dana System; they are: common, less common, rare, and uncertain. These are qualitative terms referring to the occurrence in each mineral species.

Few general rules for the order of form listing can be given for all crystal systems, since each possesses restrictive peculiarities. The general order is: first, forms cutting but one crystal axis; second, those cutting two axes; third, those cutting three axes. In the hexagonal system, with four axes, a similar order is employed.

Tabulations will be found in the following pages for each crystal system, giving the order in which all possible forms in each symmetry class are listed. Complementary (or correlative) forms are grouped with their holohedral equivalents and are listed in the same order as though holohedral. In case the vertical axis is polar, the headings "lower" and "upper" are used beneath the Hermann-Mauguin symmetry class symbol. Only "upper" form indices are given, and an x in the "lower" column indicates that the form may occur as a "lower" one. In specific tabulations of the forms of such crystals the same letter is given for the "lower" as for the "upper" form, but a minus sign is placed over it (\bar{c} for example). If the form is observed only as a "lower" one, its letter appears only in that column, but the indices are always those of the upper merohedral equivalent. Plus or minus signs before a form letter indicate the sign of phi of the form. Prime marks (') to the right or left of a form letter indicate whether the form occurs to the right or left of some defined meridian. The general order for plus and minus, right and left forms is: plus right $\left(+^{\prime}\right)$, plus left $\left({ }^{\prime}+\right)$, minus left (${ }^{\prime}-$), minus right $\left(-{ }^{\prime}\right)$.

The angles given in the table for the representative face of each form include the azimuth phi (ϕ) and polar distance rho (ρ), angular coordinates, as well as interfacial angles to two or more fundamental faces. The angles given and their meanings will be shown in figures included in the discussion of each system.

Transformation Formulae

In the transformation of elements and indices from one set to another (old to new) the transformation matrix is written in the linear form (Barker, 1930): $u_{1} v_{1} w_{1} / u_{2} v_{2} w_{2} / u_{3} v_{3} w_{3}$, where $\left(u_{1} u_{2} u_{3}\right),{ }^{*}\left(v_{1} v_{2} v_{3}\right)$, and

* The usage of brackets followed here is:
() = face symbol
$\}=$ form symbol
[]= zone or axis symbol
$\left(w_{1} w_{2} w_{3}\right)$ are the indices, multiple if need be, in the new orientation of the old axial planes (100), (010), and (001), respectively; and where [$u_{1} \nu_{1} w_{1}$], [$u_{2} v_{2} w_{2}$], and $\left[u_{3} v_{3} w_{3}\right]$ in the old orientation represent the new axial lengths [100], [010], and [001], respectively.

To obtain such a formula, then, it is necessary to determine the new indices of the old axial planes (100), (010), and (001) and to write them in that order in vertical columns as shown below. It is further necessary to determine the new indices of any general face $(h k l)$ or of a pair of special faces of $(h k 0),(0 k l)$, and $(h 0 l)$. This requirement arises from the fact that it is impossible to determine from a projection whether the new indices of the old axial planes are correct or are but the simplest expression of the actual multiple indices of the plane, as is demonstrated later. Any face symbol ($h k l$) in the old orientation may be transformed to the new equivalent ($h^{\prime} k^{\prime} l^{\prime}$) by the formula $u_{1} v_{1} w_{1} / u_{2} v_{2} v_{2} / u_{3} v_{3} w_{3}$ as follows:

$$
h^{\prime}=u_{1} h+v_{1} k+w_{1} l ; k^{\prime}=u_{2} h+v_{2} k+w_{2} l ; l^{\prime}=u_{3} h+v_{3} k+w_{3} l .
$$

The following example will serve to indicate the procedure followed to obtain a transformation formula.

$$
\begin{array}{cl}
\text { Old Orientation } & \text { New Orientation } \tag{1}\\
(100)= & (\overline{1} 01)=\left(u_{1} u_{2} u_{3}\right) \\
(010)= & (0 \overline{1} 0)=\left(v_{1} z_{2} v_{3}\right) \\
(001)= & (011)=\left(w_{1} w_{2} w_{3}\right) \\
(121)= & (\overline{1} 03)
\end{array}
$$

Writing the given relations in the linear form $u_{1} v_{1} w_{1} / u_{2} v_{2} w_{2} / u_{3} v_{3} w_{3}$, we obtain $\overline{100 / 011 / 101 . ~ T h i s ~ f o r m u l a ~ m u s t ~ b e ~ c h e c k e d ~ b y ~ t r a n s f o r m i n g ~}$ (121) to obtain the new symbol. This is done graphically below:

The new indices obtained are ($\overline{112}$) instead of the correct ($\overline{1} 03$), showing the need of adjusting the terms of the formula. By a simple cut-andtry process various multiple indices are substituted in the second column of (1). When (011) of (1) is changed to (022), the other equivalences remaining unchanged, the correct formula results.

$$
\begin{array}{ll}
\text { Old } & \text { New } \\
(100) & =(\overline{101)} \\
(010) & =(0 \overline{1} 0) \text { or } \overline{1} 00 / 0 \overline{1} 2 / 102 . \tag{3}\\
(001) & =(022)
\end{array}
$$

Transforming (121) as in (2) we now obtain ($\overline{1} 03$) which validates formula (3).

As was indicated earlier, this type of formula not only facilitates the transformation of indices, but it also permits the determination of the new axial directions, lengths, and angles from their identity in the old lattice. $\left[u_{1} v_{1} w_{1}\right]\left[u_{2} v_{2} w_{2}\right]$, and $\left[u_{3} v_{3} w_{3}\right]$ in the old lattice orientation are the new [100], [010], and [001], respectively. Thus, in the transformation example just given we see that: \dagger

$$
\begin{array}{cc}
\text { Old Orientation } & \text { New Orientation. } \tag{4}\\
{\left[u_{1} v_{1} w_{1}\right]=[\overline{1} 00]} & \equiv[100] \\
{\left[u_{2} v_{2} w_{2}\right]=[0 \overline{1} 2]} & \equiv[010] \\
{\left[u_{3} z_{3} w_{3}\right]=[102]} & \equiv[001]
\end{array}
$$

Conventionally, the new interaxial angles are defined as follows:

$$
\begin{array}{cc}
\text { New } & \text { Old } \\
\alpha^{\prime} & =[010] \wedge[001] \equiv[0 \overline{1} 2] \wedge[102] \\
\beta^{\prime} & =[001] \wedge[100] \equiv[102] \wedge[100] \\
\gamma^{\prime} & =[100] \wedge[010] \equiv[\overline{1} 00] \wedge[0 \overline{1} 2]
\end{array}
$$

The length, T, of any [uvv], in this case of [$\overline{100], ~[0 \overline{1} 2] \text {, or [102] in the }}$ old lattice, is calculated as follows:

$$
\begin{equation*}
T_{u v w}^{2}=a^{2} u^{2}+b^{2} v^{2}+c^{2} w^{2}+2 b c \cos \alpha+2 c a \cos \beta+2 a b \cos \gamma \tag{5}
\end{equation*}
$$

($a, b, c, \alpha, \beta, \gamma$ are the linear elements of the old lattice). If τ is the angle between the directions $\left[u_{1} v_{1} w_{1}\right]$ and $\left[u_{2} v_{2} w_{2}\right]$ in the old lattice, the new axial angles are computed by the general formula:

$$
\begin{align*}
\cos \tau= & {\left[a^{2} \cdot u_{1} u_{2}+b^{2} v_{1} v_{2}+c^{2} w_{1} w_{2}+b c\left(v_{1} w_{2}+r v_{1} v_{2}\right) \cos \alpha\right.} \\
& \left.+i a\left(w_{1} u_{2}+u_{1} w_{2}\right) \cos \beta+a b\left(u_{1} v_{2}+v_{1} u_{2}\right) \cos \gamma\right] / T_{u_{1} v_{1} w_{1}} \cdot T_{u_{2} v_{2} v_{2} w_{2}} \tag{6}
\end{align*}
$$

For a more extended discussion of transformations see the following works:

Lewis, W. J., 1899-Crystallography, 104.
Barker, T. V., 1930-Systematic Crystallography, 32-34.
Donnay, J. D. H., 1937-Am. Mineral., 22, 621-624.
Peacock, M. A., 1937-Am. Mineral., 22, 588-620.
Richmond, W. E., 1937-Am. Mineral., 22, 630-642.
Wolfe, C. W., 1937-Am. Mineral., 22, 736-741.
International Tables, 1935-1, 73-76.

The Triclinic System

Elements. The elements in the triclinic system include: the linear axial ratio $a: b: c(b=1)$ and interaxial angles $\alpha, \beta, \gamma ;$ the polar axial ratio $p_{0}: q_{0}: r_{0}$ ($r_{0}=1$) and interaxial angles λ, μ, ν; and the gnomonic projection constants $p_{0}{ }^{\prime}, q_{0}{ }^{\prime}, x_{0}{ }^{\prime}, y_{0}{ }^{\prime}$. In the triclinic system the gnomonic projection values are greater than the polar values, since r_{0} of the polar ratio, which is taken as unity and normal to $c(001)$, is inclined to the center of the projection.

