
FLETCHER'S INDICATRIX AND THE
ELECTROMAGNETIC THBORY

OF LIGHT

T. C. PnBlrrsrut, Uniaersity of Aberdeen, Aberdeen, Scotland..

Agsrnacr

The optical scalars and vectors for an inactive, crystalline dielectric are first deduced
from the Maxwell equations for the electromagnetic field and it is then shown how these
can, in fact, be derived from the Fletcher indicatrix Attention is drawn to the imoortance
of the focal lines in the geometry of the indicatrix.

In most texts on crystal optics in use amongst mineralogists and crys-
tallographers at the present time the optical properties of crystals are
derived from a consideration of the Fletcher indicatrix.l This has proved
a most useful surface of reference as the primary concern of the mineral-
ogist is with wave-normals, refractive indices and directions of vibra-
tion, all of which are readily derived from this simple figure. The enquir-
ing student however always wishes to know how the surface itself is ob-
tained and how it is related to the electromagnetic theory of l ight, and
it is difficult to refer him to any text where the subject is concisely treated.
Fletcher himself presents the indicatrix in a purely geometrical form and
does not link it up with any specific view regarding the nature of light.
In the systematic German texts,2 although the connection of the surface
with the results of the elctromagnetic theory is pointed out, it is a little
difficult for the student to disentangle the proof from the other, possibly
more fundamental, aspects of optical theory. ft seems worth while there-
fore to present a short statement showing how this reference surface is
bound up with the classical theory of the electromagnetic nature of
Iight.

The treatment adopted is, f irst, to derive in the usual way the optical
scalars and vectors using Maxwell's equations, and then to show that
these can in fact be derived from the indicatrix. The presentation is much
simplified by using the abbreviated notation of Cartesian tensorss and,
since the simpler theory of the propagation of light in isotropic media is
adequately treated in standard works, a knowledqe of it is assumed in
what follows.

1 Fletcher L.: The optical indicatrix and the transmission of light in crystals, London
(1892).

2Pockels, F.: Lehrbuch der Kristalloptik, B. G. Teubner, Leipzig and Berlin (1906).
Szivessy, G. : Handbuch d. Physik, vol. 2O, !. Springer, Berlin (1928).
Born, M.: Optik, J. Springer, Berlin (1933).
3 

Jefireys, Vide, H.: Cartesian Tensors, Cambridge University press (1931).
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The various quantities are represented by the following symbols:

space co-ordinates
outward normal
surface
volume density of charge, e.s.u. p

electrical energy density u

electricalintensity-e.s.u. E"

dieiectric displacement D4

magnetic induction-m.s.u. Bt

direction-cosines of 1[t f;.
wave-length
period

ray index
ray velocity

principal refractive indices

time

directions-cosines lr, m,

volume r

total energy density 7e

magnetic energy density t

magnetic intensity-m.s.u. Hr,

conduction current densitY ii

Poynting energy vector tr[''

dielectric constant K

"h, 
Et

ni,

s

velocity of electromagnetic
radiation in vacuo

T irequency

r refractive index

B wave velocitY

I n'n"n"', principal wave (and ray) veloc-

I  n '1 n" '  i t ies

T

div D; : 4ro

d i v B ; : 0

c

v

n

a

0t1) ' t r ' t t

Difierentiation with respect to time is indicated by a dot over the

quantity concerned.

1. The Relations Between the Electromagnetic Quantit ies at a Point in a

Varying Field are given by the Four Maxwell Equations

4r D;
c u r l l l , : - h * :

c c

B;
c u r l E ; : - -

c

In the classical continuum theory the specific properties with which we

are concerned in the transmission of light by non-conducting crlstals

are the magnetic permeability and the dielectric constant. The first of

these we take as unity on the assumption that the crystals are non-mag-

netic. It remains therefore to investigate the nature of the dielectric con-

stant.

2. Relation Between D;and Et.

In an isotropic substance D; coincides with Er but in an anisotropic

material this is no longer the case.
Thus Er itself will produce a displacement with components along

Or1,}x2and 0#$. Similarly ior Ezand Ee.
Each of the components of the displacement therefore will be the sum

of the contributions from each of the components of the intensity, i.e.

€.8., Dt: KnEt ! KvBz I KuEa

where K1282 is the contribution oI E2 to the displacement along 0#1,

and so on.
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In this case therefore the dielectric factor is a second order tensor and
the displacement is the product of this tensor and E; thus,

Dt:  Kt iE; .

