FLETCHER'S INDICATRIX AND THE ELECTROMAGNETIC THEORY OF LIGHT

T. C. Phemister, University of Aberdeen, Aberdeen, Scolland.

Abstract

The optical scalars and vectors for an inactive, crystalline dielectric are first deduced from the Maxwell equations for the electromagnetic field and it is then shown how these can, in fact, be derived from the Fletcher indicatrix. Attention is drawn to the importance of the focal lines in the geometry of the indicatrix.

In most texts on crystal optics in use amongst mineralogists and crystallographers at the present time the optical properties of crystals are derived from a consideration of the Fletcher indicatrix. ${ }^{1}$ This has proved a most useful surface of reference as the primary concern of the mineralogist is with wave-normals, refractive indices and directions of vibration, all of which are readily derived from this simple figure. The enquiring student however always wishes to know how the surface itself is obtained and how it is related to the electromagnetic theory of light, and it is difficult to refer him to any text where the subject is concisely treated. Fletcher himself presents the indicatrix in a purely geometrical form and does not link it up with any specific view regarding the nature of light. In the systematic German texts, ${ }^{2}$ although the connection of the surface with the results of the elctromagnetic theory is pointed out, it is a little difficult for the student to disentangle the proof from the other, possibly more fundamental, aspects of optical theory. It seems worth while therefore to present a short statement showing how this reference surface is bound up with the classical theory of the electromagnetic nature of light.

The treatment adopted is, first, to derive in the usual way the optical scalars and vectors using Maxwell's equations, and then to show that these can in fact be derived from the indicatrix. The presentation is much simplified by using the abbreviated notation of Cartesian tensors ${ }^{3}$ and, since the simpler theory of the propagation of light in isotropic media is adequately treated in standard works, a knowledge of it is assumed in what follows.

[^0]The various quantities are represented by the following symbols:

space co-ordinates	x_{i}, ξ_{i}	directions-cosines	l_{i}, m_{i}
outward normal	n_{i}	volume	τ
surface	S	total energy density	w
volume density of charge, e.s.u.	ρ	magnetic energy density	t
electrical energy density	u	magnetic intensity-m.s.u.	H_{i}
electrical intensity-e.s.u.	E_{i}	conduction current density	i_{i}
dielectric displacement	D_{i}	Poynting energy vector	N_{i}
magnetic induction-m.s.u.	B_{i}	dielectric constant	K
direction-cosines of N_{i}	p_{i}	velocity of electromagnetic	
wave-length	λ	radiation in vacuo	c
period	T	frequency	ν
ray index	r	refractive index	n
ray velocity	β	wave velocity	α
principal refractive indices	$\left\{n^{\prime} n^{\prime \prime} n^{\prime \prime \prime}\right.$,	principal wave (and ray) veloc-	
$n^{\prime}<n^{\prime \prime \prime}$	ities	$v^{\prime} v^{\prime \prime} v^{\prime \prime \prime}$	
time	t		

Differentiation with respect to time is indicated by a dot over the quantity concerned.

1. The Relations Between the Electromagnetic Quantities at a Point in a Varying Field are given by the Four Maxwell Equations

$$
\begin{array}{ll}
\operatorname{curl} H_{i}=\frac{4 \pi}{c} i_{1}+\frac{\dot{D}_{i}}{c} & \operatorname{div} D_{i}=4 \pi \rho \\
\operatorname{curl} E_{i}=-\frac{\dot{B}_{i}}{c} & \operatorname{div} B_{i}=0
\end{array}
$$

In the classical continuum theory the specific properties with which we are concerned in the transmission of light by non-conducting crystals are the magnetic permeability and the dielectric constant. The first of these we take as unity on the assumption that the crystals are non-magnetic. It remains therefore to investigate the nature of the dielectric constant.
2. Relation Between D_{i} and E_{i}

In an isotropic substance D_{i} coincides with E_{i} but in an anisotropic material this is no longer the case.

Thus E_{1} itself will produce a displacement with components along $0 x_{1}, 0 x_{2}$ and $0 x_{5}$. Similarly for E_{2} and E_{3}.
Each of the components of the displacement therefore will be the sum of the contributions from each of the components of the intensity, i.e. e.g.,

$$
D_{1}=K_{11} E_{1}+K_{12} E_{2}+K_{13} E_{3}
$$

where $K_{12} E_{2}$ is the contribution of E_{2} to the displacement along $0 x_{1}$, and so on.

In this case therefore the dielectric factor is a second order tensor and the displacement is the product of this tensor and E_{i} thus,

$$
D_{i}=K_{i j} E_{j} .
$$

3. The Energy Relations in an Anisotropic Dielectric

The magnetic and electrical energy densities are given by,

$$
t=\frac{H_{i}^{2}}{8 \pi} \quad u=\frac{E_{i} D_{i}}{8 \pi}=\frac{K_{i 3} E_{i} E_{j}}{8 \pi} .
$$

Since $\operatorname{div}[E, H]_{m}=H_{i} \cdot$ curl $E_{i}-E_{i} \cdot$ curl H_{i}, we have, from the general equations of the electromagnetic field,

$$
-\frac{\left(E_{i} \dot{D}_{i}+H_{i} \dot{B}_{i}\right)}{4 \pi}=i_{i} E_{i}+\frac{c \operatorname{div}[E, H]_{\pi}}{4 \pi}
$$

which here becomes,

$$
K_{i j} E_{i} \dot{E}_{j}-\frac{1}{2} \dot{H}_{i}{ }^{2}=-c \operatorname{div}[E, H]_{m} .
$$

Integrating throughout any volume,

$$
\frac{1}{4 \pi} \int\left(K_{i j} E_{i} \dot{E}_{i}+\frac{1}{2} \dot{H}_{i}^{2}\right) d \tau=-\frac{c}{4 \pi} \int \operatorname{div}[E, H]_{m} d \tau=-\frac{c}{4 \pi} \int[E, H]_{n} d S
$$

Taking the right-hand side as the total energy flow across the surface, $\left(K_{i j} E_{i} \dot{E}_{j}\right) / 4 \pi$ is the time rate of change of the electrical energy density $\left(\frac{1}{2} \dot{H}_{\mathrm{i}}{ }^{2}\right) / 4 \pi$ is the time rate of change of the magnetic energy density.

Differentiating with respect to time the expression for u,

$$
\frac{K_{i j}\left(E_{i} \dot{E}_{j}+E_{j} \dot{E}_{i}\right)}{8 \pi}=\dot{u}=\frac{K_{i j} E_{i} \dot{E}_{j}}{4 \pi}
$$

so that

$$
K_{i j}\left(E_{i} \dot{E}_{j}-E_{j} \dot{E}_{i}\right)=0
$$

which can be written in the form,

$$
K_{i j} E_{i} \dot{E}_{j}-K_{i j} E_{j} \dot{E}_{i}=0 .
$$

The "dummy" suffixes can be transposed in the second term giving,

$$
\left(K_{i j}-K_{i i}\right) E_{i} \dot{E}_{j}=0 .
$$

Since this expression must hold for any value of the field strength,

$$
K_{i j}=K_{j i}
$$

i.e., the dielectric tensor $K_{i j}$ is symmetrical and has only six different components.