[^1]The plane of projection of the polar elements thus drops an amount which is a function of the rho value of $c(001)$. The gnomonic projection plane $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (Fig. 1) drops to the position $A B C D$ of the polar elements, both parallel to the equatorial plane. The position of $A B C D$ is determined by the point of emergence on the sphere of projection of the normal to $c(001)$.

Fig. 1. Relation of Gnomonic Projection Elements to Polar Elements in the Triclinic System.

The linear interaxial angles α, β, γ are defined as follows:

$$
\begin{equation*}
\alpha=[010] \wedge[001], \beta=[001] \wedge[100], \gamma=[100] \wedge[010] \tag{7}
\end{equation*}
$$

The polar axial angles λ, μ, ν are the following interfacial angles:

$$
\begin{equation*}
\lambda=(010) \wedge(001), \mu=(001) \wedge(100), \nu=(100) \wedge(010) . \tag{8}
\end{equation*}
$$

The six angles are shown in stereographic projection (Fig. 2).
The projection constants used in calculations are shown in Figs. $4 a$ and $4 b$, which differ only in the obliquity of ν.

Calculation of V_{0}. The first step in the determination of the elements from two-circle goniometrical measurements is the calculation of V_{0},
the best average vertical circle goniometer reading for the normal to (010), which is chosen as the zero meridian. When $b(010)$ is well developed and reflects well, its v reading may be made V_{0}. The best value for

Fig. 2. Stereographic Projection of Linear and Polar Interaxial Angles in the Triclinic System.
V_{0} is subtracted from the vertical circle reading of each face to obtain its ϕ. If the resulting angle be greater than 180°, it is subtracted from 360°, and the remainder constitutes a negative ϕ.
V_{0} may be obtained from the v readings of three or more ($h k 0$) faces according to the formula:

$$
\begin{equation*}
\cot \left(V_{0}-v_{2}\right)=Q \cot \left(v_{3}-v_{1}\right)-(1-Q) \cot \left(v_{2}-v_{1}\right) . \tag{9}
\end{equation*}
$$

where: $v_{1}=$ vertical circle reading of ($h_{1} k_{1} 0$);
$v_{2}=$ vertical circle reading of ($h_{2} k_{2} 0$);
$v_{3}=$ vertical circle reading of $\left(h_{3} k_{3} 0\right)$;

$$
Q=\frac{\frac{k_{3}}{h_{3}}-\frac{k_{9}}{h_{4}}}{\frac{k_{3}}{h_{3}}--\frac{k_{1}}{h_{1}}}
$$

V_{0} is also calculated from measurements of various pairs of terminal faces, each pair having the same h / l value, according to the following formula:

$$
\begin{equation*}
\operatorname{Tan} V_{0}=\frac{\left(\sin v_{2} \tan \rho_{2}\right)-\left(\sin v_{1} \tan \rho_{1}\right)}{\left(\cos v_{2} \tan \rho_{2}\right)-\left(\cos v_{1} \tan \rho_{1}\right)} . . \tag{10}
\end{equation*}
$$

where $v_{1}, \rho_{1} ; v_{2}, \rho_{2}$ are the angular readings of the two faces (Fig. 3). This calculation is repeated for several pairs of such faces, and the results averaged. Due attention must be given to the signs of the trigonometric functions.

Extended demonstrations and illustrations of the use of (9) and (10) are given by C. Dreyer and V. Goldschmidt-Meddelelser om Grónland,

Fig. 3. Gnomonic Projection to Illustrate Calculation of V_{0} from the Angular Readings of Two Terminal Forms with the same h / l value.

34, 29-36 (1907); by L. Borgstrom and V. Goldschmidt—Zeits. Kryst., 41, 75-78 (1905); and by A. L. Parsons-Am. Mineral., 5, 193-194, 198-203 (1920).

Fig. 4. Gnomonic Projection Constants in the Triclinic System with ν less than $90^{\circ} 00^{\prime}(4 \mathrm{a})$ and greater than $90^{\circ} 00^{\prime}(4 \mathrm{~b})$.

Calculation of Projection Elements. The following formulae are useful in the calculation of the projection elements $p_{0}{ }^{\prime}, q_{0}{ }^{\prime}, x_{0}{ }^{\prime}, y_{0}{ }^{\prime}$, from twocircle goniometric measurements (see Fig. 4).

$$
\begin{align*}
& x^{\prime}=\sin \phi \tan \rho=x_{0}^{\prime}+\frac{h}{l} p_{0}^{\prime} \sin \nu \text { from Fig. 4........ } \tag{11}\\
& y^{\prime}=\cos \phi \tan \rho=y_{0}^{\prime}+\frac{k}{l} q_{0}^{\prime}+\frac{h}{l} p_{0}^{\prime} \cos \nu \text { from Fig. } 4 . \tag{12}
\end{align*}
$$

If $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \ldots x_{n}{ }^{\prime}$ are the ordinates and $y_{1}{ }^{\prime}, y_{2}{ }^{\prime}, \ldots y_{n}{ }^{\prime}$ the abscissae of the gnomonic poles $\left(h_{1} k_{1} l_{1}\right),\left(h_{2} k_{2} l_{2}\right), \ldots\left(h_{n} k_{n} l_{n}\right)$, then:

$$
\begin{align*}
& p_{0}^{\prime} \sin \nu=\frac{l_{1} l_{2}\left(x_{1}^{\prime}-x_{2}^{\prime}\right)}{h_{1} l_{2}-h_{2} l_{1}} \text { from (11). } \tag{13}\\
& x_{0}{ }^{\prime}=x^{\prime}-\frac{h}{l} p_{0}^{\prime} \sin \nu \text { from (11) } \tag{14}\\
& p_{0}^{\prime} \cos \nu=\frac{l_{1} l_{2}\left(y_{1}^{\prime}-y_{2}^{\prime}\right)\left(k_{2} l_{3}-k_{3} l_{2}\right)-l_{2} l_{3}\left(y_{2}^{\prime}-y_{3}^{\prime}\right) k_{1} l_{2}-k_{2} l_{1}}{\left(h_{1} l_{2}-h_{2} l_{1}\right)\left(k_{2} l_{3}-k_{3} l_{2}\right)-\left(h_{2} l_{3}-h_{3} l_{2}\right)\left(k_{1} l_{2}-k_{2} l_{1}\right)} . \tag{15}\\
& q_{0}{ }^{\prime}=\frac{p_{0}^{\prime} \cos \nu\left(h_{2} l_{1}-h_{1} l_{2}\right)+l_{1} l_{2}\left(y_{1}^{\prime}-y_{2}^{\prime}\right)}{k_{1} l_{2}-k_{2} l_{1}} \text { from (12). } \tag{16}\\
& y_{0}^{\prime}=y^{\prime}-\frac{k}{l} q_{0}^{\prime}-\frac{h}{l} p_{0}^{\prime} \cos \nu \text { from (12) . } \tag{17}\\
& \tan \nu=\frac{p_{0}^{\prime} \sin \nu}{p_{0}^{\prime} \cos \nu} . \tag{18}\\
& p_{0}^{\prime}=\frac{p_{0}^{\prime} \sin \nu}{\sin \nu}=\frac{p_{0}^{\prime} \cos \nu}{\cos \nu} . \tag{19}
\end{align*}
$$

Relation of Projection Elements to Polar Elements. ϕ_{0} and ρ_{0} are the azimuth and the polar distance of $c(001)$, the rectangular coordinates of which are $x_{0}{ }^{\prime}$ and $y_{0}{ }^{\prime}$ (Fig. 5).

Fig. 5. Angular and Rectangular Coordinates of c (001) in the Triclinic System.

$$
\begin{equation*}
\tan \phi_{0}=\frac{x_{0}^{\prime}}{y_{0}^{\prime}} \text { from Fig. } 5 . \tag{20}
\end{equation*}
$$

$$
=\frac{x_{0}}{y_{0}} \text { from Figs. } 1 \text { and } 5
$$

(projection values are primed, and polar values are unprimed)

$$
\begin{align*}
& \tan \rho_{0}=\frac{x_{0}^{\prime}}{\sin \phi_{0}}=\frac{y_{0}^{\prime}}{\cos \phi_{0}} \text { from Fig. } 5 . \\
& \sin \rho_{0}=\frac{x_{0}}{\sin \phi_{0}}=\frac{y_{0}}{\cos \phi_{0}} \text { from Fig. 1. } \tag{22}\\
& x_{0}=\sin \rho_{0} \sin \phi_{0} \tag{23}\\
& y_{0}=\sin \rho_{0} \cos \phi_{0} \tag{24}\\
& q_{0}=q_{0}^{\prime} \cos \rho_{0} \text { from Fig. } 1 \tag{26}\\
& \cos \lambda=y_{0} \text { from Fig. } 2 \tag{27}\\
& \cos \mu=y_{0} \cos \nu+x_{0} \sin \nu \text { from Fig. } 2 \tag{28}
\end{align*}
$$