3. The Energy Relations in an Anisotropic Dielectric
The magnetic and electrical energy densities are given by,

t : y  , : 8 4 - K t i P f i i .
En 81 8r

Since div lE,H1^:H;.curl E;-Et.curl IIa, we have, from the general
equations of the electromagnetic field,

_(EQ; I H,B) _ ; D Lc div lz, nl-
4" 

: i i l t ; -T 
4"

which here becomes,

KtiEtiLi - iuot : - c div [n, g]^.

Integrating throughout any volume,

1  f  . - -  -  .  c  f  c  f  .

*J 
(Kt iEtEi  I  IH;2)dr :  -  

CJ 
d iv  lE,  Hl^dr :  -  

4"J lE,  Hi ,ds.

Taking the right-hand side as the total energy flow across the surface,
(Kt.&;E)/4zr is the time rate of change of the electrical energy density
(trEt')/4" is the time rate of change of the magnetic energy density.

Differentiating with respect to time the expressionfor u,

Kii@,hi * E;h) : 1, : 
K,iE,ii

8r 4r

so that

Ko i (Eoh i -E1h ) :o

which can be written in the form.

KaEaEl - KiiElEa: Q.

The "dummy" suffixes can be transposed in the second term giving,

(K ; ; -K ; ; )E ;E i : 0 .

Since this expression must hold for any value of the field strength,

K; i :  K i t

i.e., the dielectric tensor K;; is symmetrical and has only six different
components.

4. Transformation of K;; into Normal Form

The equation K;ifi;fii: (a constant) represents a central conicoid and,
since the discriminating cubic equation,

l ( K t i -  6 r , r ) l : 0
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(where 6;i is the substitution tensor) has in general three distinct roots

for X, there are three mutually perpendicular principal directions. These

are given by l1\:t;K;1. If the ri are measures of the electric field strengths

E;, then KijEjEj is 8zra and, since the energy is positive for all systems of

E;, the equation has always a definite form and so must represent an

ell ipsoid.
Referring the equation to the three mutually perpendicular principal

directions 0{; as axes

K;ilcilci : K'E'2 I K"E" + K"'E" : (a constant)'

K', K",and K"' are called the principal dielectric constants.

In this normal form,

Dt:  K'Er etc '

vru:  K 'Ef  I  K"Br '  I  K" 'Er ' : 'J* 'J* t j ,

5. Electromagnetic ,t;"., ,"; arrrr*l"" {*r*.!u,* 

*"'

The differential equations for the E; a.r:,

K o2E; 
: LzE; - srad div E;.

e2 AP

Taking a solution similar to the isotropic case,

E1 : stgizr lot-t jt i) l^, etc.

and substituting these values for E1, Ez and Es in the equations for Ea,

we get, the axes being rectangular

K'a2Et
h - tltiE),

c"

K"q2Ez
- :  

p . ,  -  I2 ( I ;E ; ) ,
t "

K'l!P:: 
Et - rt(r;Ei).

If these three equations are simultaneously true then,

U lr2 lr'

* ,  
- t  -  + - - -+1 :o

K ' -  _  I  K " ! : - l  K " ' \ - l
c2 c2 cz

i.e., for every value of l; there are in general two values of a so that two

plane waves progress along the same wave normal with velocities a and

a', Putting c2f K':v'2, etc. where e' wil l be the velocity along 0r1, and

rewriting the equation we get,

;++ ."r:{ '+7!' ' :o
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Or, in terms of the refractive index,

lf Iz2 lz2

1  1  +  t  t  +  t  t  
: o

" r -  
I (  , " -  X "  

" r -  
r ,

Putt ing !f i : lya, etc. we get,

r t 2 , x z 2 , l c r '

- , - / r r , , - * +  o , - r - : v '

These equations deflne the wave-normal surface.

6. The Relations between Eb Db H;, and the Wave-normal lr in a Crys-
talline Dielectric

The field equations are,

D,
curl 11; - -: : 0

c

c u r l - E ; * \ : 0 .
c

Et.and H;are each proport ional to , i2n(at-t ixi) l tr  so that,

ir, : 1.22 p,, curl E; : J! [t, nl,
I  "  r '  - '

n, : t? n,, curl H1 
2r '

r  "  ' : i - u ' H l i '

Hence

- 2 r , _  . . t  . a 2 n  ^  d
i . - I I , H l i : i . -  - D r  o r  - D i : f l , H l i

I "  - '  c t r  '  c

and

2 r .  .  a 2 r  u  .
i _ L l , E l i : - i  - H i  o r  - E i : - u , E l i

I -  - '  
c t r  c

i.e., Dt and H,; are at right-angles to l;., and Er lies in the plane of D; and
labut, generally, cannot be at right-angles to l; since it does not coincide
with Di.