4. Transformation of $K_{i j}$ into Normal Form

The equation $K_{i j} x_{i} x_{j}=$ (a constant) represents a central conicoid and, since the discriminating cubic equation,

$$
\left|\left(K_{i j}-\delta_{i j} \lambda\right)\right|=0
$$

(where $\delta_{i j}$ is the substitution tensor) has in general three distinct roots for λ, there are three mutually perpendicular principal directions. These are given by $l_{j} \lambda=l_{i} K_{i j}$. If the x_{i} are measures of the electric field strengths E_{i}, then $K_{i j} E_{j} E_{j}$ is $8 \pi u$ and, since the energy is positive for all systems of E_{i}, the equation has always a definite form and so must represent an ellipsoid.

Referring the equation to the three mutually perpendicular principal directions $0 \xi_{i}$ as axes

$$
K_{i j} x_{i} x_{j}=K^{\prime} \xi_{1}^{2}+K^{\prime \prime} \xi_{2}^{2}+K^{\prime \prime \prime} \xi_{3}^{2}=(\mathrm{a} \text { constant }) .
$$

$K^{\prime}, K^{\prime \prime}$, and $K^{\prime \prime \prime}$ are called the principal dielectric constants.
In this normal form,

$$
\begin{gathered}
D_{1}=K^{\prime} E_{1} \text {, etc. } \\
8 \pi u=K^{\prime} E_{1}^{2}+K^{\prime \prime} E_{2}^{2}+K^{\prime \prime \prime} E_{3}^{2}=\frac{D_{1}^{2}}{K^{\prime}}+\frac{D_{2}^{2}}{K^{\prime \prime}}+\frac{D_{3}^{2}}{K^{\prime \prime \prime}}
\end{gathered}
$$

5. Electromagnetic Waves in a Crystalline Dielectric

The differential equations for the E_{i} are,

$$
\frac{K}{c^{2}} \frac{\partial^{2} E_{i}}{\partial t^{2}}=\Delta^{2} E_{i}-\operatorname{grad} \operatorname{div} E_{i} .
$$

Taking a solution similar to the isotropic case,

$$
E_{1}=a^{\prime} e^{\left.\prime i 2 \pi\left(\alpha \alpha_{t}-L_{j} x_{j}\right)\right\rangle \lambda}, \text { etc. }
$$

and substituting these values for E_{1}, E_{2} and E_{3} in the equations for E_{i}, we get, the axes being rectangular

$$
\begin{gathered}
\frac{K^{\prime} \alpha^{2} E_{1}}{c^{2}}=E_{1}-l_{1}\left(l_{j} E_{j}\right), \\
\frac{K^{\prime \prime} \alpha^{2} E_{2}}{c^{2}}=E_{2}-l_{2}\left(l_{j} E_{j}\right), \\
\frac{K^{\prime \prime \prime} \alpha^{2} E_{3}}{c^{2}}=E_{3}-l_{3}\left(l_{3} E_{j}\right),
\end{gathered}
$$

If these three equations are simultaneously true then,

$$
\frac{l_{1}{ }^{2}}{K^{\prime} \frac{\alpha^{2}}{c^{2}}-1}+\frac{l_{2}{ }^{2}}{K^{\prime \prime} \frac{\alpha^{2}}{c^{2}}-1}+\frac{l_{3}{ }^{2}}{K^{\prime \prime \prime} \frac{\alpha^{2}}{c^{2}}-1}+1=0
$$

i.e., for every value of l_{i} there are in general two values of α so that two plane waves progress along the same wave normal with velocities α and α^{\prime}, Putting $c^{2} / K^{\prime}=v^{\prime 2}$, etc. where v^{\prime} will be the velocity along $0 x_{1}$, and rewriting the equation we get,

$$
\frac{l_{1}{ }^{2}}{\alpha^{2}-v^{\prime 2}}+\frac{l_{2}{ }^{2}}{\alpha^{2}-v^{\prime \prime 2}}+\frac{l_{3}{ }^{2}}{\alpha^{2}-v^{\prime \prime \prime} 2}=0 .
$$

Or, in terms of the refractive index,

$$
\frac{l_{1}{ }^{2}}{\frac{1}{n^{2}}-\frac{1}{K^{\prime}}}+\frac{l_{2}{ }^{2}}{\frac{1}{n^{2}}-\frac{1}{K^{\prime \prime}}}+\frac{l_{3}{ }^{2}}{\frac{1}{n^{2}}-\frac{1}{K^{\prime \prime \prime}}}=0 .
$$

Putting $x_{1}=l_{1} \alpha$, etc. we get,

$$
\frac{x_{1}{ }^{2}}{\alpha^{2}-v^{\prime 2}}+\frac{x_{2}{ }^{2}}{\alpha^{2}-v^{\prime \prime 2}}+\frac{x_{3}{ }^{2}}{\alpha^{2}-v^{\prime \prime \prime 2}}=0 .
$$

These equations define the wave-normal surface.
6. The Relations between E_{i}, D_{i}, H_{i}, and the Wave-normal l_{i} in a Crystalline Dielectric
The field equations are,

$$
\begin{aligned}
& \operatorname{curl} H_{i}-\frac{\dot{D}_{i}}{c}=0 \\
& \operatorname{curl} E_{i}+\frac{\dot{H}_{i}}{c}=0
\end{aligned}
$$

E_{i} and H_{i} are each proportional to $e^{i 2 \pi\left(\alpha t-l_{j} x_{j}\right) / \lambda}$ so that,

$$
\begin{array}{ll}
\dot{D}_{i}=i \frac{2 \pi \alpha}{\lambda} D_{i}, & \text { curl } E_{j}=i \frac{2 \pi}{\lambda}[l, E]_{i} \\
\dot{H}_{j}=i \frac{2 \pi \alpha}{\lambda} H_{j}, & \operatorname{curl} H_{i}=i \frac{2 \pi}{\lambda}[l, H]_{j} .
\end{array}
$$

Hence

$$
i \frac{2 \pi}{\lambda}[l, H]_{i}=i \frac{\alpha 2 \pi}{c \lambda} D_{j} \quad \text { or } \quad \frac{\alpha}{c} D_{i}=[l, H]_{i}
$$

and

$$
i \frac{2 \pi}{\lambda}[l, E]_{i}=-i \frac{\alpha 2 \pi}{c \lambda} H_{i} \quad \text { or } \quad \frac{\alpha}{c} H_{j}=-[l, E]_{i}
$$

i.e., D_{i} and H_{i} are at right-angles to l_{i}, and E_{i} lies in the plane of D_{i} and l_{i} but, generally, cannot be at right-angles to l_{i} since it does not coincide with D_{i}.

Eliminating H_{i}, we get,

$$
\begin{aligned}
\frac{\alpha D_{i}}{c} & =-\frac{c}{\alpha}[l,[l, E]]_{i} \\
& =-\left\{E_{i}-l_{i}\left(l_{i} E_{j}\right)\right\} \frac{c}{\alpha}
\end{aligned}
$$

so that

$$
D_{i}=\left\{E_{i}-l_{i}\left(l_{i} E_{j}\right)\right\} \frac{c^{2}}{\alpha^{2}} .
$$

This expression is the general one connecting D_{i} and E_{i} and in the isotropic case degenerates into $D_{i}=n^{2} E_{i}$.