The linear and polar elements are related as follows:

$$
\begin{align*}
a: b(=1): c: & : \frac{\sin \alpha}{p_{0}}: \frac{\sin \beta}{q_{0}}: \frac{\sin \gamma}{r_{0}(=1)}:: \frac{\sin \lambda}{p_{0}}: \frac{\sin \mu}{q_{0}}: \frac{\sin \nu}{r_{0}(=1)} . \tag{29}\\
a & =\frac{q_{0}^{\prime} \sin \lambda}{p_{0}^{\prime} \sin \mu} \text { from (25),(26),(29)} \ldots \ldots \ldots \tag{30}\\
c & =\frac{q_{0}^{\prime} \cos \nu \sin \lambda}{\sin \mu} \text { from (26) and (29) } \ldots \ldots \ldots \tag{31}\\
p_{0} & =\frac{c \sin \alpha}{a \sin \gamma} \text { from (29) } \ldots \tag{32}
\end{align*}
$$

The relationship between the polar angles λ, μ, ν and the linear angles α, β, γ is as follows

$$
\begin{gather*}
\left(\sigma=\frac{\lambda+\mu+\nu}{2}\right): \\
\sin \frac{\alpha}{2}=\sqrt{\frac{\sin \sigma \sin (\sigma-\lambda)}{\sin \mu \sin \nu}} \text { from Fig. } 2 \tag{34}\\
\sin \frac{\beta}{2}=\sqrt{\frac{\sin \sigma \sin (\sigma-\mu)}{\sin \nu \sin \lambda}} \\
\sin \frac{\gamma}{2}=\sqrt{\frac{\sin \sigma \sin (\sigma-\nu)}{\sin \lambda \sin \mu}}
\end{gather*}
$$

To obtain λ, μ, ν from α, β, γ, substitute the latter for the former, respectively, in (34).

Order of Form Listing. The following order of listing (Table 3) is used in the triclinic system. The letters c, b, a, m, M are reserved for the faces (001), (010), (100), (110), 1 10), respectively.

Table 3. Order of Form Listing in the Triclinic System

$\begin{aligned} & \hline \text { Class } \\ & \hline \text { Lower } \end{aligned}$	1		$\overline{1}$
	Upper		
\bar{c}	c	001	001
	b	010	010
	-b	010	
	a	100	100
	$-a$	100	
	d	$h k 0$	$h k 0$ in order of increasing $\frac{h}{k}$
		$\bar{h} \bar{k} 0$	
	D	$h \bar{k} 0$	$h \bar{k} 0$ in order of decreasing $\frac{h}{k}$
	$-D$	$\bar{h} k 0$	
\bar{w}	w	0 kl	$0 k l$ in order of increasing $\frac{k}{l}$
\bar{W}	W	$0 \bar{k} l$	$0 \overline{k l}$ in order of increasing $\frac{k}{l}$
\bar{e}	e	h0l	$h 0 l$ in order of increasing $\frac{h}{l}$
\bar{E}	E	hol	$\bar{h} 0 l$ in order of increasing $\frac{h}{l}$
x	x^{*}	$h h l$	$h h l$ in order of increasing $\frac{h}{l}$
x	x	$h \bar{h} l$	$h \bar{h} l$ in order of increasing $\frac{h}{l}$
x	x	$\bar{h} h l$	$\bar{h} h l$ in order of increasing $\frac{h}{l}$
x	x	$\overline{\mathrm{h}} \mathrm{l} 2$	$\bar{h} \bar{h} l$ in order of increasing $\frac{h}{l}$
x	x	$h k l$	$h k l \text { in order of increasing } \frac{h}{l}$
x	x	$h \bar{k} l$	$h \bar{k} l$ in groups of equal $\frac{h}{l}$, list
x			$\bar{h} k l$ in order of increasing $\frac{k}{l}$
x		$\bar{h} \bar{k} l$	$\overline{h / k l}$

[^2]Triclinic Angles. The angles given in triclinic tables are: ϕ, ρ, A, B, C. Figure 6 is a stereographic projection showing these angles.

Fig. 6. Stereographic Projection of Angles Given for Forms in the Triclinic System.
$\tan \phi_{h k l}=\frac{x^{\prime}}{y^{\prime}}=\frac{x_{0}^{\prime}+\frac{h}{l} p_{0}^{\prime} \sin \nu}{y_{0}^{\prime}+\frac{k}{l} q_{0}^{\prime}+\frac{h}{l} p_{0}^{\prime} \cos \nu}$ from Fig. 4..
$\tan \rho_{h k l}=\frac{x^{\prime}}{\sin \phi}=\frac{y^{\prime}}{\cos \phi}$ from Fig. 4 and (35)
The angles A, B, C, are the angles which the face makes with $a(100), b$ (010), c(001), respectively. These angles are calculated by means of the general formula for the interfacial angle Δ :
$\cos \Delta=\cos \rho_{1} \cos \rho_{2}+\sin \rho_{1} \sin \rho_{2} \cos \left(\phi_{2}-\phi_{1}\right)$.
where ϕ_{1}, ρ_{1} and ϕ_{2}, ρ_{2} are the angular coordinates of the two faces. For the specific cases of the calculations of the angles A, B, C, formula (37) becomes:

$$
\begin{align*}
\cos A & =\sin \rho_{h k l} \cos \left(\phi_{100}-\phi_{h k l}\right) \ldots \tag{38}\\
\cos B & =\sin \rho_{h k l} \cos \phi_{h k l} \ldots \ldots \ldots \ldots \tag{39}\\
\cos C & =\cos \rho_{h k l} \cos \rho_{0}+\sin \rho_{h k l} \sin \rho_{0} \cos \left(\phi_{0}-\phi_{h k l}\right) \tag{40}
\end{align*}
$$

A graphical check is always made to avoid gross errors. The only source of error in the determination of ϕ and ρ is the calculation of the x^{\prime} and y^{\prime} coordinates. These may be checked satisfactorily on a gnomonic projection with a unit circle radius of 10 cm ., using the projection constants for plotting the faces. The interfacial angles A, B, C, are checked on a stereographic net (20 cm . radius), using the calculated ϕ and ρ values for plotting the faces. This check is accurate to ± 15 minutes.

The Monoclinic System

Elements. The elements here consist of: the linear axial ratio, $a: b: c$ $(b=1)$, and the axial angle β between the positive ends of the c and a

Fig. 7. Relation of Gnomonic Projection Elements to Polar Elements in the Monoclinic System.
axes; the polar ratio, $p_{0}: q_{0}: r_{0}\left(r_{0}=1\right)$, and the reciprocal axial angle μ (the supplement of β); the polar ratio $r_{2}: p_{2}: q_{2}\left(q_{2}=1\right)$, obtained when b (010) is set in polar position, and the phi of $a(100)$ is $0^{\circ} 00^{\prime}$; the projection constants $p_{0}{ }^{\prime}, q_{0}{ }^{\prime}, x_{0}{ }^{\prime}$ (see Fig. 8).

In the monoclinic system, as in the triclinic, the projection elements do not coincide with the polar elements. For $r_{0}=1$ the gnomonic plane $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (Fig. 7) must drop to the position of $A B C D$, the amount of that drop being a function of the ρ angle of $c(001),\left(\rho_{0}\right)$.

Once the poles of measured faces have been plotted on the gnomonic projection and the correct gnomonic net drawn, the following convention is observed: $c<a$ (b is fixed by symmetry). If the lattice is primitive, the base is the node of the gnomonic net closest to the center of projection;
this yields the least anorthism of the axes. If the lattice is centered, the base is usually chosen in such a manner that the lattice is base-centered, whether or not this makes $c<a$.

Fig. 8. Gnomonic Projection Constants in the Monoclinic System, Conventional Orientation.

Calculation of Projection Elements. The ϕ and ρ angles of the various faces are obtained from measurements. From Fig. 8 are derived the following:

$$
\begin{equation*}
x^{\prime}=x_{0}^{\prime}+\frac{h}{l} p_{0}^{\prime}=\sin \phi \tan \rho \text { (Fig. 8) } \tag{41}
\end{equation*}
$$

If x_{1}^{\prime} and x_{2}^{\prime} are the x^{\prime} coordinates of faces $\left(h_{1} k_{1} l_{1}\right)$ and $\left(h_{2} k_{2} l_{2}\right)$, then:

$$
\begin{align*}
p_{0}^{\prime} & =\frac{l_{1} l_{2}\left(x_{1}^{\prime}-x_{2}^{\prime}\right)}{\left(h_{1} l_{2}-h_{2} l_{1}\right)}(\text { from 41) } \ldots . \tag{42}\\
x_{0}^{\prime} & =x^{\prime}-\frac{h}{l} p_{0}^{\prime}(\text { from 41) } \ldots \ldots \tag{43}\\
y^{\prime} & =\frac{k}{l} q_{0}^{\prime}=\cos \phi \tan \rho \text { (Fig. 8). } \tag{44}
\end{align*}
$$

$$
\begin{align*}
q_{0}^{\prime} & =\frac{l y^{\prime}}{k}(\text { from 44) } \tag{45}\\
\cot \mu & =x_{0}^{\prime} \ldots \ldots \ldots \ldots \tag{46}\\
\tan \rho_{0} & =x_{0}^{\prime} \ldots \ldots \ldots \ldots \tag{47}
\end{align*}
$$