Eliminating Ha, we get,

a D i c .- - - - - :  -  -L t ,u ,E l ) t
C a

: - Ino - hQin)l !-

so that

D o :  t E o  -  t o Q & ) l 3 .
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This expression is the general one connecting D;and E; and in the iso-

tropic case degenerates into Dt:n2E;.

It can be written,

, , :51# - t,(t iEi) l  :  .1+ - t, t l iEi)|,
or

1,0;E;)
D t : - -

n2 K'

where nis the refractive index in the direction la, and two similar equations

for D2 and Ds.

7. Relation between D,; and the Wave-normal lr.

(a) Let the direction-cosines of D; be ?nt and its amplitude A. Er
: Dt /K' , etc' so that in E1: q,'si(2r1)';(tt-t ir i) , etc.

o ' : o # , e t c .

We have,

D,+:  Et  -  I iT iEi )

so that,

d2

BrK'v:  f4  -  l (1 ,1E)

and two s imi lar  equat ions.
IIence,

/ r ,  . \  . . / l f i t  \
*'\r - o') c' l '  (fr * etc./ : tr 'P sav

so that,

Irp
m t :  

" z  

,  l : 1 4 2 : e t c .

I (  
- o "

For every value of l; there are in general two values of a and a', ar7d,

thus,

mt : rn2 :nx . :  _L_ -L  
" , _=

I ( - o '  6 " - a z  6 ' ' - a "

n ' t r ' :nt2 ' i rnzt  :  - r ! - t  
, l t  

t  
; ;  

I t

?__, ,  fu_" , ,7 , ._a,2
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Hence m4m;t is proportional to,

t t '

(L- ' \ ( ! - - ,^  
-* ' '

:  _ :_ ( ,_  r , , '  +  e rc .  _  |  , , , '  + . t . . \  l  :  od' -q ' \ * -*  
\#-" ' '  ) l

so that nt.; ar'd nt.;t are at right-angles, i.e., the two displacements for the
wave-normal I ; are at right-angles.

(b) We have from (5),

I'tz lr" 1"2 
: O

c t - f "
- _  q 2  

t '  
-  o '  

' '  
- o '

K '  K "  K ' "

and thus from (a),

/ r ,  " \  
-  / c 2  . \  -  /  c 2  . \

\ r  
-  o ' ) * "  +  ( *  o ' ) * , ' +  ( " -  -  a 2  

) m r z : 0

so that,

or:c'-! +"2! + !!!
Kt  K , ,  K " ,

and there is thus only one wave velocity corresponding to each direction
of the displacement vector.

(c) From (a),

hs
m t :  

a ' z  < z '

where

- 2 -
5 -

and two similar equations for m2, ms.

8. Energy of Electrical and Magnetic Vibrations

We have,

u :EoDo :c ' IE* 
-  (Eot)" |

8r 8na2

and

so that,

, H] c,fE, tll c,lEltf - (EJ)"|
81 8rq2 8rq2
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n2tE;2 - (E;tr i)2|

e. Retations o.r*L" 
"u)' 

r:, 
" 
) *" ̂ l^o:-

By (6) we have 

Dr :  nzlEt _ r.o@il i) l

so that,

Df :  nnfEo'- @iD'l  :  4rn2w

and

179

Thus

_ (EjD)Di
H j - -

Di' E;Diz - D;(EiDj)

^/;; -@!j'
f  " !  

D z

10. The Energy Flow .ly'; in a Crystalline Dielectric-the Ray

We have from (3), I{a:(c/4r)lE, Uln and hence the energy flow di-

verges from the wave-normal at an angle 0 say. This path of flow of the

energy is called the ray and is at right-angles to E; and Hi, and lies in

the plane of. li, E;, and. D;. Inserting the values iot H t we get,

Hence,

AIso,

N,: #ln,fn, i l lo :  f f \ , ,u; 
-  h@,t i) l  .