It can be written,

$$
D_{1}=\frac{c^{2}}{\alpha^{2}}\left\{\frac{D_{1}}{K^{\prime}}-l_{1}\left(l_{j} E_{j}\right)\right\}=n^{2}\left\{\frac{D_{1}}{K^{\prime}}-l_{1}\left(l_{j} E_{j}\right)\right\}
$$

or

$$
D_{1}=-\frac{l_{1}\left(l_{j} E_{j}\right)}{\frac{1}{n^{2}}-\frac{1}{K^{\prime}}}
$$

where n is the refractive index in the direction l_{i}, and two similar equations for D_{2} and D_{3}.
7. Relation between D_{i} and the Wave-normal l_{i}.
(a) Let the direction-cosines of D_{i} be m_{i} and its amplitude A. E_{1} $=D_{1} / K^{\prime}$, etc. so that in $E_{1}=a^{\prime} e^{i(2 \pi / \lambda)\left(\alpha t-l_{j} x_{j}\right)}$, etc.

$$
a^{\prime}=A \frac{m_{1}}{K^{\prime}}, \quad \text { etc. }
$$

We have,

$$
D_{i} \frac{\alpha^{2}}{c^{2}}=E_{i}-l_{i}\left(l_{j} E_{j}\right)
$$

so that,

$$
E_{1} K^{\prime} \frac{\alpha^{2}}{c^{2}}=E_{1}-l_{1}\left(l_{j} E_{j}\right)
$$

and two similar equations.
Hence,

$$
m_{1}\left(\frac{c^{2}}{K^{\prime}}-\alpha^{2}\right)=c^{2} l_{1}\left(\frac{l_{1} m_{1}}{K^{\prime}}+\text { etc. }\right)=l_{1} P \text { say }
$$

so that,

$$
m_{1}=\frac{l_{1} P}{\frac{c^{2}}{K^{\prime}}-\alpha^{2}}, \quad m_{2}=\text { etc. }
$$

For every value of l_{i} there are in general two values of α and α^{\prime}, and, thus,

$$
\begin{aligned}
& m_{1}: m_{2}: m_{3}:=\frac{l_{1}}{\frac{c^{2}}{K^{\prime}}-\alpha^{2}}: \frac{l_{2}}{\frac{c^{2}}{K^{\prime \prime}}-\alpha^{2}}: \frac{l_{3}}{\frac{c^{2}}{K^{\prime \prime \prime}}-\alpha^{2}} \\
& m_{1}^{\prime}: m_{2}^{\prime}: m_{3}^{\prime}=\frac{l_{1}}{\frac{c^{2}}{K^{\prime}}-\alpha^{\prime 2}}: \frac{l_{2}}{\frac{c^{2}}{K^{\prime \prime}}-\alpha^{\prime 2}}: \frac{l_{3}}{\frac{c^{2}}{K^{\prime \prime \prime}}-\alpha^{\prime 2}} .
\end{aligned}
$$

Hence $m_{i} m_{i}{ }^{\prime}$ is proportional to,

$$
\begin{aligned}
& \frac{l_{1}{ }^{2}}{\left(\frac{c^{2}}{K^{\prime}}-\alpha^{2}\right)\left(\frac{c^{2}}{K^{\prime}}-\alpha^{\prime 2}\right)}+\text { etc. } \\
& =\frac{1}{\alpha^{2}-\alpha^{\prime 2}}\left\{\frac{l_{1}{ }^{2}}{\frac{c^{2}}{K^{\prime}}-\alpha^{2}}+\text { etc. }-\left(\frac{l_{1}{ }^{2}}{\frac{c^{2}}{K^{\prime}}-\alpha^{\prime 2}}+\text { etc. }\right)\right\}=0
\end{aligned}
$$

so that m_{i} and $m_{i}{ }^{\prime}$ are at right-angles, i.e., the two displacements for the wave-normal l_{i} are at right-angles.
(b) We have from (5),

$$
\frac{l_{1}{ }^{2}}{\frac{c^{2}}{K^{\prime}}-\alpha^{2}}+\frac{l_{2}{ }^{2}}{\frac{c^{2}}{K^{\prime \prime}}-\alpha^{2}}+\frac{l_{3}{ }^{2}}{\frac{c^{2}}{K^{\prime \prime \prime}}-\alpha^{2}}=0
$$

and thus from (a),

$$
\left(\frac{c^{2}}{K^{\prime}}-\alpha^{2}\right) m_{1}^{2}+\left(\frac{c^{2}}{K^{\prime \prime}}-\alpha^{2}\right) m_{2}^{2}+\left(\frac{c^{2}}{K^{\prime \prime \prime}}-\alpha^{2}\right) m_{3}^{2}=0
$$

so that,

$$
\alpha^{2}=\frac{c^{2} m_{1}{ }^{2}}{K^{\prime}}+\frac{c^{2} m_{2}{ }^{2}}{K^{\prime \prime}}+\frac{c^{2} m_{3}{ }^{3}}{K^{\prime \prime \prime}}
$$

and there is thus only one wave velocity corresponding to each direction of the displacement vector.
(c) From (a),

$$
m_{1}=\frac{l_{1} g}{v^{\prime 2}-\alpha^{2}},
$$

where

$$
g^{2}=\frac{1}{\sum \frac{l_{1}{ }^{2}}{\left(v^{2}-\alpha^{2}\right)^{2}}}
$$

and two similar equations for m_{2}, m_{3}.

8. Energy of Electrical and Magnetic Vibrations

We have,

$$
u=\frac{E_{i} D_{i}}{8 \pi}=\frac{c^{2}\left\{E_{i}^{2}-\left(E_{i} l_{i}\right)^{2}\right\}}{8 \pi \alpha^{2}}
$$

and

$$
t=\frac{H_{i}{ }^{2}}{8 \pi}=\frac{c^{2}[E, l]_{i}^{2}}{8 \pi \alpha^{2}}=\frac{c^{2}\left\{E_{i}{ }^{2} l_{i}{ }^{2}-\left(E_{i} l_{i}\right)^{2}\right\}}{8 \pi \alpha^{2}}
$$

so that,

$$
w=u+t=2 u=2 t=\frac{n^{2}\left\{E_{i}{ }^{2}-\left(E_{i} l_{i}\right)^{2}\right\}}{4 \pi} .
$$

9. Relations between E_{i}, D_{i}, l_{i}, w and n

By (6) we have

$$
D_{i}=n^{2}\left\{E_{i}-l_{i}\left(E_{j} l_{j}\right)\right\}
$$

so that,

$$
D_{i}{ }^{2}=n^{4}\left\{E_{i}{ }^{2}-\left(E_{j} l_{j}\right)^{2}\right\}=4 \pi n^{2} w
$$

and

$$
n^{2}=\frac{D_{i}^{2}}{4 \pi w}=\frac{D_{i}^{2}}{E_{i} D_{i}} .
$$

Thus

$$
\begin{aligned}
l_{i}=\frac{E_{i}-\frac{D_{i}}{n^{2}}}{E_{j} l_{j}} & =\frac{E_{i}-\frac{D_{i}}{n^{2}}}{\sqrt{E_{j}{ }^{2}-\frac{D_{i}{ }^{2}}{n^{4}}}} \\
& =\frac{E_{i}-\frac{\left(E_{j} D_{j}\right) D_{i}}{D_{j}{ }^{2}}}{\sqrt{E_{j}{ }^{2}-\frac{\left(E_{j} D_{j}\right)^{2}}{D_{j}{ }^{2}}}}=\frac{E_{i} D_{j}{ }^{2}-D_{i}\left(E_{j} D_{j}\right)}{\sqrt{D_{i}{ }^{2}\left\{E_{j}{ }^{2} D_{j}{ }^{2}-\left(E_{j} D_{j}\right)^{2}\right\}}}
\end{aligned}
$$