Calculation of Polar Elements. The polar elements are related to the projection elements as follows:

$$
\begin{align*}
& p_{0}=p_{0}^{\prime} \cos \rho_{0}=p_{0}^{\prime} \sin \mu \text { (Fig. 7) } \tag{48}\\
& q_{0}=q_{0}^{\prime} \cos \rho_{0}=q_{0}^{\prime} \sin \mu \text { (Fig. 7) } \tag{49}\\
& r_{0}=1 \tag{50}\\
& r_{2}=\frac{1}{q_{0}}=\frac{1}{q_{0}^{\prime} \sin \mu} . \tag{51}\\
& p_{2}=\frac{p_{0}}{q_{0}}=\frac{p_{0}^{\prime}}{q_{0}^{\prime}} \tag{52}\\
& q_{2}=1 . \tag{53}
\end{align*}
$$

Calculation of Linear Elements. The linear elements are related as follows to the polar and projection elements:

$$
\begin{align*}
& a=\frac{q_{0}}{p_{0} \sin \mu}=\frac{q_{0}}{p_{0} \sin \mu}(\text { from 29) } . \tag{54}\\
& c=\frac{q_{0}}{\sin \mu}=q_{0}^{\prime}(\text { from 29) } \ldots \ldots \ldots \tag{55}\\
& \beta=180^{\circ}-\mu \ldots \ldots \ldots \ldots \ldots . \tag{56}
\end{align*}
$$

The derivation of the elements of a monoclinic mineral from measurements made with the b-axis vertical is as follows.
V_{0} may be obtained as in (9) and (10). If, however, the quality of either $c(001)$ or $a(100)$ is sufficiently good, the vertical circle reading of one of them may be taken as V_{0}. The ϕ_{2} readings for all of the faces are obtained by subtracting V_{0} from their vertical circle readings (see Pea-cock-Am. Jour. Sci., 28, 241-254, for meaning of subscript ${ }_{2}$). Ordinarily, the elements are calculated with the azimuth ϕ_{2} of (100) $=0^{\circ} 00^{\prime}$ (Fig. 9), and the angles are given accordingly; but they may be calculated as readily when the azimuth of $(001)=0^{\circ} 00^{\prime}$. Two sets of similar formulae are given below for these two cases. Using the measured ϕ_{2} and ρ_{2} values, the x and y coordinates of each face in this orientation are obtained by (11) and (12). In the formulae below x_{1} and x_{2} are the ordinates and $y_{1} y_{2}$ are the abscissae of any two gnomonic poles $\left(h_{1} k_{1} l_{1}\right)\left(h_{2} k_{2} l_{2}\right)$. Indices obtained from the gnomonic plot in this orientation are listed in the sequence of the intercepts of the gnomonic pole on the polar axes p_{2}, $q_{2}=1$, and r_{2}, clearing fractions where necessary. Thus, these indices are identical with those obtained for the same face in the normal position where $r_{0}=1$.

Fig. 9. Gnomonic Projection Constants in the Monoclinic System with b-axis vertical.

$$
\begin{align*}
& \text { where } \phi_{2} \text { of } a(100)=0^{\circ} 00^{\prime} \quad \text { where } \phi_{2} \text { of } c(001)=0^{\circ} 00^{\prime} \\
& \tan \mu=\frac{k_{1} h_{2} x_{1}-k_{2} h_{1} x_{2}}{k_{1} h_{2} y_{1}-k_{2} h_{1} y_{2}} \ldots \text { (} \\
& r_{2}=\frac{k x}{l \sin \mu} . \tag{61}\\
& 力_{2}=\frac{k y}{h}-\frac{k x}{h \tan \mu} \ldots \ldots \tag{62}\\
& a=\frac{1}{p_{2} \sin \mu}, c=\frac{1}{r_{2} \sin \mu} . \tag{63}\\
& p_{0}^{\prime}=\frac{p_{2}}{r_{2} \sin \mu}, \dot{q}_{0}^{\prime}=\frac{1}{r_{2} \sin \mu}, x_{0}^{\prime}=\cot \mu \tag{64}\\
& \tan \mu=\frac{k_{1} l_{2} x_{1}-k_{2} l_{1} x_{2}}{k_{1} l_{2} y_{1}-k_{2} l_{1} y_{2}} \ldots(60) \\
& r_{2}=\frac{k y}{l}-\frac{k x}{l \tan \mu} . \\
& p_{2}=\frac{k x}{h \sin \mu} . .
\end{align*}
$$

Order of Form Listing. The order of listing in the monoclinic system is shown in Table 4. The letters c, b, a, m are conventionally used for (001), (010), (100), (110), respectively.

Monoclinic Angles. The angles given in the monoclinic system are $\phi, \rho, \phi_{2}, \rho_{2}=B, C, A$ (Fig. 10). ϕ_{2} and ρ_{2} are the phi and rho values obtained when $b(010)$ is set in polar position and the azimuth of $a(100)$ is $0^{\circ} 00^{\prime}$ (in this position the $r_{2}: p_{2}: q_{2}$ polar ratio is obtained). C and A represent the angles which a face makes with $c(001)$ and $a(100)$, respectively,

Fig. 10. Stereographic Projection of Angles Given in the Monoclinic System.

$$
\begin{align*}
& \tan \phi=\frac{x^{\prime}}{y^{\prime}} \text { (from Fig. 8) . } \tag{65}\\
& \tan \rho=\frac{x^{\prime}}{\sin \phi}=\frac{y^{\prime}}{\cos \phi}(\text { from Fig. 8) } \tag{66}\\
& \cot \phi_{2}=x^{\prime}=\sin \phi \tan \rho \text { from (41), Fig. 9, Fig. } 10 \tag{67}\\
& \cos \rho_{2}=\cos B=\sin \rho \cos \phi \text { from Fig. 9, Fig. } 10 \tag{68}\\
& \cos C=\sin \left(\phi_{2}+\rho_{0}\right) \sin B \text { from Fig. } 10 \tag{69}\\
& \cos A=\sin \rho \sin \phi \text { from Fig. } 10 \tag{70}
\end{align*}
$$

Table 4. Order of Form Listing in the Monoclinic System

Class	m	2	$\frac{2}{m}$
Lower x	Upper		
	c 001	001	001
	$b \quad 010$	010	010
		-b 010	
	a 100	100	100
	$-a \quad 100$		
	$k \quad k k 0$	$k^{\prime} \quad h k 0$	$h k 0$ in order of increasing phi
	-k \quad hk 0	${ }^{\prime} k \quad h \bar{k} 0$	
x	w 0 kl	$\begin{array}{ll} w! & 0 k l \\ { }^{\prime} w & 0 \bar{k} l \end{array}$	$0 k l$ in order of increasing rho

Table 4. Continued

Class	m	2	$\frac{2}{m}$
Lower x	$\begin{aligned} & \text { Upper } \\ & d \quad h 0 l \end{aligned}$	hol	$h 0 l$ in order of increasing $\frac{h}{l}$
x	D $\bar{h} 01$	hol	$\bar{h} 0 l \text { in order of increasing } \frac{h}{l}$
x	$q \quad h h l$	hhl	$h h l$ in order of increasing $\frac{h}{l}$
x	$Q \quad \bar{h} h l$	hal	$\bar{h} h l$ in order of increasing $\frac{h}{l}$
x	$r h k l$	$\begin{array}{ll} r^{\prime} & h k l \\ { }^{\prime} r & h \bar{k} l \end{array}$	$h k l$ in order of increasing $\frac{h}{l}$; in groups of equal $\frac{h}{l}$, list in order of increasing $\frac{k}{l}$
x	$R \quad \bar{h} k l$	$R^{\prime} \quad \bar{h} k l$ ${ }^{\prime} R \quad \bar{h} \bar{k} l$	$\bar{h} k l$ same as for $h k l$

The Orthorhombic System

Elements. The elements in the orthorhombic system include: the axial ratio $a: b: c(b=1)$ (with the convention usually adopted that $c<a<b)$; the polar ratio $p_{0}: q_{0}: r_{0}\left(r_{0}=1\right)$; the polar ratio $q_{1}: r_{1}: p_{1}\left(p_{2}=1\right)$; the polar ratio $r_{2}: p_{2}: q_{2}\left(q_{2}=1\right)$ (See Peacock-Am. Jour. Sci., 28, 241-254 [1934]. See, also, Fig. 11). Cyclic permutations of the polar ratio are given because an orthorhombic crystal may be measured with any one of the three axes vertical, and the ensuing gnomonic plot would change accordingly.

Fig. 11. Gnomonic Projections of Cyclic Permutations of Polar Elements in the Orthorhombic System (Polar Elements of Cannizzarite).

Calculation of Elements. The angular measurements, ϕ and ρ, are related to the linear and polar elements as follows:

$$
\begin{align*}
& a=\frac{q_{0}}{p_{0}}=\frac{k \cot \phi}{h} \text { (Fig. 11) } \ldots \ldots \tag{71}\\
& p_{0}=\frac{l \sin \phi \tan \rho}{h} \text { (Fig. 11) } \ldots \tag{72}\\
& q_{0}=c=\frac{l \cos \phi \tan \rho}{k} \text { (Fig. 11). } \tag{73}
\end{align*}
$$

Order of Form Listing. The order of listing in Table 5 is followed in the orthorhombic system. The letters c, b, a, m, are reserved for the faces (001), (010), (100), (110), respectively. The 90° meridian defines right and left forms (Fig. 12).