N": ffi l(n,')'- Eo'(EiIi)' l

: ffiEo'lEi'- @iti)'l :ry

I lro | .o, 0 : N;tt :'{*t,lua,' - E,(E;D| : + 
bv (8).

Again,
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N;D; : 
ff 1,,",, - Ei(Eh) | Dt

cn3= 
ft lhni, - Et@it)llno - h@Dl ty (o)

:_#1a , ,_61 ,1 , ]e1o

: - ncEil,iw bv (8).

11. The Ray Index, r

/y'; is the amount of energy crossing unit surface normally, in unit
time. fmagine a cylinder erected on this base of unit area, with its length
parallel to p6 the direction of iy';, and of height B where B is the velocity
along pr. If the energy density within it is a.r then in unit time an amount
of energy Bu will pass through the unit area and thus,

l M l : B w .
We have,

Noh :  9.

So that

B :  
'  

:  
o

' 
n(hl) f ilt

i.e., the wave velocity is the projection of the ray velocity on the wave-
normal.

Also, since

c2Er2w
N ; 2 :  

"+T

B' : ! ! :  !_ B, ' .' 
w2 4nw

We define the ray index, r, by r:c/B so that,

, r :  ( ! \ ' : c 2 4 r w  - E j D t
\P /  c2E ;2  E i2

( r f . n ' : D " \ .
\  EiD; /

Again, inserting the value for l; in the expression for /y';, we get.

n. _ cn(EiDilEt(EiD) - Dfi izl
u' : 

+" V D,,@DF _IED1-;,;t

c{Epi lao14o) - D$ll
4*\/'hrq, lEpj), 

'

Since P;:Iy'r/ l l /r l and as,
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c -
l l f t l :  - t / (E iD i )E i z

+T

DtEi'- Et(EiDi)
rL 

t/E,rlE,rD,, - (EiD)'l

/  " .  E ; D i 2 - D ; ( E i D i \  \
I Cl. r; : --:::-.......- 1.
\  !  Diz lEl2Df -  (EjDj)z|  /

12. Relations of Wave and Ray Vectors

We have,

E t P ; : O ;  D J ' ; : O ;  P h : c o s 0 : '  r : n c o s q

where 0 is the angle between the wave-normal and the ray.

Hence in the equation

D,; : nrl E; - ta@il)\ of (6)

Dtu : n"lEttu - pth(EJ)l : - n2(E;l,) cos 0

or

E i r i :  -  l noo  ̂.
n" cos a

Since E;, D; and.2i are coplanar,

fu: aDt I bEt

where o and D are constants.
Hence

7t;2 : aPrDt + b\iEi i.e., aPaD; : I

and

P;li, : al5D;, t blfit, i.e., bl6E; : go5 6.

So that,

.  D t  ,  E t cos |
n, :  f f i -  t f r

and

^  l i E i \ .  D r l

" t : . o . d l P o  
-  

p , D , l '

Inserting the value lor E1l,i we get,

-  D,o, (  o,  -  'o  
\

uo: 
' ' '  

\ ' '  P'o'/ - Dt - ft(Diq) '
n2 cos2 o 12

Taking all these wave and ray equations together and comparing them,

we see that they have the following correspondence in their termsl

181



I82 T. C. PHEMISTER

Et Dt It h a n K' K" Kttt I)t r" fl"' c wave equations

D r , E t - '  
1  1  1  1  |  |  1  1  1

| i - l tV  ;  K  I (  K-  7  V  r . ,  ;  
raYequat ions

13. The Ray Equations

We have for the wave, from (6),

^ - | ,( l iE) -c2l(I i4i)
-  

I  I  a 2 - t ) ' 2

n2  K '

and two similar equations for Dz and Ds and also, from (5),

;!"+ ""!*+vfi:o
Substitutihg the corresponding terms from (12) we get,

b'(  b 'D')- '  
, ' (L- : \

\p'z o'2,1

and two similar equations ior Ez and Et.
Also,

Pt' _, fr' _ ft' : 0
1 1 1 | 1 1

p2 r ,2  92  U, ,z  p2  n t t tz

and

bt2 b,2 b"2

V:K - rV :K '+ , , - ^ * : o '

These equations define the ray surface which, if we put n;:Bp.;, ma!
be written,

t ) ,2Jct2 o"2Jb2 1)" '2rct2

t ,  -  p ,+  , ' -  E+  7 / - ,  -  p ' :  
u '

Thus to every value of p; there are two values of B ot r.