10. The Energy Flow N_{i} in a Crystalline Dielectric-the Ray

We have from (3), $N_{i}=(c / 4 \pi)[E, H]_{i}$ and hence the energy flow diverges from the wave-normal at an angle θ say. This path of flow of the energy is called the ray and is at right-angles to E_{i} and H_{i}, and lies in the plane of l_{i}, E_{i}, and D_{i}. Inserting the values for H_{i} we get,

$$
N_{i}=\frac{c n}{4 \pi}[E,[E, l]]_{i}=\frac{c n}{4 \pi}\left\{l_{i} E_{j}^{2}-E_{i}\left(E_{j} l_{j}\right)\right\}
$$

Hence,

$$
\begin{aligned}
N_{i}^{2} & =\frac{c^{2} n^{2}}{(4 \pi)^{2}}\left\{\left(E_{j}^{2}\right)^{2}-E_{i}^{2}\left(E_{i} l_{j}\right)^{2}\right\} \\
& =\frac{c^{2} n^{2}}{(4 \pi)^{2}} E_{i}^{2}\left\{E_{j}^{2}-\left(E_{j} l_{j}\right)^{2}\right\}=\frac{c^{2} E_{i}^{2} w}{4 \pi} .
\end{aligned}
$$

Also,

$$
\left|N_{i}\right| \cos \theta=N_{i} l_{i}=\frac{c n}{4 \pi} l_{i}\left\{l_{i} E_{j}^{2}-E_{i}\left(E_{j} l_{j}\right)\right\}=\frac{c w}{n} \quad \text { by (8). }
$$

Again,

$$
\begin{align*}
N_{i} D_{i} & =\frac{c n}{4 \pi}\left\{l_{i} E_{i}^{2}-E_{i}\left(E_{j} l_{i}\right)\right\} D_{i} \\
& =\frac{c n^{3}}{4 \pi}\left\{l_{i} E_{j}^{2}-E_{i}\left(E_{j} l_{j}\right)\right\}\left\{E_{i}-l_{i}\left(E_{j} l_{j}\right)\right\} \tag{6}\\
& =-\frac{c n^{3}}{4 \pi}\left\{E_{j}^{2}-\left(E_{j} l_{j}\right)^{2}\right\} E_{i} l_{i} \\
& =-n c E_{j} l_{j} w
\end{align*}
$$

11. The Ray Index, r

N_{i} is the amount of energy crossing unit surface normally, in unit time. Imagine a cylinder erected on this base of unit area, with its length parallel to p_{i}, the direction of N_{i}, and of height β where β is the velocity along p_{i}. If the energy density within it is w then in unit time an amount of energy βw will pass through the unit area and thus,

$$
\left|N_{i}\right|=\beta w .
$$

We have,

$$
N_{i} l_{i}=\frac{c w}{n} .
$$

So that

$$
\beta=\frac{c}{n\left(p_{i} l_{i}\right)}=\frac{\alpha}{p_{i} l_{i}}
$$

i.e., the wave velocity is the projection of the ray velocity on the wavenormal.

Also, since

$$
\begin{aligned}
N_{i}{ }^{2} & =\frac{c^{2} E_{i}{ }^{2} w}{4 \pi} \\
\beta^{2} & =\frac{N_{i}{ }^{2}}{w^{2}}=\frac{c^{2}}{4 \pi w} E_{i}{ }^{2} .
\end{aligned}
$$

We define the ray index, r, by $r=c / \beta$ so that,

$$
\begin{gathered}
r^{2}=\left(\frac{c}{\beta}\right)^{2}=\frac{c^{2} 4 \pi w}{c^{2} E_{i}{ }^{2}}=\frac{E_{i} D_{i}}{E_{i}{ }^{2}} \\
\left(\text { cf. } n^{2}=\frac{D_{i}{ }^{2}}{E_{i} D_{i}}\right) .
\end{gathered}
$$

Again, inserting the value for l_{i} in the expression for N_{i}, we get,

$$
\begin{aligned}
N_{i} & =\frac{c n\left(E_{j} D^{\prime}\left\{E_{i}\left(E_{j} D_{j}\right)-D_{i} E_{j}{ }^{2}\right\}\right.}{4 \pi \sqrt{D_{j}{ }^{2}\left\{E_{i}{ }^{2} D_{i}{ }^{2}-\left(E_{i} D_{i}\right)^{2}\right\}}} \\
& =\frac{c \sqrt{E_{j} D_{j}}\left\{E_{i}\left(E_{i} D_{j}\right)-D_{i} E_{j}{ }^{2}\right\}}{4 \pi \sqrt{E_{j}{ }^{2} D_{j}{ }^{2}-\left(E_{j} D_{i}\right)^{2}}} .
\end{aligned}
$$

Since $p_{i}=N_{i} /\left|N_{i}\right|$ and as,

$$
\begin{aligned}
\left|N_{i}\right| & =\frac{c}{4 \pi} \sqrt{\left(E_{j} D_{j}\right) E_{i}{ }^{2}} \\
-p_{i} & =\frac{D_{i} E_{j}{ }^{2}-E_{i}\left(E_{i} D_{j}\right)}{\sqrt{E_{j}{ }^{2}\left\{E_{j}{ }^{2} D_{j}{ }^{2}-\left(E_{j} D_{j}\right)^{2}\right\}}} \\
\left(\text { cf. } l_{i}\right. & \left.=\frac{E_{i} D_{j}{ }^{2}-D_{i}\left(E_{j} D_{i}\right)}{\sqrt{D_{j}{ }^{2}\left\{E_{j}{ }^{2} D_{j}^{2}-\left(E_{j} D_{j}\right)^{2}\right\}}}\right) .
\end{aligned}
$$

12. Relations of Wave and Ray Vectors

We have,

$$
E_{i} p_{i}=0 ; \quad D_{i} l_{i}=0 ; \quad p_{i} l_{i}=\cos \theta ; \quad r=n \cos \theta
$$

where θ is the angle between the wave-normal and the ray.
Hence in the equation

$$
\begin{aligned}
D_{i} & =n^{2}\left\{E_{i}-l_{i}\left(E_{j} l_{j}\right)\right\} \\
D_{i} p_{i} & =n^{2}\left\{E_{i} p_{i}-p_{i} l_{i}\left(E_{i} l_{i}\right)\right\}=-n^{2}\left(E_{i} l_{i}\right) \cos \theta
\end{aligned}
$$

or

$$
E_{i} l_{i}=-\frac{D_{i} p_{i}}{n^{2} \cos \theta}
$$

Since E_{i}, D_{i} and p_{i} are coplanar,

$$
p_{i}=a D_{i}+b E_{i}
$$

where a and b are constants.
Hence

$$
p_{i}^{2}=a p_{i} D_{i}+b p_{i} E_{i} \text { i.e., } \quad a p_{i} D_{i}=1
$$

and

$$
p_{i} l_{i}=a l_{i} D_{i}+b l_{i} E_{i} \quad \text { i.e., } \quad b l_{i} E_{i}=\cos \theta
$$

So that,

$$
p_{i}=\frac{D_{i}}{p_{j} D_{j}}+\frac{E_{i} \cos \theta}{l_{j} E_{j}}
$$

and

$$
E_{i}=\frac{l_{i} E_{i}}{\cos \theta}\left\{p_{i}-\frac{D_{i}}{p_{i} D_{j}}\right\} .
$$

Inserting the value for $E_{j} l_{j}$ we get,

$$
E_{i}=\frac{-D_{i} p_{j}\left(p_{i}-\frac{D_{i}}{p_{i} D_{j}}\right)}{n^{2} \cos ^{2} \theta}=\frac{D_{i}-p_{i}\left(D_{i} p_{j}\right)}{r^{2}} .
$$