Table 5. Order of Form Listing in the Orthorhombic System

Class mm2		22	$\frac{2}{m} \frac{2}{m} \frac{2}{m}$
Lower	Upper		
x	$c \quad 001$	001	001
	b 010	010	010
	a 100	100	100
	$k \quad h k 0$	$h k 0$	$h k 0$ in order of increasing $\frac{h}{k}$
x	w 0 kl	0kl	$0 k l$ in order of increasing $\frac{k}{l}$
x	$d \quad h 0 l$	$h 0 l$	$h 0 l$ in order of increasing $\frac{h}{l}$
x	$q \quad h h l$	$\begin{array}{ll} q^{\prime} & h h l \\ ' q & h \bar{h} l \end{array}$	$h h l$ in order of increasing $\frac{h}{l}$
x	$r \quad h k l$	$\begin{array}{ll} r^{\prime} & h k l \\ { }^{\prime} r & h \bar{k} l \end{array}$	$h k l$ in order of increasing $\frac{h}{l}$; in groups of equal $\frac{h}{l}$, list in order of increasing $\frac{k}{l}$

Orthorhombic Angles. Six angles for each form are given in the orthorhombic system. These are: ϕ and ρ in the conventional orientation $(c<a<b) ; \phi_{1}$ and $\rho_{1}=A$, with $a(100)$ in polar position and the phi of $c(001)$ equal to $0^{\circ} 00^{\prime}$; and ϕ_{2} and $\rho_{2}=B$, with $b(010)$ in polar position and

Fig. 12. Stereographic Projection Showing Form Designation and Angles in the Orthorhombic System.
the phi of $a(100)$ equal to $0^{\circ} 00^{\prime}$ (see Fig. 12). Not only do these angles give important interfacial angles, but they also provide a ready check on measured angles regardless of which axis is made vertical.

$$
\begin{align*}
& \tan \phi=\frac{h p_{0}}{k q_{0}} \text { from Fig. } 11 \tag{74}\\
& \tan \rho=C=\frac{h p_{0}}{l \sin \phi}=\frac{k q_{0}}{l \cos \phi} \text { from Fig. } 11 \tag{75}\\
& \tan \phi_{1}=\frac{k q_{0}}{l} \text { from Fig. } 12 . \tag{76}\\
& \cos \rho_{1}=\cos A=\sin \rho \sin \phi \text { from Fig. } 12 \tag{77}\\
& \cot \phi_{2}=\frac{h p_{0}}{l} \text { from Fig. } 12 . \tag{78}\\
& \cos \rho_{2}=\cos B=\sin \rho \cos \phi \text { from Fig. } 12 \tag{79}
\end{align*}
$$

Tetragonal System

Elements. The elements in this system include the linear ratio, $a: c$ $(a=1)$, and the polar ratio $p_{0}: r_{0}\left(r_{0}=1\right)$. In this case c and p_{0} are equal and may be obtained from the ϕ and ρ readings of the various types of forms as follows:

$$
\begin{align*}
\text { from }(0 k l) \text { or }(k 0 l) c & =p_{0}=\frac{l \tan \rho}{k} \ldots \tag{80}\\
\text { from }(h h l) c & =p_{0}=\frac{l \tan \rho \sin 45^{\circ}}{h} \ldots \ldots \ldots \ldots \tag{81}\\
\text { from }(h k l) c & =p_{0}=\frac{l \tan \rho \sin \phi}{h}=\frac{l \tan \rho \cos \phi}{k} . . \tag{82}
\end{align*}
$$

Order of Form Listing. Table 6 shows the order in the tetragonal system. The letters c, a, m, are reserved for the faces (001), (010), (110), respectively. The plus 45° and minus 45° meridians define right and left forms (Fig. 13).

Table 6. Order of Form Listing in the Tetragonal System

Class 4	$\left\lvert\, \frac{4}{\text { Lower Upper }}\right.$		$\frac{4}{m}$	42 m	$\frac{4 \mathrm{~mm}}{\text { Lower Upper }}$		422	$\frac{4}{m} \frac{2}{m} \frac{2}{m}$
001	x	001	001	001	x	001	001	001
$a \quad 010$		010	010	010		010	010	010
m 110		110	110	110		110	110	110
${ }^{\text {d }}$ hk0		hk0	$h k 0$	$h k 0$		$h k 0$	$h k 0$	$h k 0$ in order of increasing $\frac{h}{k}$
$-d \quad h k 0$		$\stackrel{L}{h} k 0$	$\bar{h} k 0$					
$\begin{array}{ll} i^{\prime} & 0 k l \\ \prime i & k 0 l \end{array}$	x	Okl	0kl	0kl	x	0 kl	0 l	0 kl in order of increasing $\frac{k}{l}$
$\begin{array}{rr} o & h h l \\ -0 & \bar{h} h l \end{array}$	x	hhl	hhl	$\begin{aligned} & h h l \\ & \bar{h} h l \end{aligned}$	x	hhl	hhl	$h h l$ in order of increasing $\frac{h}{l}$
$u^{\prime} \quad h k l$	x	hkl	$h k l$	$h k l$	x		$h k l$	$h k l$ in order of increasing $\frac{h}{l}$;
'ukhl $-{ }^{\prime} u \bar{h} k l$ $-u^{\prime} \bar{k} h l$			khl	$\bar{h} k l$			khl	in groups of equal $\frac{h}{l}$, list in order of increasing $\frac{k}{l}$

Tetragonal Angles. The angles given in the tetragonal system are: $\phi ; \rho ; A$, the angle to $a(100) ; \bar{M}$, the angle to $-m(\overline{1} 0)$, given for plus forms only; M, the angle to $m(110)$, given for minus forms only. These

Fig. 13. Stereographic Projection Showing Form Designation and Angles in the Tetragonal System.
yield useful interfacial angles as is seen in Fig. 13. The formulae for calculation of these angles are:
$\tan \phi=\frac{h}{k}$ from Fig. 13
$\tan \rho=\frac{h p_{0}}{l \sin \phi}=\frac{k p_{0}}{l \cos \phi}$ from Fig. 13.
$\cos A=\sin \rho \sin \phi$; supplement is obtained when ϕ is negative, that is,

$$
\begin{equation*}
\text { for }\{\bar{h} k l\} \text { and }\{\bar{k} h l\} \text { forms. } \tag{85}
\end{equation*}
$$

$\cos \bar{M}=\sin \rho \cos \left(45^{\circ}+\phi\right)$; supplement is obtained when form symbol is $\{k h l\} \ldots$ (86)
$\cos M=\sin \rho \cos \left(45^{\circ}-\phi\right)$; supplement is obtained when form symbol is $\{\bar{k} h l\}$
Since ϕ is a constant for each h / k value in the tetragonal system, the following table of ϕ angles is given with variations in h and k from 1 to 11 . The angles are given according to increasing magnitude to facilitate rapid comparison with measured values. The same angles are valid in the isometric system.

Table 7. Phi Angles in the Tetragonal System

$h: k$	ϕ	$h: k$
$1: 11-5^{\circ} 11^{\prime} 40^{\prime \prime}$	ϕ	$h: k$
$1: 10-54238$	$4: 11-19^{\circ} 58^{\prime} 59^{\prime \prime}$	ϕ
$1: 9-62025$	$3: 8-203322$	$7: 10-34^{\circ} 59^{\prime} 31^{\prime \prime}$
	$2: 5-214805$	$5: 7-353216$
$1: 8-70730$	$3: 7-231155$	$8: 11-360139$
$1: 7-80748$	$4: 9-235743$	$3: 4-365212$
$1: 6-92744$	$5: 11-242638$	$7: 9-375230$
$2: 11-101817$	$1: 2-263354$	$4:-383935$
$1: 5-111836$	$6: 11-283638$	$9: 11-391722$
$2: 9-123144$	$5: 9-290317$	$5: 6-394820$
$1: 4-140210$	$4: 7-294442$	$6: 7-403605$
$3: 11-151518$	$3: 5-305750$	$7: 8-411109$
$2: 7-155644$	$5: 8-320019$	$8: 9-413737$
		$9: 10-415914$
$3: 10-164157$	$7: 11-322816$	$10: 11-421625$
$1: 3-182606$	$2: 3-334124$	$1: 1-450000$