14. Relations of li and pi

In any actual case only one of the vectors l; and p; is given and the
other must be calculated from it. Knowing the lr or Pt the Dt and E,;. car'
be calculated from the equations of (6) and (13).

(a) We have,

D , : E K ' - - f L ( D i P i ) F 2
l:'2 - A2

and two similar equations for Dz and Dt.
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AIso,

DiPi : - (E111)nz cos u - 
cz(E I'i)

Thus,
Ita 

: h0
q2 _ 1) '2 F2 

_ A'2

and two similar equations lor lz, lz, pz, pt.
(b) We have already, from (5), the relations between the direction-

cosines of the wave-normals so that we derive,

#"+;!, t"+ o! i ' " :o
(c) Again, from (a) we can write,

\ P r - q l t - l P ( a z - a 2 )
d ' - D "

and two similar equations.
Squaring'"t 

"tt:'.;tl:,;:* "1"1'":"-:l*' 
by (7)

\ - )  "  ( -
u  

l o '  -  t t ' " \

a is already known by the wave equation in terms of l.; and therefore

o'(0'-o'), and thus B, can be expressed in terms of l;. Hence p;is ex-
pressed as a function of. lr.

We can write,

.  / r {  "  
g 2  Ip t : 1 7 o " f  

" r _ " , r 5
and two similar equations for Pz, py lz, ls.

Ilence, since to each value of lr there are two values of a, there must in

general be two ruys p; for each l;.
(d) By the relations of (12) we can write,

( l  p 2  I
I t : a 1 h  l ; *  -  [

1 P -  I  t  f

I  B'- ' , t" )

and two similar equations lor lz, lz, Pz, fz.
Ilence, since to each value of pithere are two values of B, there must

in general be two wave-normals lr for each p,;.

15. Relations of the Wave-normal Surface and the Ray Surface

A small change in either the electrical intensity or the displacement
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will bring about a small change in the l.; relative to the p,;.. We now inves-
tieate this relation.

1l; * )fii

Fro. 1. The direction of the tangent plane to the ray surface.

Let p,i, be the ray direction and B the ray velocity in this direction. If
Rr:0h then the end of R; sweeps out the ray surface. Let lrbe the wave-
normal associated with p; according to (14).

Since prc:rR;, w€ have from (12),

c2Ei :  (R ;2)D6 -  R i (D jR) .

If the quantities be considered as functions of a variable l, say, then
the displacement of Rr wil l be 6Ro:R;6/ where the dot indicates dif-
ferentiation with respect to l.

We have,

cr i t r :  bo(Ri \  + 2Dd(RjR) -  R,(DiR) -  Rd(Di i?. j )  -  Rt(DiR).

Multiplying these equations by the appropriate D.i and adding, we
have,

crE;D, : (D,D)(R!) - (DrR)(b;Rt) + 2l(D;r)(RiR,) - (RD)G;D)l
: bn{1a;\Di - Ri(DR)lr + zfu{(n})ni - Di(RtD)lt
: c2r)rEt + z{lllD, Rl, Dlo

i .e . ,  2  R; [ [P,  n] ,  D]n:0 s ince DaE;:  P, ,P, .
The vector I lp, n], D]r is perpendicular to the normal to the plane of

D;and, Ptand is also at right-angles to D;. It is therefore parallel to l;.
We have then R;[[D, R],,4]o:O and hence the displacement of R;, be-
ing DR;:jnDl, must be at right-angles to l; since l,;6Ro:9. That is, the
tangent plane to the ray surface at the end of a radius-vector is always
at right-angles to the corresponding wave-normal.

The principal axes of the wave-normal surface and the ray surface co-
incide and therefore the wave-normal surface is the pedal surface of the
ray surface and conversely the ray surface is the envelope of the planes
at right-angles to the radii-vectores of the wave-normal surface.