Taking all these wave and ray equations together and comparing them, we see that they have the following correspondence in their terms;

$$
\begin{aligned}
& E_{i} D_{i} \quad l_{i} \quad p_{i} \alpha
\end{aligned} n^{\prime} K^{\prime} K^{\prime \prime} K^{\prime \prime \prime} \quad v^{\prime} v^{\prime \prime} v^{\prime \prime \prime} c c \quad \text { wave equations }
$$

13. The Ray Equations

We have for the wave, from (6),

$$
D_{1}=\frac{-l_{1}\left(l_{i} E_{j}\right)}{\frac{1}{n^{2}}-\frac{1}{K^{\prime}}}=\frac{-c^{2} l_{1}\left(l_{i} E_{j}\right)}{\alpha^{2}-v^{\prime 2}}
$$

and two similar equations for D_{2} and D_{3} and also, from (5),

$$
\frac{l_{1}^{2}}{\alpha^{2}-v^{\prime 2}}+\frac{l_{2}^{2}}{\alpha^{2}-v^{\prime \prime 2}}+\frac{l_{3}^{2}}{\alpha^{2}-v^{\prime \prime \prime 2}}=0 .
$$

Substituting the corresponding terms from (12) we get,

$$
E_{1}=\frac{-p_{1}\left(p_{j} D_{j}\right)}{c^{2}\left(\frac{1}{\beta^{2}}-\frac{1}{v^{\prime 2}}\right)}
$$

and two similar equations for E_{2} and E_{3}.
Also,

$$
\frac{p_{1}{ }^{2}}{\frac{1}{\beta^{2}}-\frac{1}{v^{\prime 2}}}+\frac{p_{2}{ }^{2}}{\frac{1}{\beta^{2}}-\frac{1}{v^{\prime \prime 2}}}+\frac{p_{3}{ }^{2}}{\frac{1}{\beta^{2}}-\frac{1}{v^{\prime \prime \prime 2}}}=0
$$

and

$$
\frac{p_{1}{ }^{2}}{r^{2}-K^{\prime}}+\frac{p_{2}{ }^{2}}{r^{2}-K^{\prime \prime}}+\frac{p_{3}{ }^{2}}{r^{2}-K^{\prime \prime \prime}}=0 .
$$

These equations define the ray surface which, if we put $x_{i}=\beta p_{i}$, may be written,

$$
\frac{v^{\prime 2} x_{1}^{2}}{v^{\prime 2}-\beta^{2}}+\frac{v^{\prime \prime 2} x_{2}{ }^{2}}{v^{\prime \prime 2}-\beta^{2}}+\frac{v^{\prime \prime \prime 2} x_{3}{ }^{2}}{v^{\prime \prime \prime 2}-\beta^{2}}=0 .
$$

Thus to every value of p_{i} there are two values of β or r.
14. Relations of l_{i} and p_{i}

In any actual case only one of the vectors l_{i} and p_{i} is given and the other must be calculated from it. Knowing the l_{i} or p_{i}, the D_{i} and E_{i} can be calculated from the equations of (6) and (13).
(a) We have,

$$
D_{1}=E_{1} K^{\prime}=\frac{-p_{1}\left(D_{j} p_{j}\right) \beta^{2}}{v^{\prime 2}-\beta^{2}}
$$

and two similar equations for D_{2} and D_{3}.

Also,

$$
D_{i} p_{j}=-\left(E_{j} l_{i}\right) n^{2} \cos \theta=\frac{c^{2}\left(E_{j} l_{j}\right)}{\alpha \beta} .
$$

Thus,

$$
\frac{l_{1} \alpha}{\alpha^{2}-v^{\prime 2}}=\frac{p_{1} \beta}{\beta^{2}-v^{\prime 2}}
$$

and two similar equations for $l_{2}, l_{3}, p_{2}, p_{3}$.
(b) We have already, from (5), the relations between the directioncosines of the wave-normals so that we derive,

$$
\frac{l_{1} p_{1}}{\beta^{2}-v^{\prime 2}}+\frac{l_{2} p_{2}}{\beta^{2}-v^{\prime \prime 2}}+\frac{l_{3} p_{3}}{\beta^{2}-v^{\prime \prime \prime} 2}=0 .
$$

(c) Again, from (a) we can write,

$$
\beta p_{1}-\alpha l_{1}=\frac{l_{1} \alpha\left(\beta^{2}-\alpha^{2}\right)}{\alpha^{2}-v^{\prime 2}}
$$

and two similar equations.
Squaring and adding these three equations, we have,

$$
\begin{equation*}
\alpha^{2}\left(\beta^{2}-\alpha^{2}\right)=\frac{1}{\sum\left\{\frac{l_{1}}{\alpha^{2}-v^{\prime 2}}\right\}^{2}}=g^{2} \tag{7}
\end{equation*}
$$

α is already known by the wave equation in terms of l_{i} and therefore $\alpha^{2}\left(\beta^{2}-\alpha^{2}\right)$, and thus β, can be expressed in terms of l_{i}. Hence p_{i} is expressed as a function of l_{i}.

We can write,

$$
p_{1}=\frac{l_{1}}{\alpha \beta}\left\{\alpha^{2}+\frac{g^{2}}{\alpha^{2}-v^{\prime 2}}\right\}
$$

and two similar equations for $p_{2}, p_{3}, l_{2}, l_{3}$.
Hence, since to each value of l_{i} there are two values of α, there must in general be two rays p_{i} for each l_{i}.
(d) By the relations of (12) we can write,

$$
l_{1}=\alpha \beta p_{1}\left\{\frac{1}{\beta^{2}}+\frac{g^{2}}{\frac{1}{\beta^{2}}-\frac{1}{v^{\prime 2}}}\right\}
$$

and two similar equations for $l_{2}, l_{3}, p_{2}, p_{3}$.
Hence, since to each value of p_{i} there are two values of β, there must in general be two wave-normals l_{i} for each p_{i}.
15. Relations of the Wave-normal Surface and the Ray Surface

A small change in either the electrical intensity or the displacement
will bring about a small change in the l_{i} relative to the p_{i}. We now investigate this relation.

Fig. 1. The direction of the tangent plane to the ray surface.
Let p_{i} be the ray direction and β the ray velocity in this direction. If $R_{i}=\beta p_{i}$ then the end of R_{i} sweeps out the ray surface. Let l_{i} be the wavenormal associated with p_{i} according to (14).

Since $p_{i} c=r R_{i}$, we have from (12),

$$
c^{2} E_{i}=\left(R_{i}{ }^{2}\right) D_{i}-R_{i}\left(D_{i} R_{j}\right) .
$$

If the quantities be considered as functions of a variable t, say, then the displacement of R_{i} will be $\delta R_{i}=\dot{R}_{i} \delta t$ where the dot indicates differentiation with respect to t.