Hexagonal System

Introduction. The hexagonal system has caused considerable difficulty, principally due to the introduction of the so-called G_{2} position of V. Goldschmidt. The G_{1} position is, however, without ambiguity, as has been pointed out by Peacock (Am. Mineral., 23, 314-328, 1938) if certain changes of the polar axes and prime meridian of Goldschmidt are made. In Goldschmidt's works the G_{2} position is sometimes the only one used. It is important, therefore that the transformation from the G_{2} Bravais symbol to the G_{1} Bravais symbol be given. It is as follows:

$$
\begin{equation*}
\frac{1}{3} \frac{2}{3} 00 / \frac{1}{3} \frac{\overline{1}}{3} 00 / \bar{\imath} / 0001 \tag{88}
\end{equation*}
$$

where i equals $(h+k)$.
Elements. The elements of the hexagonal system include the axial ratio, $a: c(a=1)$, and the polar ratio, $p_{0}: r_{0}\left(r_{0}=1\right)$. Some of the more important mathematical relations here involved are as follows:

$$
\begin{gather*}
p_{0}=\text { tangent } \rho(10 \overline{1} 1) \ldots . \tag{89}\\
c=\frac{p_{0}}{2} \sqrt{3}=\text { tangent } \rho(11 \overline{2} 2) \tag{90}
\end{gather*}
$$

The elements p_{0} or c may be obtained from the ϕ and ρ angles of faces intersecting three axes or more, one of which must be the c-axis, by the following formulae:

$$
\begin{align*}
& \text { from }(h 0 \bar{h} l) \text { or its equivalents, } p_{0}=\frac{l \tan \rho}{h} ; c=\frac{l \sqrt{3} \tan \rho}{2 h} \ldots \ldots \ldots \ldots(\tag{91}\\
& \text { from }(h h \overline{2} \bar{h} l) \text { or equivalents, } p_{0}=\frac{l \tan \rho}{h \sqrt{3}} ; c=\frac{l \tan \rho}{2 h} \ldots \ldots \ldots \ldots \ldots(\tag{92}\\
& \quad \text { from (hkil) or equivalents, } p_{0}=\frac{l \tan \rho}{\sqrt{h^{2}+k^{2}+h k}} ; c=\frac{l \sqrt{3} \tan \rho}{2 \sqrt{h^{2}+k^{2}+h k} \ldots(} \tag{93}
\end{align*}
$$

Form Symbols. The four-index Bravais symbols are used throughout. When the lattice mode is rhombohedral, Millerian three index symbols are also given. Bravais $h k i l$ symbols may be transformed to Millerian $h k l$ symbols by the use of the following formula:

$$
\begin{equation*}
\text { Bravais to Miller: } \frac{1}{3} 0 \frac{\overline{1}}{3} \frac{1}{3} / \frac{\overline{1}}{3} \frac{1}{3} 0 \frac{1}{3} / 0 \frac{\overline{1}}{3} \frac{1}{3} \frac{1}{3} . \tag{94}
\end{equation*}
$$

The reverse transformation is as follows:
Miller to Bravais: $\overline{1} \overline{1} 0 / 01 \overline{1} / \overline{1} 01 / 111$
Indexing of Forms. In the indexing of forms in the hexagonal system, two coordinate axes, P_{1} and P_{2} (Fig. 14), are used which are normal to ($10 \overline{1} 0$) and ($01 \overline{1} 0$), respectively (see also Fig. 15). The positive unit

Fig. 14. Determination of Bravais Form Indices from the Gnomonic Projection in the Hexagonal System.
lengths along these coordinate axes extend from the center of projection to the gnomonic poles of (1011) and (0111). The Bravais indices ($h k i l$) are found as follows:

$$
\begin{aligned}
h & =P_{1} \text { coordinate } \\
k & =P_{2} \text { coordinate } \\
i & =(h+k) \\
l & =1
\end{aligned}
$$

(clearing fractions, if necessary)

In figure 14 the faces for which P_{1} and P_{2} coordinates are given receive the following indices:

$$
\begin{aligned}
& \frac{1}{4} \frac{1}{2}=\left(\frac{1}{4} \cdot \frac{2}{4} \cdot \frac{\overline{3}}{4} \cdot 1\right)=(12 \overline{3} 4) \\
& \frac{1}{2} \cdot \frac{1}{2}=\left(\frac{1}{2} \cdot \frac{1}{2} \cdot \overline{1} \cdot 1\right)=(11 \overline{2} 2) \\
& \frac{3}{4} \frac{1}{4}=\left(\frac{3}{4} \cdot \frac{1}{4} \cdot \overline{1} \cdot 1\right)=(31 \overline{4} 4)
\end{aligned}
$$

Order of Form Listing. The order of listing in the hexagonal system is given in Tables $7 a, 7 b$, and 8 . Table $7 a$ includes those symmetry classes in which the lattice mode is necessarily primitive hexagonal (P). Table $7 b$ is the order of listing for the remaining classes if their lattice mode is primitive hexagonal. If, however, the lattice mode is rhombohedral (R), the order of listing for these same classes is given in Table 8. The division

Fig. 15. Stereographic Projection Showing Form Designation and Angles in the Hexagonal System.
into three tables is necessary since certain forms which are complementary (or correlative) merohedral forms in the primitive lattice mode are actually holohedral in the rhombohedral lattice mode. For example, $0 h \bar{h} l$ forms must be listed with their complementary $h 0 \bar{h} l$ forms if the lattice is primitive; but they are listed separately if the lattice is rhombohedral. The letters c, m, a are reserved for the faces (0001), ($10 \overline{1} 0$), ($11 \overline{2} 0$), respectively. The plus and minus 30° meridians define right and left forms (Fig. 15).

Table 7a. Order of Form Listing in Classes with Lattice
Mode Uniquely Hexagonal- P

Table 7b. Order of Form Listing in Classes with Lattice
Mode Not Uniquely Hexagonal-P

Table 7b. Continued

Class 3	$\overline{3}$	3 m		
Lower Upper		Lower Upper		3 m
$j^{\prime} \quad h k i 0$	x	x	x	$x \text { in order of increasing } \frac{h}{k}$
' $j \quad i \bar{k} \bar{h} 0$	x		x	
$-^{\prime} j \quad k h \overline{\mathrm{~L}} 0$	x	x		
$-j^{\prime} \quad \bar{k} i \bar{h} 0$	x			
$\begin{array}{lll} x & q & h 0 \bar{h} l \\ x & Q & 0 h \bar{h} l \end{array}$	x x	$\begin{array}{ll}x & x \\ x & x\end{array}$	x x	$x \text { in order of increasing } \frac{h}{l}$
$x \quad e^{\prime} \quad h h 2 \bar{h} l$	x	$x \quad x$	x	x same as for $h 0 \bar{h} l$
$x \quad$ 'e $2 h \bar{h} \bar{h} l$	x		x	
$x \quad s^{\prime} \quad h k \bar{l} l$	x	$x \quad x$	x	$x \text { in order of increasing } \frac{h}{k}$
x 's ik $\bar{k} \bar{h} l$	x		x	in groups of equal $\frac{h}{k}$,
$\begin{array}{lll} x & -' s & k h \bar{l} l \\ x & -s^{\prime} & \bar{k} i \bar{h} l \end{array}$	x x	$x \quad x$	x x	x list in order of increasing $\frac{h}{l}$.

Table 8. Order of Form Listing in Classes with Lattice
Mode Not Uniquely Hexagonal- R

Table 8. Continued

Hexagonal System Angles. The angles given in the hexagonal system are: (Fig. 15) the azimuth angle ϕ with ϕ of (11 $\overline{2} 0) 0^{\circ} 00^{\prime}$; the polar angle ρ, equal to the interfacial angle to $c(0001) ; M$, the interfacial angle to ($1 \overline{1} 00$), given for crystals of the primitive mode only; A_{1}, the interfacial angle to (2110), given for crystals of the rhombohedral mode only; and A_{2}, the interfacial angle to ($\overline{1} \overline{1} \overline{1} 0$). The following formulae are useful in calculating these angles.

$$
\begin{align*}
\tan \phi & =\frac{h-k}{h+k} \cdot \frac{1}{\sqrt{3}} \text { or } \cot \phi=\frac{h+k}{h-k} \cdot \sqrt{3} . \tag{96}\\
\text { for }(h 0 \bar{h} l) \text { and }(0 h \bar{h} l) \tan \rho & =\frac{p_{0} h}{l} \ldots \tag{97}\\
\text { for }(h h \overline{2} \bar{h} l) \tan \rho & =\frac{p_{0} h \sqrt{3}}{l} \\
\text { for }(h k \bar{l} l) \tan \rho & =\frac{p_{0}}{l} \sqrt{h^{2}+k^{2}+h k}
\end{align*}
$$

Table 9. Calculation of Interfactal Angles in the Hexagonal System (Fig. 15)