16. Derivation of the Wave-normal Ellipsoida

By (5) we have for the relation between the wave-normal l,,t and the

a This surface is also called the indicatrix (Fletcher), the indexellipsoid (Pockels and

Szivessy), the normalenellipsoid (Born). As the term "indicatrix" has long had a definite
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velocities d of the two waves propagated along it,

I ' 2  
- l  I z2  

-  I "  - n

Hence ir waves J"; 
",,#*';- 

u;;;*;," the crystar in a'
directions, the limits of their travel after unit time along the normals
will form a twofold surface, the wave-normal surface, which is of the
fourth degree. Such a surface is a compricated one and it is more con-
venient to take as reference an ellipsoid derived from the energy equa-
tion (4),

! *U+ D l l , :anu.
K t  K t t  

'  
K t t '

Taking the r; as measures ol the Dr and with suitable adjustments we
can put,

) ( t 2  ,  J , , z  ,  r 3 2  .  J r 2  
, j ! 1 *  

. r ,  
: ' |

r  
-  

x . f  K , ; :  
t ,  o r  

; ; _ .  n , , 2  n " ' 2

This is an ellipsoid whose principar axes coincide with the dielectric
axes and are proportional to the roots of the principal dielectric constants
or to the principal refractive indices. rt is called here the wave-normal
ellipsoid. By reference to it the course of the propagation of light in
crystals can be illustrated and examined in the following manner.

17. Refractive fndices for the Wave-normal l;
Let a radius-vector of the ellipsoid represent a wave-normal /1. Then,

by (6), D;, which we shall take as the ,,vibration,, 'must l ie in a plane at
right-angles to this radius vector. Let l;x;:0 be such a plane ih.ough
the origin. rt will cut the ellipsoid in an ellipse and the principal axes
of the ellipse give in direction and magnitude the two values it pn a,"-
manded by electromagnetic theory. That this is so we prove as follows.

For the radius-vector of length r,

,z : aoz : f(x;) say.

we have therefore to find the maximum and minimum varues for r
having regard to the conditions,

0 :  
t t '  ) t " 2  l . t z

t l  
+  

f ,+  R, -  
-  1  :  6 (x i )  say ,

and

0 : l;rt : {(r) say.

meaning in the geometry of higher surfaces and curves and as the expression ,.indexeilip-
soid" is ambiguous, Born's name is probably best. ,,wave-normal ellipsoid,' is used here
to make the reference as precise as possible.
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Forming d,l+\,dO+z pd',!t w]herc \ and 2 p are undetermined multipli-

ers, and equating the coefficients of the d'ti to zeto,

),rr Ir" , trrt | ..r - n
* ' + ; * p / , : 0 ,  r " 1 - f i i - P l z : 0 ,  r s + T ; 1 . t t t t : u '

The values of rr which satisfy these equations are those that determine

the turning values of 12. Multiplying the equations by the :ni and adding

gives z2: -tr and this gives on substitution'

ptr,pl,
i9r :

- _ l
K,

- -  I
K t t '

Inserting these values in l,itr.:0,

; : . ; : * ; ; : '
I (  

- '  
K "  

-  
6 l r

/ rJt rll2 .rls\
^ ( l ( +  j ; : *  * - ) * p : o

which gives then, as the three equations defining the *r for the turning

values of r2,

r,- '#+t,t(+*#*#):'
and two similar equations. If in these equations the r' are replaced by the

Dr and h/ K' , etc. bY E1, etc.' then,

Dt : nz (+ - /,(E,r,))

and two similar equations, and these by (6) define the electrical dis-

placements associated with the wave-normal l;'

18. Vibration Directions for the Wave-normal l;

From the values obtained in (17) for the r; the ratios of the direction-

cosines of the axes of the elliptic section at right-angles to l; are'

Ir Iz

I r 2  _  q 2 ' I t t 2  -  A 2  D t , t 2  -  d 2

:t2 :
r '

- l
K , ,
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which are the values determined for the direction-cosines m; of D; in (7).
We note further that these electrical displacements are at right-angles
as required by (7).

19. Ray Direction and Ray Index

Let r;' be the end of one of the

for the

principal

Wave-normal l;

axes of the elliptic section at

Frc' 2. Section of the wave-normal ellipsoid containing the wave-normalla and, one of ttre
principal axes Or4 of the elliptic section at right-angles to it.

right-angles to the wave-normal l;. This axis defines one value ol D; in
magnitude and direction, i.e., on the appropriate scale, r;t:p;.By (6),

^ h(lg;)

n "  n '

so that,

f  {  I , ( ;E i )  ) , l r / ,
lo ' l :  I  tJ r_l  I  I

L  l n ' 2  n ' ) J

By (1a)

- 2 -
5 -

L(*n) '  L u 
IP

\*- +)'
Hence,

l rE,  :  U '
c2

We have thus for the co-ordinates fii',
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r 't : 
l l fr{