We have,

$$
c^{2} \dot{E}_{i}=\dot{D}_{i}\left(R_{i}^{2}\right)+2 D_{i}\left(R_{i} \dot{R}_{i}\right)-\dot{R}_{i}\left(D_{j} R_{i}\right)-R_{i}\left(D_{j} \dot{R}_{i}\right)-R_{i}\left(\dot{D}_{j} R_{j}\right) .
$$

Multiplying these equations by the appropriate D_{i} and adding, we have,

$$
\begin{aligned}
c^{2} \dot{E}_{i} D_{i} & =\left(\dot{D}_{i} D_{i}\right)\left(R_{i}^{2}\right)-\left(D_{i} R_{i}\right)\left(\dot{D}_{i} R_{i}\right)+2\left\{\left(D_{i}^{2}\right)\left(\dot{R}_{i} R_{i}\right)-\left(R_{i} D_{i}\right)\left(\dot{R}_{i} D_{i}\right)\right\} \\
& =\dot{D}_{i}\left\{\left(R_{i}^{2}\right) D_{i}-R_{i}\left(D_{i} R_{i}\right)\right\}_{i}+2 \dot{R}_{i}\left\{\left(D_{i}^{2}\right) R_{j}-D_{i}\left(R_{i} D_{i}\right)\right\}_{i} \\
& =c^{2} \dot{D}_{i} E_{i}+2 \dot{R}_{i}[[D, R], D]_{i}
\end{aligned}
$$

i.e., $2 \dot{R}_{i}[[D, R], D]_{i}=0$ since $D_{i} \dot{E}_{i}=E_{i} \dot{D}_{i}$.

The vector $[[D, R], D]_{i}$ is perpendicular to the normal to the plane of D_{i} and p_{i} and is also at right-angles to D_{i}. It is therefore parallel to l_{i}. We have then $\dot{R}_{i}[[D, R], D]_{i}=0$ and hence the displacement of R_{i}, being $\delta R_{i}=\dot{R}_{i} \delta t$, must be at right-angles to l_{i} since $l_{i} \delta R_{i}=0$. That is, the tangent plane to the ray surface at the end of a radius-vector is always at right-angles to the corresponding wave-normal.

The principal axes of the wave-normal surface and the ray surface coincide and therefore the wave-normal surface is the pedal surface of the ray surface and conversely the ray surface is the envelope of the planes at right-angles to the radii-vectores of the wave-normal surface.

16. Derivation of the Wave-normal Ellipsoid ${ }^{4}$

By (5) we have for the relation between the wave-normal l_{i} and the

[^1]velocities α of the two waves propagated along it,
$$
\frac{l_{1}^{2}}{\alpha^{2}-v^{\prime 2}}+\frac{l_{2}{ }^{2}}{\alpha^{2}-v^{\prime \prime 2}}+\frac{l_{3}{ }^{2}}{\alpha^{2}-v^{\prime \prime \prime 2}}=0 .
$$

Hence if waves travel outwards from a point within the crystal in all directions, the limits of their travel after unit time along the normals will form a twofold surface, the wave-normal surface, which is of the fourth degree. Such a surface is a complicated one and it is more convenient to take as reference an ellipsoid derived from the energy equation (4),

$$
\frac{D_{1}^{2}}{K^{\prime}}+\frac{D_{2}{ }^{2}}{K^{\prime \prime}}+\frac{D_{3^{2}}{ }^{\prime \prime}}{K^{\prime \prime \prime}}=8 \pi u
$$

Taking the x_{i} as measures of the D_{i} and with suitable adjustments we can put,

$$
\frac{x_{1}^{2}}{K^{\prime}}+\frac{x_{2}{ }^{2}}{K^{\prime \prime}}+\frac{x_{3}^{2}}{K^{\prime \prime \prime}}=1, \quad \text { or } \quad \frac{x_{1}^{2}}{n^{\prime 2}}+\frac{x_{2}^{2}}{n^{\prime \prime 2}}+\frac{x_{3}^{2}}{n^{\prime \prime \prime 2}}=1
$$

This is an ellipsoid whose principal axes coincide with the dielectric axes and are proportional to the roots of the principal dielectric constants or to the principal refractive indices. It is called here the wave-normal ellipsoid. By reference to it the course of the propagation of light in crystals can be illustrated and examined in the following manner.

17. Refractive Indices for the Wave-normal l_{i}

Let a radius-vector of the ellipsoid represent a wave-normal l_{i}. Then, by (6), D_{i}, which we shall take as the "vibration," must lie in a plane at right-angles to this radius vector. Let $l_{i} x_{i}=0$ be such a plane through the origin. It will cut the ellipsoid in an ellipse and the principal axes of the ellipse give in direction and magnitude the two values of D_{i} demanded by electromagnetic theory. That this is so we prove as follows.

For the radius-vector of length r,

$$
r^{2}=x_{i}{ }^{2}=f\left(x_{i}\right) \quad \text { say } .
$$

We have therefore to find the maximum and minimum values for r having regard to the conditions,

$$
0=\frac{x_{1}^{2}}{K^{\prime}}+\frac{x_{2}^{2}}{K^{\prime \prime}}+\frac{x_{3}{ }^{2}}{K^{\prime \prime \prime}}-1=\phi\left(x_{i}\right) \quad \text { say, }
$$

and

$$
0=l_{i} x_{i}=\psi\left(x_{i}\right) \quad \text { say } .
$$

[^2]Forming $d f+\lambda d \phi+2 \mu d \psi$ where λ and 2μ are undetermined multipliers, and equating the coefficients of the $d x_{i}$ to zero,

$$
x_{1}+\frac{\lambda x_{1}}{K^{\prime}}+\mu l_{1}=0, \quad x_{2}+\frac{\lambda x_{2}}{K^{\prime \prime}}+\mu l_{2}=0, \quad x_{3}+\frac{\lambda x_{3}}{K^{\prime \prime \prime}}+\mu l_{3}=0 .
$$

The values of x_{i} which satisfy these equations are those that determine the turning values of r^{2}. Multiplying the equations by the x_{i} and adding gives $r^{2}=-\lambda$ and this gives on substitution,

$$
x_{1}=\frac{\mu l_{1}}{\frac{r^{2}}{K^{\prime}}-1}, \quad x_{2}=\frac{\mu l_{2}}{\frac{r^{2}}{K^{\prime \prime}}-1}, \quad x_{3}=\frac{\mu l_{3}}{\frac{r^{2}}{K^{\prime \prime \prime}}-1} .
$$

Inserting these values in $l_{i} x_{i}=0$,

$$
\frac{l_{1}{ }^{2}}{\frac{r^{2}}{K^{\prime}}-1}+\frac{l_{2}^{2}}{\frac{r^{2}}{K^{\prime \prime}}-1}+\frac{l_{3}{ }^{2}}{\frac{r^{2}}{K^{\prime \prime \prime}}-1}=0
$$

which gives two solutions for r^{2}, the turning values.
By (5) this is the equation which defines the refractive indices of the two waves proceeding along the wave-normal l_{i} so that the lengths of the major and minor axes of the elliptic section give the refractive indices of the waves propagated along the radius-vector l_{i}.