Form	M	A_{1}	A_{2}
$h 0 \bar{h} l$	$\cos M=\frac{\sin \rho}{2}$	$\cos A_{1}=\frac{\sqrt{3}}{2} \sin \rho$	$90^{\circ} 00^{\prime}$
$0 h \bar{h} l$	$\cos \left(180^{\circ}-M\right)=\frac{\sin \rho}{2}$	$90^{\circ} 00^{\prime}$	$\cos A_{2}=\frac{\sqrt{3}}{2} \sin \rho$
hh 2 h l	$90^{\circ} 00^{\prime}$	$\cos A_{1}=\frac{\sin \rho}{2}$	$\cos A_{2}=\frac{\sin \rho}{2}$
2 h 帧 l	$\cos M=\frac{\sqrt{3}}{2} \sin \rho$	$A_{1}=90^{\circ} 00^{\prime}-\rho$	$\cos \left(180^{\circ}-A_{2}\right)=\frac{\sin \rho}{2}$
$\begin{aligned} & h k \bar{l} l \\ & i \bar{k} \bar{h} l \end{aligned}$	$\begin{aligned} & \cos M=\sin \rho \sin \phi \\ & \cos M=\sin \rho \cos \left(30^{\circ}+\phi\right) \end{aligned}$	$\begin{aligned} & \cos A_{1}=\sin \rho \cos \left(60^{\circ}-\phi\right) \\ & \cos A_{1}=\sin \rho \cos \phi \end{aligned}$	$\begin{aligned} & \cos A_{2}=\sin \rho \cos \left(60^{\circ}+\phi\right) \\ & \cos \left(180^{\circ}-A_{2}\right) \end{aligned}$
$\begin{aligned} & \text { khill } \\ & \bar{k} i \bar{h} l \end{aligned}$	$\begin{aligned} & \cos \left(180^{\circ}-M\right)=\sin \rho \sin \phi \\ & \cos \left(180^{\circ}-M\right) \\ & \quad=\sin \rho \cos \left(30^{\circ}+\phi\right) \end{aligned}$	$\begin{aligned} & \cos A_{1}=\sin \rho \cos \left(60^{\circ}+\phi\right) \\ & \cos \left(180^{\circ}-A_{1}\right) \\ & \quad=\sin \rho \cdot \cos \left(60^{\circ}+\phi\right) \end{aligned}$	$\begin{aligned} &=\sin \rho \cos \left(60^{\circ}+\phi\right) \\ & \cos A_{2}=\sin \rho \cos \left(60^{\circ}-\phi\right) \\ & \cos A_{2}=\sin \rho \cos \phi \end{aligned}$

The letter ϕ in the above table always refers to the phes right position of the form.
Since ϕ is a constant for each h / k value in the hexagonal system, the following table of ϕ angles is given with variations in h and k from 1 to 11 . The angles are given according to increasing magnitude to facilitate rapid comparison with measured values.

Table 10. Phi Angles in the Hexagonal System

ϕ	$h: k \quad \phi$	$h: k \quad \phi$
$1: 1-0^{\circ} 00^{\prime} 00^{\prime \prime}$	$3: 2-6^{\circ} 35^{\prime} 12^{\prime \prime}$	$3: 1-16^{\circ} 06^{\prime} 08^{\prime \prime}$
$11: 10-13429$	$11: 7-71840$	$10: 3-171610$
$10: 9-14426$	$8: 5-73521$	$7: 2-174701$
$9: 8-15642$	$5: 3-81248$	$11: 3-181530$
$8: 7-21215$	$7: 4-85654$	$4: 1-190624$
$7: 6-23235$	$9: 5-92201$	$9: 2-201025$
$6: 5-30016$	$11: 6-93815$	$5: 1-210306$
$11: 9-31816$	$2: 1-105336$	$11: 2-214712$
$5: 4-34014$	$11: 5-121259$	$6: 1-222423$
$9: 7-40740$	$9: 4-123111$	
$4: 3-44254$	$7: 3-130014$	$8: 1-242448$
$11: 8-51231$	$5: 2-135352$	$9: 1-244729$
$7: 5-52947$	$8: 3-144217$	$10: 1-251706$
$10: 7-54903$	$11: 4-150445$	$11: 1-254136$

Special Relations in Rhombohedral Lattices. In crystals with a rhombohedral lattice mode there are generally given, in addition to the regular hexagonal elements, the following constants:
$a_{r b}$, the absolute length of the rhombohedral edge, derived from x-ray measurements.
α, the interaxial angle of the direct rhombohedral lattice.
λ, the interaxial angle of the reciprocal rhombohedral lattice.

Fig. 16. Stereographic projection of Linear and Polar Interaxial Angles in the Rhombohedral Lattice Mode.

Some formulae relating the hexagonal and rhombohedral lattice modes follow (Fig. 16). If:

$$
\begin{aligned}
& a_{0}=\text { absolute length along } a \text {-axis of hexagonal lattice } \\
& c_{0}=\text { absolute length along } c \text {-axis of hexagonal lattice } \\
& \rho_{1}=\rho \text { of }(1011)=(0001) \wedge(10 \overline{1} 1) \\
& \rho_{2}=\rho \text { of }(01 \overline{1} 2)=(0001) \wedge(01 \overline{1} 2)
\end{aligned}
$$

Then:

$$
\begin{align*}
& \sin \frac{\lambda}{2}=\frac{\sqrt{3}}{2} \sin \rho_{1}=\sqrt{3} \sin \rho_{2} . \tag{98}\\
& \cot \frac{\alpha^{\prime}}{2}=\sqrt{3} \cos \rho_{1} \tag{99}\\
& \text { primed values are supplements of unprimed } \\
& \cos \frac{\alpha^{\prime}}{2}=\frac{\sqrt{3}}{2} \cos \rho_{1} \tag{100}\\
& \sin \frac{\alpha}{2}=\frac{a_{0}}{2 a_{r h}}=\frac{3 a_{0}}{2 \sqrt{3 a_{0}^{2}+c_{0}^{2}}}=\frac{3}{2 \sqrt{3+\left(\frac{c}{a}\right)^{2}}} . \tag{101}\\
& a_{r h}=\frac{1}{3} \sqrt{3 a_{0}^{2}+c_{0}^{2}} . \tag{102}
\end{align*}
$$

$$
\begin{array}{r}
\qquad \frac{c_{0}}{a_{0}}=\sqrt{\left(\frac{3}{2 \sin \cdot \frac{\alpha}{2}}\right)^{2}-3 \ldots} \\
\text { Volume rhombohedral cell }=\frac{a_{0}^{2} c_{0} \sqrt{3}}{6} \ldots \ldots \tag{104}
\end{array}
$$

Isometric System

Elements and angle tables are not given for isometric minerals, since the same angular relations hold for all. Angles for commonly found isometric forms are listed in Table 11. The meaning of the angles given is shown in Fig. 17.

Fig. 17. Stereographic Projection Showing Form Designation and Angles in the Isometric System.

```
    \(\phi=\) azimuth angle measured from (010), zero meridian
    \(\rho=A_{3}=\) interfacial angle with (001)
\(A_{1}=\) interfacial angle with (100)
\(A_{2}=\) interfacial angle with (010)
\(D=\) interfacial angle with (011)
\(O=\) interfacial angle with (111)
```

Forms for which the same letters are used in all species are given letters in Table 11. In order that there may be sufficient remaining letters to designate the form assemblage of any one species, no convention has been adopted for the lettering of other forms.

Table 11. Isometric Angle Table

	Form		ϕ	$\rho=A_{3}$	A_{1}	A_{2}	D

Table 11. Continued

	Form	ϕ	$\rho=A_{3}$	A_{1}	A_{2}	D	0
m	115	$45^{\circ} 00^{\prime}$	$15^{\circ} 47 \frac{1}{2}^{\prime}$	$78^{\circ} 54 \frac{1}{2}^{\prime}$	$78^{\circ} 54 \frac{1}{2}^{\prime}$	$35^{\circ} 16^{\prime}$	$38^{\circ} 56 \frac{1}{2}^{\prime}$
	114	4500	19 281	7622	7622	$3333 \frac{1}{2}$	$3515 \frac{1}{2}$
	227	4500	2200	$7438 \frac{1}{2}$	$7438 \frac{1}{2}$	3233	3244
	113	4500	$2514 \frac{1}{2}$	7227	7227	3129	29 291
	338	4500	$2756 \frac{1}{2}$	7039	7039	3048	$2647 \frac{1}{2}$
	225	4500	2930	$6937 \frac{1}{2}$	$6937 \frac{1}{2}$	3030	2514
n	337	4500	3113	6833	6833	3015	2331
	112	4500	3516	65 542	$6554 \frac{1}{2}$	3000	1928
	447	4500	$3856 \frac{1}{2}$	$6336 \frac{1}{2}$	$6336 \frac{1}{2}$	3012	$1547 \frac{1}{2}$
β	335	4500	4019	$6246 \frac{1}{2}$	$6246 \frac{1}{2}$	3023	1425
	223	4500	4319	6059	6059	3058	1125
	334	4500	4641	$5902 \frac{1}{2}$	$5902 \frac{1}{2}$	$3154 \frac{1}{2}$	803
	556	4500	4941	$5722 \frac{1}{2}$	$5722 \frac{1}{2}$	$3259 \frac{1}{2}$	503
	188	$707 \frac{1}{2}$	$4513 \frac{1}{2}$	8456	$4513 \frac{1}{2}$	504	3012
	177	808	$4517 \frac{1}{2}$	8414	$4517 \frac{1}{2}$	546	2930
ρ	166	$927 \frac{1}{2}$	$4523 \frac{1}{2}$	$8316 \frac{1}{2}$	$4523 \frac{1}{2}$	$643 \frac{1}{2}$	$2832 \frac{1}{2}$
	155	11 182	$4533 \frac{1}{2}$	8157	$4533 \frac{1}{2}$	803	2713
	144	1402	4552	$7958 \frac{1}{2}$	4552	$1001 \frac{1}{2}$	$2514 \frac{1}{2}$
q	277	$1556 \frac{1}{2}$	$4607 \frac{1}{2}$	$7834 \frac{1}{2}$	$4607 \frac{1}{2}$	$1125 \frac{1}{2}$	$2350 \frac{1}{2}$
	133	1826	$4630 \frac{1}{2}$	7644	$4630 \frac{1}{2}$	1316	2200
	255	2148	$4707 \frac{1}{2}$	74 12 ${ }^{\frac{1}{2}}$	$4707 \frac{1}{2}$	$1547 \frac{1}{2}$	$1928 \frac{1}{2}$
p	122	2634	$4811 \frac{1}{2}$	$7031 \frac{1}{2}$	$4811 \frac{1}{2}$	$1928 \frac{1}{2}$	$1547 \frac{1}{2}$
	355	3058	4923	$6700 \frac{1}{2}$	4923	$2259 \frac{1}{2}$	$1216 \frac{1}{2}$
r	233	$3341 \frac{1}{2}$	$5014 \frac{1}{2}$	$6445 \frac{1}{2}$	$5014 \frac{1}{2}$	$2514 \frac{1}{2}$	10 012
	344	3652	$5120 \frac{1}{2}$	$6203 \frac{1}{2}$	$5120 \frac{1}{2}$	$2756 \frac{1}{2}$	$719 \frac{1}{2}$
	455	$3839 \frac{1}{2}$	5201	6030	5201	2930	546
	1-6.12	$927 \frac{1}{2}$	2653	8544	6331	$1854 \frac{1}{2}$	35 221
	1-6.11	$927 \frac{1}{2}$	$2856 \frac{1}{2}$	8526	$6129 \frac{1}{2}$	$1700 \frac{1}{2}$	3414
	$1 \cdot 5 \cdot 10$	$1118 \frac{1}{2}$	2701	$8453 \frac{1}{2}$	6333	$1906 \frac{1}{2}$	3437
	$1 \cdot 6 \cdot 10$	$927 \frac{1}{2}$	$3118 \frac{1}{2}$	8506	$5909 \frac{1}{2}$	1451	3301
	179	808	$3809 \frac{1}{2}$	$8459 \frac{1}{2}$	$5217 \frac{1}{2}$	842	$3057 \frac{1}{2}$
	- 128	2634	1537	8305	7604	3139	4008
	138	1826	2134	$8319 \frac{1}{2}$	$6935 \frac{1}{2}$	2517	3621