'  
/  1  1 \

' " \ * -  
* )

and similar equations lor *z' and 13'.
The tangent to the ell iptic section atr/ is atright-angles to Or;/ and

is thus perpendicular to the plane of h andOr/ since it also lies in the cen-

tral plane at right-angles to lr. Draw the tangent plane to the ellipsoid

at r/ and let O/y', with direction-cosines s;, be the normal to this plane

from the origin. Since 01[ is also at right angles to the line through /y'

parallel to the tangent to the elliptic section at fii' , it must be co-planar

with li and Oxi.
We have,

rtt g
sav.

n ' 2

n"'"(#-
and similar equations for sz and sa.

By (14) we have, for the ray corresponding to the wave-notmal l;,

. rh (. n'g' l
D t : -  l t - - l" \ .(#-+)l

and similar equations Ior pz and pz.

IIence,

Xr

n ' 2

1z(#)'l'"
lrnEQ

*)

, ,p, :  YLfc ' l
L

: g q '  l ,
n 1 2

t

, t '

, " t 1
" '  \ r / ' -

, 1 - h ' n 'o 2
6 \ a- - L.'(i - +) *"(# - +)'l'

From (5)

h'I

also,

: 0
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so that,

tf lt'

*'(# - #)' * (*L - *)',
s t f u : 0

i.e. 1; is given by the two conditions, (a), it lies in the plane of. h, O*;'
and O1[, and, (b), it is at right-angles to ON .

Further, ON:n cos 0 and hence is equal to the ray index r. We note
also that, from the geometry of the ellipsoid, OIf will be a principal semi-
diameter of the cross section of the cylinder with axis ft. and tangential
to the eilipsoid along its intersection with the plane diametral to 1l.

These relations being established between the wave-normal ellipsoid
and the electromagnetic vectors, all of the remaining relations depend
only on the geometry of the ellipsoid itself. Beer, Becke and Wrights
have pointed out that the full optical relations can be developed from
the wave-normal ellipsoid by consideration of the cones defined by the
intersection of the ellipsoid with a sphere of variable radius correspond-
ing to the refrractive index. In concluding this note it is worth drawing
attention to the role played in this matter by the focal lines of these cones.

If the wave-normal ellipsoid is

z #:o
the radii-vectors of length corresponding to the variable refractive in-
dex r give the "equivibration" cone

, * , , (J - -1 \ :u
\ n ' 2  1 2  J

and this degenerates into the two planes of cyclic section of the ellipsoid
for r:n". Since the coefficients of rr2 etc. in the equations to the cone
and the ellipsoid differ only by a constant term, the directions of the
circular sections are the same in each. The real focal lines of these equivi-
bration cones are given by,

*r, ! '",,1 
n"',)- - ,"" lo,', l  , l l  

- '",) 
: g for n" 11 1n"'

( n , t z  _  n t z )  
-  

( n t t t z  _  n ' 2 )

and

"  
G2 - 7x'z) 

"  
(nt 'z -  r2\

'  
( n " ' 2  -  n t 2 )  

-  
( n t t t 2  -  n t t 2 )

5 Beer, A.: Grunert's Arch., Th. 16,223-229 (1851).
Becke, F.: Tschermak's Min. u. Pet. Mitt , 24, 1-34 (1905).
Wright, F. E.: Jow. Opt,. Soc. Am.,7,77V877 (1923).

f o r n ' 1 r  1 n "

It
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i.e. the cones fall into two sets, the cyclic sections of the ellipsoid forming
the boundary between them.

We note in passing that a property of the focal lines of such cones is
that the section of the cone by any plane at right-angles to one of them
is a conic having for focus the point where the focal line meets the plane.
Further, the directrix of the cone corresponding to the point on the focal
Iine lies in the plane of section and is at right-angles to the plane of the
focal lines. It is also the directrix of the conic section.