Again, if we multiply the equations by the l_{i} and add, we get,

$$
\lambda\left(\frac{x_{1} l_{1}}{K^{\prime}}+\frac{x_{2} l_{2}}{K^{\prime \prime}}+\frac{x_{3} l_{3}}{K^{\prime \prime \prime}}\right)+\mu=0
$$

which gives then, as the three equations defining the x_{i} for the turning values of r^{2},

$$
x_{1}-\frac{r^{2} x_{1}}{K^{\prime}}+l_{1} r^{2}\left(\frac{x_{1} l_{1}}{K^{\prime}}+\frac{x_{2} l_{2}}{K^{\prime \prime}}+\frac{x_{3} l_{3}}{K^{\prime \prime \prime}}\right)=0
$$

and two similar equations. If in these equations the x_{i} are replaced by the D_{i} and x_{1} / K^{\prime}, etc. by E_{1}, etc., then,

$$
D_{1}=n^{2}\left(\frac{D_{1}}{K^{\prime}}-l_{1}\left(E_{i} l_{i}\right)\right)
$$

and two similar equations, and these by (6) define the electrical displacements associated with the wave-normal l_{i}.
18. Vibration Directions for the Wave-normal l_{i}

From the values obtained in (17) for the x_{i} the ratios of the directioncosines of the axes of the elliptic section at right-angles to l_{i} are,

$$
\frac{l_{1}}{v^{\prime 2}-\alpha^{2}}: \frac{l_{2}}{v^{\prime \prime 2}-\alpha^{2}}: \frac{l_{3}}{v^{\prime \prime \prime 2}-\alpha^{2}}
$$

which are the values determined for the direction-cosines m_{i} of D_{i} in (7). We note further that these electrical displacements are at right-angles as required by (7).
19. Ray Direction and Ray Index for the Wave-normal l_{i}

Let $x_{i}{ }^{\prime}$ be the end of one of the principal axes of the elliptic section at

Fig. 2. Section of the wave-normal ellipsoid containing the wave-normal l_{i} and one of the principal axes $O x_{i}$ of the elliptic section at right-angles to it.
right-angles to the wave-normal l_{i}. This axis defines one value of D_{i} in magnitude and direction, i.e., on the appropriate scale, $x_{i}{ }^{\prime}=D_{i}$. By (6),

$$
D_{1}=\frac{l_{1}\left(l_{i} E_{i}\right)}{\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}}
$$

so that,

$$
n=\left|D_{i}\right|=\left[\sum\left\{\frac{l_{1}\left(l_{i} E_{i}\right)}{\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}}\right\}^{2}\right]^{1 / 2} .
$$

By (14)

$$
g^{2}=\frac{1}{\sum\left(\frac{l_{1}}{\alpha^{2}-v^{\prime 2}}\right)^{2}}=\frac{d^{4}}{\sum \frac{l_{1}^{2}}{\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)^{2}}} .
$$

Hence,

$$
l_{i} E_{i}=\frac{n g}{c^{2}} .
$$

We have thus for the co-ordinates $x_{i}{ }^{\prime}$,

$$
x_{1}^{\prime}=\frac{l_{1} n g}{c^{2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}
$$

and similar equations for $x_{2}{ }^{\prime}$ and $x_{3}{ }^{\prime}$.
The tangent to the elliptic section at $x_{i}{ }^{\prime}$ is at right-angles to $O x_{i}{ }^{\prime}$ and is thus perpendicular to the plane of l_{i} and $O x_{i}{ }^{\prime}$ since it also lies in the central plane at right-angles to l_{i}. Draw the tangent plane to the ellipsoid at $x_{i}{ }^{\prime}$ and let $O N$, with direction-cosines s_{i}, be the normal to this plane from the origin. Since $O N$ is also at right angles to the line through N parallel to the tangent to the elliptic section at $x_{i}{ }^{\prime}$, it must be co-planar with l_{i} and $O x_{i}{ }^{\prime}$.

We have,

$$
\begin{aligned}
s_{1} & =\frac{\frac{x_{1}^{\prime}}{n^{\prime 2}}}{\left\{\sum\left(\frac{x_{1}}{n^{\prime 2}}\right)^{2}\right\}^{1 / 2}}=\frac{x_{1}^{\prime} q}{n^{\prime 2}}, \quad \text { say }, \\
& =\frac{l_{1 n g q}}{c^{2} n^{\prime 2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}
\end{aligned}
$$

and similar equations for s_{2} and s_{3}.
By (14) we have, for the ray corresponding to the wave-normal l_{i},

$$
p_{1}=\frac{r l_{1}}{n}\left\{1-\frac{n^{2} g^{2}}{c^{1}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}\right\}
$$

and similar equations for p_{2} and p_{3}.
Hence,

$$
\begin{aligned}
s_{i} p_{i} & \left.=\frac{g q r}{c^{2}} \sum\left[\frac{l_{1}^{2}}{n^{\prime 2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}\left\{1-\frac{n^{2} g^{2}}{c^{4}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}\right\}\right]\right] \\
& =\frac{g q r}{c^{2}}\left\{\sum \frac{l_{1}^{2}}{n^{\prime 2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}-\frac{g^{2}}{c^{4}} \sum \frac{l_{1}^{2} n^{2}}{n^{\prime 2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)^{2}}\right\} .
\end{aligned}
$$

From (5)

$$
\sum \frac{l_{1}{ }^{2}}{n^{\prime 2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}=1
$$

also,

$$
\sum \frac{l_{l^{2}}}{\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)}=0
$$

so that,

$$
\begin{gathered}
\sum \frac{l_{1}^{2}}{n^{\prime 2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)^{2}}=\sum \frac{l_{1}^{2}}{n^{2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)^{2}} \\
\therefore \quad s_{i} p_{i}=0
\end{gathered}
$$

i.e. p_{i} is given by the two conditions, (a), it lies in the plane of $l_{i}, O x_{i}{ }^{\prime}$ and $O N$, and, (b), it is at right-angles to $O N$.

Further, $O N=n \cos \theta$ and hence is equal to the ray index r. We note also that, from the geometry of the ellipsoid, $O N$ will be a principal semidiameter of the cross section of the cylinder with axis p_{i} and tangential to the ellipsoid along its intersection with the plane diametral to p_{i}.

These relations being established between the wave-normal ellipsoid and the electromagnetic vectors, all of the remaining relations depend only on the geometry of the ellipsoid itself. Beer, Becke and Wright ${ }^{5}$ have pointed out that the full optical relations can be developed from the wave-normal ellipsoid by consideration of the cones defined by the intersection of the ellipsoid with a sphere of variable radius corresponding to the refrractive index. In concluding this note it is worth drawing attention to the role played in this matter by the focal lines of these cones.

If the wave-normal ellipsoid is

$$
\sum \frac{x_{1}{ }^{2}}{n^{\prime 2}}=0
$$

the radii-vectors of length corresponding to the variable refractive index r give the "equivibration" cone

$$
\sum x_{1_{1}}{ }^{2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{r^{2}}\right)=0
$$

and this degenerates into the two planes of cyclic section of the ellipsoid for $r=n^{\prime \prime}$. Since the coefficients of $x_{1}{ }^{2}$ etc. in the equations to the cone and the ellipsoid differ only by a constant term, the directions of the circular sections are the same in each. The real focal lines of these equivibration cones are given by,

$$
x_{2}{ }^{2} \frac{\left(r^{2}-n^{\prime \prime 2}\right)}{\left(n^{\prime \prime 2}-n^{\prime 2}\right)}-x_{3}{ }^{2} \frac{\left(n^{\prime \prime \prime 2}-r^{2}\right)}{\left(n^{\prime \prime \prime 2}-n^{\prime 2}\right)}=0 \quad \text { for } n^{\prime \prime}<r<n^{\prime \prime \prime}
$$

and

$$
x_{1}^{2} \frac{\left(r^{2}-n^{\prime 2}\right)}{\left(n^{\prime \prime \prime 2}-n^{\prime 2}\right)}-x_{2}^{2} \frac{\left(n^{\prime / 2}-r^{2}\right)}{\left(n^{\prime \prime \prime 2}-n^{\prime \prime 2}\right)}=0 \quad \text { for } n^{\prime}<r<n^{\prime \prime}
$$

${ }^{5}$ Beer, A.: Grunert's Arch., Th. 16, 223-229 (1851).
Becke, F.: Tschermak's Min. u. Pet. Mitt., 24, 1-34 (1905).
Wright, F. E.: Jour. Opt. Soc. Am., 7, 779-817 (1923).
i.e. the cones fall into two sets, the cyclic sections of the ellipsoid forming the boundary between them.