Table 11. Continued

	Form	ϕ	$\rho=A_{3}$	A_{1}	A_{2}	D	0
	148	$14^{\circ} 02^{\prime}$	$27^{\circ} 16^{\prime}$	$83^{\circ} 37^{\prime}$	$63^{\circ} 36 \frac{1}{2}^{\prime}$	$19^{\circ} 28 \frac{1}{2}^{\prime}$	$33^{\circ} 29 \frac{1}{2}^{\prime}$
	158	11 181 ${ }^{\frac{1}{2}}$	3231	8357	$5811 \frac{1}{2}$	$1418 \frac{1}{2}$	$3134 \frac{1}{2}$
	127	2634	1743	$8210 \frac{1}{2}$	74 121 $\frac{1}{2}$	3000	3813
	137	1826	$2418 \frac{1}{2}$	8231	$6700 \frac{1}{2}$	$2259 \frac{1}{2}$	$3413 \frac{1}{2}$
	157	11 181 ${ }^{2}$	3604	8322	5444	1132	2956
	$2 \cdot 3 \cdot 12$	$3341 \frac{1}{2}$	$1643 \frac{1}{2}$	8049	7609	3210	3826
	156	$1118 \frac{1}{2}$	$4021 \frac{1}{2}$	8242	5035	857	$2822 \frac{1}{2}$
	2-5•11	2148	. 2605	8036	$6554 \frac{1}{2}$	2231	3157
	125	2634	$2405 \frac{1}{2}$	7929	6835	2521	$3235 \frac{1}{2}$
	135	1826	$3218 \frac{1}{2}$	8016	5932	$1701 \frac{1}{2}$	$2833 \frac{1}{2}$
	145	1402	$3930 \frac{1}{2}$	$8107 \frac{1}{2}$	5153	1054	2701
	239	$3341 \frac{1}{2}$	2150	$7805 \frac{1}{2}$	$7158 \frac{1}{2}$	2856	3331
	249	2634	$2625 \frac{1}{2}$	$7831 \frac{1}{2}$	6633	$2350 \frac{1}{2}$	$3029 \frac{1}{2}$
	269	1826	3506	$7931 \frac{1}{2}$	$5656 \frac{1}{2}$	1522	$2650 \frac{1}{2}$
	238	$3341 \frac{1}{2}$	24 151	$7649 \frac{1}{2}$	$7000 \frac{1}{2}$	$2734 \frac{1}{2}$	3112
t	124	2634	$2912 \frac{1}{2}$	$7723 \frac{1}{2}$	$6407 \frac{1}{2}$	$2212 \frac{1}{2}$	$2807 \frac{1}{2}$
	134	1826	$3819 \frac{1}{2}$	$7841 \frac{1}{2}$	$5357 \frac{1}{2}$	1354	2504
	3.5.11	3058	27 55 $\frac{1}{2}$	$7603 \frac{1}{2}$	$6619 \frac{1}{2}$	2440	$2813 \frac{1}{2}$
	237	$3341 \frac{1}{2}$	2715	7517	$6736 \frac{1}{2}$	2606	$2822 \frac{1}{2}$
	247	2634	$3234 \frac{1}{2}$	7604	6113	2033	2522
	$3 \cdot 4 \cdot 10$	3652	2634	7426	6902	$2741 \frac{1}{2}$	2837
	3-5 10	3058	3015	7459	$6424 \frac{1}{2}$	2337	2608
	$3 \cdot 7 \cdot 10$	2312	$3717 \frac{1}{2}$	$7611 \frac{1}{2}$	$5609 \frac{1}{2}$	1700	$2316 \frac{1}{2}$
	236	$3341 \frac{1}{2}$	3100	7324	$6437 \frac{1}{2}$	2437	2452
s	123	2634	3642	7430	$5741 \frac{1}{2}$	$1906 \frac{1}{2}$	$2212 \frac{1}{2}$
	358	3058	3605	72 211	5940	2147	2104
	235	$3341 \frac{1}{2}$	$3547 \frac{1}{2}$	7104	$6052 \frac{1}{2}$	$2324 \frac{1}{2}$	2031
	458	$3839 \frac{1}{2}$	$3840 \frac{1}{2}$	$6701 \frac{1}{2}$	$6047 \frac{1}{2}$	2612	1642
	346	3652	$3948 \frac{1}{2}$	$6724 \frac{1}{2}$	$5911 \frac{1}{2}$	$2507 \frac{1}{2}$	$1603 \frac{1}{2}$
	234	$3341 \frac{1}{2}$	4202	6812	$5608 \frac{1}{2}$	2312	$1513 \frac{1}{2}$
	345	3652	4500	6454	5533	$2550 \frac{1}{2}$	$1133 \frac{1}{2}$
	578	$3532 \frac{1}{2}$	$4704 \frac{1}{2}$	$6448 \frac{1}{2}$	$5325 \frac{1}{2}$	$2527 \frac{1}{2}$	1036
	456	$3839 \frac{1}{2}$	$4647 \frac{1}{2}$	$6254 \frac{1}{2}$	$5518 \frac{1}{2}$	$2733 \frac{1}{2}$	$919 \frac{1}{2}$

The order of form listing is given in Table 12 for the five isometric symmetry classes.

Calculation of Angles. The angles in Table 11 are calculated as follows:

$$
\begin{align*}
& \tan \phi=\frac{h}{k} \text { (see Table 7) } \tag{105}\\
& \tan \rho=\frac{h}{l \sin \phi}=\frac{k}{l \cos \phi} \text {. } \tag{106}\\
& \cos A_{1}=\sin \rho \sin \phi . \tag{107}\\
& \cos A_{2}=\sin \rho \cos \phi \tag{108}\\
& \cos D=\frac{\sqrt{2}}{2}(\cos \rho+\sin \rho \cos \phi) \text {. } \tag{109}\\
& \cos O=\cos \rho \cos 54^{\circ} 44^{\prime}+\sin \rho \sin 54^{\circ} 44^{\prime} \cos \left(45^{\circ}-\phi\right) . \tag{110}
\end{align*}
$$

Table 12. Order of Form Listing in the Isometric System

Acknowledgments
Valuable suggestions and criticisms relative to the manuscript have been given by Professors Charles Palache and Harry Berman of Harvard University and by Professor J. D. H. Donnay of Laval University. Professor M. A. Peacock of the University of Toronto has been of considerable help in the formulation of some of the procedures described in this paper. I wish to express my appreciation, here, for the assistance given by each of these men. The figures have been drawn from my sketches by Howard T. Evans.

[^0]: * In the hexagonal system the lattice mode in classes 16-20 may be either primitive hexagonal (P) or rhombohedral (R); in classes $21-27$ only the primitive mode is possible.

[^1]: \dagger The sign \equiv is read "equals after transformation."

[^2]: * x indicates possible occurrence of form.