A tangent plane to the equivibration cone along a generator, l;, sa!,
is

It is a diametral plane of the ellipsoid and the generator, being a radius
of the sphere and thus at right-angles to the curve of its intersection
with the ellipsoid, is a principal axis of the elliptic section. Hence the
normals to the tangent planes of the equivibration cone give the direc-
tions of propagation for which one refractive index is r. They form the
cone

I  r .  
* ' t  : 0 ,-  

/  1  _  1 \
\ r z "  r ' )

the equirefringence cone, which is reciprocal to the equivibration cone.
The relations of two such reciprocal cones are shown in Fig. 3. The focal
Iines of each cone are at right-angles to the circular sections of the other
and the normal plane common to the two cones namely,

l r  I  \
-  \ r -  

-  

" - ' )L  
^  

n : o '

bisects the angle between the planes through the generator and the focal
l ines in each case. The direction-cosines of the generator of the equire-
fringence cone corresponding to the vibration direction l; are in the ratio,

t , \ ( : - -  1  \  r " ,  -  ( ! -a \ , " ,1
n ' "  /  

' '  
\  z ' ,  n " ,  / ' -  \

: t , l ( ] - - - 1 \ , ,  ( 1  1 \ , , 1
- { \ z d - , " ,  

)  
t t "  -  

\ t r -  d , n )  
t r I

,u1(#- h),r - (h- h),rl
The focal lines of the equirefringence cones are therefore at right-angles

to the cyclic planes of the equivibration cones and of the ellipsoid and
are thus the same for all. They constitute the wave-normal axes and the

Du(# - i) ":,
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Frc. 3. Reciprocal cones in stereographic projection. 7 is a cone of the set n" 111n"'
with focal lines at,4 and. A', and U, focal lines at B and B', one of the set n'1r1n". c
and c' are the planes of circular section, r:n't . The cone reciprocal to tr/ is z and its focal
lines are C and C' at right-angles to the cyclic sections c and. c' . The normal plane common

to the two cones is RP and, it bisects, in each cone, the angle between the planes through
the generator and the focal lines. The circular sections of a are a and, a' at right-angles to
the focal lines,4 and A' of V. RS is the tangent plane to ?, at right angles to OP and PQ
the tangent plane to 7 at right-angles to OR.

refractive indices for the crystal are thus given by cones set about these
optic axes. These fall into two sets corresponding to the two sets of
equivibration cones as shown in Fig.3, i.e., (i) for n" 1r1n"'the cones
Iie between the principal section n'n" and. the wave-normal axes. Their
circular sections, being at right-angles to the focal lines of the reciprocal,
equivibration cones, are perpendicular to the plane n"n"'. (ii) for
ntlrlntt they l ie between the principal section nttn'tt and the wave-
normal axes, their circular sections being at right-angles to the plane of
n' and ra". Since they have the same focal lines, these two sets of equire-

191
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fringence cones intersect, thus determining the refractive indices for the
direction of propagation defined by the common generators.

Since we are concerned oniy with directions, it is sufficient to consider
the intersection of these equivibration and equirefringence cones with a
sphere of reference in which they depict for the crystal the refractive in-
dices and the directions of vibration.6 Since for a second degree cone the
sum of the angles between any generator and the focal lines is a constant,
namely the angle between the generators in the plane of the focal lines,
the curves of intersection of these cones with the sphere are analogous
to plane ellipses.

The directions of vibration for a generator defining a propagation di-
rection is given by the intersection of the normal plane through the gener-
ator with the plane at right-angles to the generator. This plane, as we
have seen, bisects the angle between the planes containing the generator
and the focal lines. If the direction-cosines oI the generator are li the di
rection-cosines of the vibration direction are in the ratio,

, . 5 ( r  - 1 \ / 1  -  1  \ , . , -  1  - r (  1 -  1 \ , , 1

"7 \ t , -  7  )  \ , t ,  
-  

t r )  
t d  -  

d , , 2  
-  

V \ r , , ;  
-  

, t , )  " ' I

. , ^ l ( 1  1 \ / 1  1 \  / r  1 \ / l  t ) r * , l 't r " l \n -  -  
, ,  ) \m-  i l ,  ) / "  

-  
\n , ,  

-  
, ,  ) \ * " -  * t  )

( /  1  -1 \ l ' a -  t ' \  r . , - (L -1 \ / l - -  t  \ r , ' lt k 1 \ *  
1 2 , l  \ n " ' 2  n " 2 , /  

-  
\ n " 2  r ' /  \ n ' 2  n " ' 2 , t  )

6See Johannsen, A.: Manual of Petrographic Methods, New York, (1918),pp.429-

434, and Wright, F. E.: op. cit., pp.790-792 for diagrams of projections of these curves
of intersection on the principal planes. Both of these works give a summary of the develop-
ment of this method of analysis of the optical properties of crystals.
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