We note in passing that a property of the focal lines of such cones is that the section of the cone by any plane at right-angles to one of them is a conic having for focus the point where the focal line meets the plane. Further, the directrix of the cone corresponding to the point on the focal line lies in the plane of section and is at right-angles to the plane of the focal lines. It is also the directrix of the conic section.

A tangent plane to the equivibration cone along a generator, l_{i}, say, is

$$
\sum l_{1}\left(\frac{1}{n^{\prime 2}}-\frac{1}{r^{2}}\right) x_{\mathrm{t}}=0
$$

It is a diametral plane of the ellipsoid and the generator, being a radius of the sphere and thus at right-angles to the curve of its intersection with the ellipsoid, is a principal axis of the elliptic section. Hence the normals to the tangent planes of the equivibration cone give the directions of propagation for which one refractive index is r. They form the cone

$$
\sum \frac{x_{1}^{2}}{\left(\frac{1}{n^{\prime 2}}-\frac{1}{r^{2}}\right)}=0
$$

the equirefringence cone, which is reciprocal to the equivibration cone. The relations of two such reciprocal cones are shown in Fig. 3. The focal lines of each cone are at right-angles to the circular sections of the other and the normal plane common to the two cones namely,

$$
\sum \frac{\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{n^{\prime \prime \prime 2}}\right)}{l_{1}} x_{1}=0
$$

bisects the angle between the planes through the generator and the focal lines in each case. The direction-cosines of the generator of the equirefringence cone corresponding to the vibration direction l_{i} are in the ratio,

$$
\begin{aligned}
& l_{1}\left\{\left(\frac{1}{n^{\prime \prime \prime 2}}-\frac{1}{n^{\prime 2}}\right) l_{3}^{2}-\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{\prime / 2}}\right) l_{2}^{2}\right\} \\
&: l_{2}\left\{\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{\prime \prime 2}}\right) l_{1}{ }^{2}-\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{n^{\prime \prime \prime 2}}\right) l_{3}^{2}\right\} \\
&: l_{3}\left\{\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{n^{\prime \prime \prime 2}}\right) l_{2}^{2}-\left(\frac{1}{n^{\prime \prime \prime 2}}-\frac{1}{n^{\prime 2}}\right) l_{1}^{2}\right\}
\end{aligned}
$$

The focal lines of the equirefringence cones are therefore at right-angles to the cyclic planes of the equivibration cones and of the ellipsoid and are thus the same for all. They constitute the wave-normal axes and the

Fig. 3. Reciprocal cones in stereographic projection. V is a cone of the set $n^{\prime \prime}<r<n^{\prime \prime \prime}$ with focal lines at A and A^{\prime}, and U, focal lines at B and B^{\prime}, one of the set $n^{\prime}<r<n^{\prime \prime} . c$ and c^{\prime} are the planes of circular section, $r=n^{\prime \prime}$. The cone reciprocal to V is v and its focal lines are C and C^{\prime} at right-angles to the cyclic sections c and c^{\prime}. The normal plane common to the two cones is $R P$ and it bisects, in each cone, the angle between the planes through the generator and the focal lines. The circular sections of v are a and a^{\prime} at right-angles to the focal lines A and A^{\prime} of $V . R S$ is the tangent plane to v at right angles to $O P$ and $P Q$ the tangent plane to V at right-angles to $O R$.
refractive indices for the crystal are thus given by cones set about these optic axes. These fall into two sets corresponding to the two sets of equivibration cones as shown in Fig. 3, i.e., (i) for $n^{\prime \prime}<r<n^{\prime \prime \prime}$ the cones lie between the principal section $n^{\prime} n^{\prime \prime}$ and the wave-normal axes. Their circular sections, being at right-angles to the focal lines of the reciprocal, equivibration cones, are perpendicular to the plane $n^{\prime \prime} n^{\prime \prime \prime}$. (ii) for $n^{\prime}<r<n^{\prime \prime}$ they lie between the principal section $n^{\prime \prime} n^{\prime \prime \prime}$ and the wavenormal axes, their circular sections being at right-angles to the plane of n^{\prime} and $n^{\prime \prime}$. Since they have the same focal lines, these two sets of equire-
fringence cones intersect, thus determining the refractive indices for the direction of propagation defined by the common generators.

Since we are concerned only with directions, it is sufficient to consider the intersection of these equivibration and equirefringence cones with a sphere of reference in which they depict for the crystal the refractive indices and the directions of vibration. ${ }^{6}$ Since for a second degree cone the sum of the angles between any generator and the focal lines is a constant, namely the angle between the generators in the plane of the focal lines, the curves of intersection of these cones with the sphere are analogous to plane ellipses.

The directions of vibration for a generator defining a propagation direction is given by the intersection of the normal plane through the generator with the plane at right-angles to the generator. This plane, as we have seen, bisects the angle between the planes containing the generator and the focal lines. If the direction-cosines of the generator are l_{i} the di-rection-cosines of the vibration direction are in the ratio,

$$
\begin{aligned}
l_{1}\left\{\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{r^{2}}\right)\right. & \left.\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{\prime \prime \prime 2}}\right) l_{3}^{2}-\frac{1}{n^{\prime \prime \prime 2}}-\frac{1}{r^{2}}\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{n^{\prime 2}}\right) l_{2}\right\} \\
& : l_{2}\left\{\left(\frac{1}{n^{\prime \prime \prime 2}}-\frac{1}{r^{2}}\right)\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{n^{\prime 2}}\right) l_{1^{2}}-\left(\frac{1}{n^{\prime 2}}-\frac{1}{r^{2}}\right)\left(\frac{1}{n^{\prime \prime / 2}}-\frac{1}{n^{\prime \prime 2}}\right) l_{3^{2}}\right\} \\
& : l_{3}\left\{\left(\frac{1}{n^{\prime 2}}-\frac{1}{r^{2}}\right)\left(\frac{1}{n^{\prime \prime \prime 2}}-\frac{1}{n^{\prime \prime 2}}\right) l_{2}^{2}-\left(\frac{1}{n^{\prime \prime 2}}-\frac{1}{r^{2}}\right)\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{\prime \prime \prime 2}}\right) l_{l^{2}}^{2}\right\}
\end{aligned}
$$

[^3]
[^0]: ${ }^{1}$ Fletcher L.: The optical indicatrix and the transmission of light in crystals, London (1892).
 ${ }^{2}$ Pockels, F.: Lehrbuch der Kristalloptik, B. G. Teubner, Leipzig and Berlin (1906).
 Szivessy, G.: Handbuch d. Physik, vol. 20, J. Springer, Berlin (1928).
 Born, M.: Optik, J. Springer, Berlin (1933).
 ${ }^{3}$ Jeffreys, Vide, H.: Cartesian Tensors, Cambridge University Press (1931).

[^1]: ${ }^{4}$ This surface is also called the indicatrix (Fletcher), the indexellipsoid (Pockels and Szivessy), the normalenellipsoid (Born). As the term "indicatrix" has long had a definite

[^2]: meaning in the geometry of higher surfaces and curves and as the expression "indexellipsoid" is ambiguous, Born's name is probably best. "Wave-normal ellipsoid" is used here to make the reference as precise as possible.

[^3]: ${ }^{6}$ See Johannsen, A.: Manual of Petrographic Methods, New York, (1918), pp. 429434, and Wright, F. E.: op. cit., pp. 790-792 for diagrams of projections of these curves of intersection on the principal planes. Both of these works give a summary of the development of this method of analysis of the optical properties of crystals.

